Partial solutions to problem set 11

Problems from Strauss, Walter A. Partial Differential Equations: An Introduction. New York, NY: Wiley, March 3, 1992. ISBN: 9780471548683.

Problem 129.8a) $f(x)=x^{3}$ on $(0,1)$. The odd $2 l$-periodic extension of f is

which is L^{2}, piecewise C^{1}, but not continuous. So exactly the same arguments as in $\# 7$ give that the Fourier sine series of f converges to f in L^{2}, to f pointwise on $[0, l)$, to $\frac{1}{2}[f(l+)+f(l-)]=$ $\frac{1}{2}\left[l^{3}+(-l)^{3}\right]=0$ at $x=0$, and it does not converge uniformly.
b) $f(x)=l x-x^{2}=x(l-x)$. The odd $2 l-$ periodic extension of f is now C^{1}, in fact piecewise C^{2} (2nd deriv $=-2$ on $(0,1), 2$ on $(-1,0))$.

This suffices to give uniform convergence of the Fourier series, hence pointwise and L^{2} convergence as well. To use Theorem 2 directly note that f is C^{2} on $[0, l]$ and satisfies Dirichlet BC's (the BC's of the Fourier sine series), so by Theorem 2 the Fourier sine series converges to f uniformly.
c) $f(x)=x^{-2} \sin \frac{n \pi x}{l} d x$ does not even converge, since the integrand is $\geq x^{-2} \frac{n \pi x}{l} \cdot \frac{1}{2}=\frac{n \pi}{2 x l}$ near $x=0, \& \frac{1}{x}$ is not integrable.
$\left(\sin \theta=\theta+\right.$ higher order terms in Taylor series, so $\sin \theta \geq \frac{\theta}{2}$ near 0$)$.
Thus, the Fourier sine series of f makes no sense, so we cannot talk about its convergence either.
Problem 129.16: $\varphi(x)=|x|$ in $(-\pi, \pi)$. Want to approximate φ by $f(x)=\frac{1}{2} a_{0}+a_{1} \cos x+$ $b_{1} \sin x+a_{2} \cos 2 x+b_{2} \sin 2 x$ and minimize the L^{2} error $\|f-\varphi\|^{2}=\int_{0}^{\pi}|f(x)-\varphi(x)|^{2} d x$.

Since f is just a linear combination of the orthogonal functions $1, \cos x, \sin x, \cos 2 x, \sin 2 x$, the minimizing choice is given by the Fourier coefficients (Theorem 5), i.e. if we write

$$
\varphi(x)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(A_{n} \cos n x+B_{n} \sin n x\right)
$$

then $a_{0}=A_{0}, a_{1}=A_{1}, a_{2}=A_{2}, b_{1}=B_{1}, b_{2}=B_{2}$.
But φ is even, so the B_{n} are zero, hence $b_{1}=b_{2}=0$, and

$$
\begin{aligned}
a_{0} & =A_{0}=\frac{2}{\pi} \int_{0}^{\pi} x d x=\left.\frac{2}{\pi} \frac{x^{2}}{2}\right|_{0} ^{\pi}=\pi \\
a_{n} & =A_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x=\left.\frac{2}{\pi n} x \sin n x\right|_{0} ^{\pi}=-\left.\frac{2}{n^{2} \pi} \cos n x\right|_{0} ^{\pi} \\
& =-\frac{2}{n \pi} \int_{0}^{\pi} \sin n x d x=-\left.\frac{2}{n \pi} \cos n x\right|_{0} ^{\pi}=-\frac{2}{n \pi}\left((-1)^{n}-1\right), n \geq 1
\end{aligned}
$$

So $a_{1}=-\frac{4}{\pi}, a_{2}=0$.

