Partial solutions to problem set 10

Problems from Strauss, Walter A. Partial Differential Equations: An Introduction. New York, NY: Wiley, March 3, 1992. ISBN: 9780471548683.

Problem 118.2: First, notice that all polynomials with only even degree terms are orthogonal to all polynomials with only odd degree terms on $[-1,1]$: indeed: they are even respectively odd functions, and f even, g odd $\Rightarrow \int_{-1}^{1} f(x) g(x) d x=0$ since $f g$ is odd.

In particular, x is orthogonal to 1 . Next, x^{2} is orthogonal to x since x is odd, x^{2} even), so we only need to worry about the constants.

So we take (by Gram-Schmidt),

$$
Q_{2}(x)=x^{2}-\frac{\left(x^{2}, 1\right)}{(1,1)} 1
$$

in place of x (in general, we would take $x^{2}-\frac{\left(x^{2}, x\right)}{(x, x)} x-\frac{\left(x^{2}, 1\right)}{(1,1)} 1$, , but $\left(x^{2}, x\right)=0$ as we just observed.) Now,

$$
\begin{gathered}
\left(x^{2}, 1\right)=\int_{-1}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{-1} ^{1}=\frac{2}{3} \\
(1,1)=\int_{-1}^{1} 1 d x=2
\end{gathered}
$$

so $Q_{2}(x)=x^{2}-\frac{1}{3}$. (Any multiple of Q_{2} also works, e.g. $3 x^{2}-1$.)
Next to find a cubic polynomial orthogonal to $Q_{0}(x)=1, Q_{1}(x)=x, Q_{2}(x)=x^{2}-\frac{1}{3}$, note that orthogonality to Q_{0} and Q_{2} is automatic if we have only odd degree terms, so applying the GramSchmidt process to x^{3} gives

$$
Q_{3}(x)=x^{3}-\frac{\left(x^{3}, x\right)}{(x, x)} x
$$

Now

$$
(x, x)=\int_{-1}^{1} x^{2} d x=\frac{2}{3}, \quad\left(x^{3}, x\right)=\int_{-1}^{1} x^{4} d x=\frac{2}{5}
$$

so $Q_{3}(x)=x^{3}-\frac{3}{5} x$ (again, e.g. $5 x^{3}-3 x$ would also work).

