MATH 152: THE FOURIER TRANSFORM - THE INVERSION
FORMULA

Recall that S = S(R") is the space of Schwartz functions, i.e. the functions ¢ €
C>(R™) with the property that for any multiindices a, 3 € N*, 2*9%¢ is bounded.
Here we wrote 2 = z{'z5? ... 2%", and 0° = 991 ... 90~; with 9,, = %}_. (This
notation with a, 3, is called the multiindex notation.)

We defined the Fourier transform on S as

(1) FOO =0 = [ e sy

and the inverse Fourier transform as

2) F o) = Cn " [ e de

We showed by integration by parts that F, F ! satisfy

(3) FDa;¢ =& 79, —De; ¢ = F(x;@), Duy =i"'0;
with similar formulae for the inverse Fourier transform:

(4) F'Detp = —a; 7, Dy, F~1p = FH (&),

We used this to show that F : S — S and similarly for F~!; indeed, if ¢ € S,
then 2*9%¢ is bounded for all multiindices a, 8. But the Fourier transform of this
a constant multiple of 9*¢%¢. But we in fact have that (1 + |z|2)"TD/2229%4 is
also bounded (the first factor in effect simply increases a), so |[z*3%¢| < C(1 +
|2[2)~(»*+1D/2 for some C' > 0. Thus,

0°€°6(€)| = | o e ¢ (2979)(z) dx|

< / i€ (2°0%9) () da < / (L + Jof2)~mD/2 = M < 400,
n R’n

so sup [9%¢F | < M, i.e. 9*EP ¢ is bounded indeed. Although the derivatives and
the multiplications are in the opposite order as in the definition of S, using Leibniz’
rule (i.e. the product rule) for differentiation, we get other terms of the same form,
so we conclude that (Z) € S indeed. The proof for the inverse Foruier transform is
of course very similar.

We also calculated the Fourier transform of the Gaussian ¢(z) = e~/
on R” (note that ¢ € S!) by writing it as

b(&) = (/Re—”? da:1> (/Re—”i dmn>,

hence reducing it to one-dimensional integrals which can be calculated by a change
of variable and shift of contours. We can also proceed as follows. Write x for the
one-dimensional variable, ¢ for its Fourier transform variable for simplicity, and

U(x) = e,

h(€) :/e*izﬁewﬁ e 26752/4a/67a(z+i5/(2a))2 de,
R R

where we simply completed the square. We wish to show that

f(&) = / ealatie/(20)° g
R
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is a constant, i.e. is independent of &, and in fact it is equal to \/7%. But that is
easy: differentiating f, we obtain f'(£) = —i [,(z +i€/(2a))e~ @ +i€/(20)* gy The
integrand is the derivative of (—1/(2(1))6_“(9”‘*‘1'5/(2‘1))2 with respect to z, so by the
fundamental theorem of calculus, f'(§) = (i/(2a))e a(=+i€/(2a)*| T2 — 0 due to
the rapid decay of the Gaussian at infinity. This says that f is a constant, so for all
& f() fR —az” dz which can be evaluated by the usual polar coordinate
trick, giving \/%. Returning to R", the final result is thus that

9(&) = (x/a)"/2e 8/,
which is hence another Gaussian. A similar calculation shows that for such Gaus-
sians F~'¢ = ¢, i.e. for such Gaussians T = F~'F is the identity map.
Now we can show that T is the identity map on all Schwartz functions using the
following lemma.

Lemma 0.1. Suppose T': S — S is linear, and commutes with z; and D,,. Then
T is a scalar multiple of the identity map, i.e. there exists ¢ € C such that Tf = cf
forall feS.

Proof. Let y € R™. We show first that if ¢(y) = 0 and ¢ € S then (T¢)(y) = 0.
Indeed, we can write, essentially by Taylor’s theorem, ¢(x) = Z?:l(m]' —y;)o;(x),
with ¢; € S for all j. In one dimension this is just a statement that if ¢ is Schwartz
and ¢(y) = 0, then ¢ (z) = ¢(z)/(x —y) = (¢(x) — ¢(y))/(z — y) is Schwartz:
smoothness near y follows from Taylor’s theorem, while the rapid decay with all
derivatives from ¢y (x) = ¢(z)/(x — y). For the multi-dimensional version, one can
take ¢j(z) = (z; — y;)d(z)/|x — y|? for |z — y| > 2, say, suitably modified inside
this ball. Thus,

T¢= Z ) (T5),

where we used that T is linear and commutes with multiplication by z; for all j.
Substituting in z =y yields (T'¢)(y) = 0 indeed.

Thus, fix y € R”, and some g € S such that g(y) = 1. Let c(y) = (T'g)(y). We
claim that for f € S, (Tf)(y) = c(y)f(y)- Indeed, let ¢(x) = f(z) — f(y)g(x),
so ¢(y) = £(y) — FWg(y) = 0. Thus, 0 = (T)(y) = (TH) - F)(Tg)(y) =

(TF)(y) — e(y)f(y), proving our claim.
We have thus shown that there exists ¢ : R* — C such that for all f € S,y € R”,

(THy) =cly)f(y), ie. Tf = cf. Taking f € S such that f never vanishes, e.g. a
Gaussian as above, shows that ¢ =T f/f is C*, since T'f and f are such.
We have not used that T' commutes with D, so far. But

c(y)(De; f)y) = T(Da; f)(y) = Da,; (T f)le=y = Da; (c(2) f(@))|a=y
= (Da;0) () f(y) + c(y)(Da, £)(y)-
Comparing the two sides, and taking f such that f never vanishes, yields (D,,c)(y) =

0 for all y and for all j. Since all partial derivatives of ¢ vanish, ¢ is a constant,
proving the lemma. O

The actual value of ¢ can be calculated by applying T to a single Schwartz
function, e.g. a Gaussian, and then the explicit calculation from above shows that
c=1, so F'F =Id indeed.



