

MATH 152, FALL 2004: MIDTERM \#2

Problem \#1

a) Using Fourier Transform solve the initial value roblem with diffusion equation with variable dissipation

$$
\left\{\begin{array}{l}
u_{t}-K u_{x x}+b t^{2} u=0 \tag{1}\\
u(0, t)=\phi(x)
\end{array}\right.
$$

for $K>0,-\infty<x<\infty$ and $t>0$.
b) Write the solution u above more explicitly when $\phi(x)=e^{-x^{2}}$

For this second part you may need to remember that if F denotes the Fourier transform, then

$$
F\left(e^{-x^{2} / 2}\right)(\xi)=(2 \pi)^{1 / 2} e^{-\xi^{2} / 2} \text { and } F(f(a x))(\xi)=a^{-1} \hat{f}(\xi / a)
$$

for any constant a.

Problem \#2

10

Solve the initial and boundary value problem

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=h(x, t) \tag{2}\\
u(x, 0)=0, u_{t}(x, 0)=V \\
u_{t}(0, t)+a u_{x}(0, t)=0
\end{array}\right.
$$

for $0<x<\infty, V, a, c>0$ and $a>c$.
Hint: Solve first the problem with $h(x, t)=V=0$.

Problem \#3 有 30

Consider the equation

$$
\begin{equation*}
u_{t}=K u_{x x}-\alpha u \tag{3}
\end{equation*}
$$

with $\alpha>0$. This equation models a one dimensional road with heat loss through the lateral sides with zero outside temperature. Suppose the road has length L and the boundary conditions

$$
\begin{equation*}
u(0, t)=u(L, t)=0 \tag{4}
\end{equation*}
$$

a) The equilibrium temperatures are the functions u constant with respect to time, hence they are solutions of

$$
\left\{\begin{array}{l}
u_{x x}-\alpha u=0 \tag{5}\\
u(0)=u(L)=0 .
\end{array}\right.
$$

Find all the solutions $u(x)$ of (5).
b) Solve the boundary problem given by (3) and (4) with initial data $u(x, 0)=$ $f(x)$ using the method of separation of variables. Make sure you analyze ALL the eigenvalues of the problem!
c) Analyze the temperature solution $u(x, t)$ obtained in b) for large time $t \rightarrow \infty$ and compare it with what you found in part a).

Problem \#4 10

Using carefully the properties of the Fourier Transform and distributions, prove that for any constant b we have

$$
\begin{equation*}
\hat{b}(\xi)=2 b \pi \delta(\xi) \tag{6}
\end{equation*}
$$

Problem \#5 30

Consider the vibrating string with fixed ends

$$
\left\{\begin{array}{l}
u_{t t}=c^{2} u_{x x} \tag{7}\\
u(0, t)=u(L, t)=0 \\
u(x, 0)=f(x), u_{t}(x, 0)=0
\end{array}\right.
$$

for $0<x<L$.
a) Using the periodic extension method prove that

$$
\begin{equation*}
u(x, t)=\frac{1}{2} F(x-c t)+\frac{1}{2} F(x+c t) \tag{8}
\end{equation*}
$$

where $F(x)$ is an odd periodic extension of $f(x)$.
b) Use now separation of variables to solve again (7).
c) Because F is odd and periodic, $F(x)$ admits a sin expansion, namely

$$
\begin{equation*}
F(x)=\sum_{n=1}^{\infty} A_{n} \sin (n \pi x / L) \tag{9}
\end{equation*}
$$

Use (9) and the trigonometric identity

$$
\begin{aligned}
\sin a \cos b & =1 / 2[\cos (a-b)-\cos (a+b)] \\
\cos a & =\sin (\pi / 2-a) \\
\sin (a \pm b) & =\sin a \cos b \pm \sin b \cos a
\end{aligned}
$$

to show that the two solutions obtained in a) and b) coincide.

Solutions Mioltem \#2
Froblem 41

1) Tak F.t. of initid volue problem:

$$
\left\{\begin{array}{l}
\hat{u}_{t}-k(i \xi)^{2} \hat{u}+b t^{2} \hat{\mu}=0 \\
\hat{u}(0)=\hat{\phi}(\xi)
\end{array}\right.
$$

For fixted $\{$ this is an ODR

$$
\begin{aligned}
& \left\{\begin{array}{l}
\tilde{\mu}_{t}=\left(-k \xi^{2}+b t^{2}\right) \hat{u}=0 \\
\mu(0)=\hat{\phi}(\xi)
\end{array}\right. \\
& \frac{\mu_{t}}{\hat{\mu}}=-k \xi^{2}+b t^{\prime} \\
& (\ln \hat{u})^{\prime}=-k \xi^{2}+b t^{2} \quad \text { ink grote } \\
& \int_{0}(\boldsymbol{u} \hat{u})^{\prime}(s) d s=\int_{0}^{t}\left(-k \xi^{2}-b s^{2}\right) d s \\
& \ln \hat{u}(t)=-k t \xi^{2}+\frac{b}{3} t^{3} \\
& \left(\hat{\mu}(0)=\hat{u}(\xi, t)=\hat{u}(0) e^{-k t \xi^{2}+\frac{b}{3} t^{3}}\right.
\end{aligned}
$$

$$
\hat{\mu}(\xi, t)=e^{-\frac{b}{3} t^{3}} \hat{\phi}(\xi) e^{-k t \xi^{2}}
$$

So

$$
\mu(x, t)=e^{-\frac{6}{3} t^{3}} \mathcal{J}_{\nu^{-1}}\left(\hat{\phi}(\xi) e^{-k t \xi^{2}}\right)(x)
$$

b) Hon omune $\phi(x)=e^{-x^{2}}$, then

$$
\begin{aligned}
& \dot{\phi}(k)=e^{-(\sqrt{2} x)^{2} / 2} \\
& \dot{\phi}(\xi)=f(f(a x))(\xi)=a^{-1} f\left(\frac{\xi}{a}\right)
\end{aligned}
$$

uhen $f(x)=e^{-x^{2} / 2} \quad a=\sqrt{2}$

$$
\begin{gathered}
=2^{-\frac{1}{2}}(2 \pi)^{\frac{1}{2}} e^{-\frac{\xi^{2}}{4}} \\
\hat{\phi}(\xi) e^{-k t \xi^{2}}=\frac{1}{\sqrt{2}(2 \pi)^{\frac{1}{2}} e^{-\xi^{2}\left(k t+\frac{1}{4}\right)}} \\
=\frac{1}{\sqrt{2}}(2 \pi)^{\frac{1}{2}} e^{\left.\left.-\frac{(\xi \sqrt{2}}{2} \sqrt{k} t+\frac{1}{4}\right)\right)^{2}}
\end{gathered}
$$

So if $b^{-1}=\sqrt{2} \sqrt{k t+\frac{1}{4}}$

$$
\begin{aligned}
& \text { So if } b=\sqrt{2} \sqrt{k t+\frac{1}{4}} \\
& =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2} \sqrt{k t+\frac{1}{4}}}(2 \pi)^{\frac{1}{2}} b^{-1} e^{-\frac{\left(\xi b^{-1}\right)^{2}}{2}} \\
& =\frac{1}{\sqrt{4 k t+1}}=\left(e^{-\frac{(b x)^{2}}{2}}\right)(\xi)
\end{aligned}
$$

so

$$
\mu(x, t)=e^{-\frac{b}{3} t^{3}} \frac{1}{\sqrt{4 k t}+1} e^{-\frac{x^{2}}{(4 k t+1)}}
$$

Problem \# 2 (this is a combination of problem $\# 6$, page 64 and comments in page 76)
Fins define $v(x, t)=l e(x, t)-t V$ Hen $p(x, t)$

$$
\left\{\begin{array}{l}
v_{t t}-c^{2} v_{x x}=h(x, t) \\
v(x, 0)=0 v_{t}(x, 0)=0 \\
v_{t}(0, t)+a V_{x}(0, t)=-V
\end{array}\right.
$$

bo ouse

$$
\begin{aligned}
& v_{t}(x, t)=\mu_{t}(x, t)-V \\
& v_{x}(p, t)=\mu_{x}(x, t)
\end{aligned}
$$

We look for a solution like

$$
v(x, t)=g(x+(t)+f(x<c t)
$$

From tuitial conditions:

$$
\left\{\begin{array}{l}
g(x)+f(x)=0 \quad x>0 \\
c g^{\prime}(x)+c f^{\prime}(x)=0
\end{array}\right.
$$

Armandina Fram secoul epuation

$$
\begin{aligned}
& g(x)=f(x)+c_{0} \text { henu } \\
& f(x)=-g(x)=c_{1}
\end{aligned}
$$

So if $x-c t>0 \Rightarrow x>c t \Rightarrow v(x, t) \equiv 0$ Kou verconsider the cose $x<c t$

$$
\begin{aligned}
& v_{t}(x, t)+a v_{x}(x, t)= \\
& c g^{\prime}(x+c t)+c f^{\prime}(x-c t)+a\left(g^{\prime}(x+c t)+f^{\prime}(x+c t)\right.
\end{aligned}
$$

blowere $x+c t>0$ (huen ve sanne $c>0, t>0$)

$$
\begin{gathered}
g^{\prime}(x+c t s)=0 \\
f^{\prime}(x-c t)[d-c]
\end{gathered}
$$

So for $x=0 \quad f^{\prime}(-c t)(d-c)=-V$

$$
\begin{aligned}
& f^{\prime}(-c t)=-\frac{V}{a-c} \\
& f^{\prime}(s)=-\frac{V}{a-c} \quad \text { for } s<0 \\
& f(s)=-\frac{V}{a-c} s+c_{2}
\end{aligned}
$$

So for $x<c t$

$$
V(x, t)=-\frac{V}{a-c}(x-c t)+c_{3}
$$

Moun if $h \neq 0$ ther

$$
v(x, t)=\left\{\begin{array}{l}
\int_{\Delta} h(y, s) d g d t \quad x>c t \\
-\frac{V}{a-c}(x-c t)+c_{3}+\int_{\tilde{\Delta}} h(y, s) d y d s x c c t
\end{array}\right.
$$

Whir Δ ond Δ on ther eppigniate domains of slypenderce.
Problem liv 3
a) a looh for $l e(x)=A e^{\beta \beta x}$

$$
u x x-\alpha u=\beta^{2} u-\alpha u=0
$$

$\Leftrightarrow \quad \beta^{2}=\alpha>0 \quad \mu(x)=A e^{\sqrt{\alpha} x}$

$$
u(0)=A \quad u(L)=A e^{\sqrt{\alpha} L}=0 \quad \Leftrightarrow A=0
$$

$$
\mu \equiv 0
$$

b) $\quad \mu(x, t)=X(x) T(t)$
\square

$$
\begin{aligned}
& X(x) \gamma^{\prime}(t)=k X^{\prime \prime}(x) \gamma(t)-\alpha X(x) \gamma(t) \\
& \frac{T^{\prime}(t)}{T}=\frac{K X^{\prime \prime}(x)-\alpha X(x)}{X(x)}=-\lambda \\
& k X^{\prime \prime}(x)-\alpha X(x)=-\lambda X(x) \\
& \left\{\begin{array}{l}
X^{\prime \prime}(x)=-\frac{(\lambda-\alpha) X(x)}{k} \\
X(0)=X(L)=0
\end{array}\right.
\end{aligned}
$$

He trion tiot for thrs aigudue problem W only hore positine eigeralues, moce precisely $\quad \frac{l-\alpha}{K}=\left(\frac{n \pi}{L}\right)^{2} \quad n=1,2 \ldots$
henqu $\quad \lambda_{n}=\alpha+k\left(\frac{n \pi}{L}\right)^{2}$ and $X_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$
$\operatorname{ten} \quad \frac{I^{\prime}(t)}{T(t)}=-\ln \quad(\ln \tau(t))^{\prime}=\ln$

$$
\ln f(t)=-\ln t
$$

$$
T(t)=A_{n} e^{\ln t}
$$

then

$$
u(x, t)=\sum_{n=1} A_{n} e^{-\left(\alpha+k\left(\frac{n \pi}{L}\right)^{2}\right) t} \sin \frac{n \pi n}{L}
$$

L (finiti sum for nou)
c) $\lim _{t \rightarrow \infty} u(x, t)=0$ olu to tu foct Root

$$
\lim _{t \rightarrow \infty} e^{-\left[\alpha+k\left(\frac{n \pi}{L}\right)^{2}\right]^{2}}=0
$$

Problem\#4: He nual to ux dish bntioer B ϕ notohion: For ouy test fuction

$$
\begin{aligned}
& \langle\hat{b}, \phi\rangle=\langle b, \hat{\phi}\rangle=b\}\langle 1, \hat{\phi}\rangle \\
& =b \int \hat{\phi}(\xi) d \xi=\left.2 \pi b \frac{1}{2 \pi} e^{-i \theta} \cdot \xi \hat{\phi}(\xi) d \xi\right|_{x=0} \\
& =b 2 \pi \hat{\phi}(0)=b 2 \pi\langle\delta, \phi\rangle
\end{aligned}
$$

Hence $\langle\hat{b}, \phi\rangle=\langle 2 \pi b \delta, \phi\rangle \ll$

$$
\hat{b}=2 \pi b \delta
$$

Problem \#5
a) estend $f(x)$ to $\tilde{f}(x)=\left\{\begin{array}{cl}f(x) & 0<x<L \\ 0 & x=0 \\ -f(-x) & -L<x<0\end{array}\right.$

Hen

$$
f_{\text {ext }} f(x)=\text { periedic edension of } \widetilde{f}
$$

Hen musolve

$$
\left\{\begin{array}{l}
u_{1+}-c^{2} u_{x+}=0 \\
U_{(x, 0)}=\int_{\text {ext }}, \\
u_{t}(x) 0
\end{array}\right.
$$

So

$$
e(x, t)=f_{\text {ex }}(x+c t)+f_{\text {ext }}(x-c t)
$$

the tim restuct to $O<x<L$. Clorly It BC is solisfied bueise the odol extemion.

$$
u(x, t)=\frac{1}{2}(F(x+c t)+F(x-c t)) .
$$

b)

$$
\begin{gathered}
X(t) X(x)=u(x, t) \\
X Y^{\prime \prime}(t)=c^{2} X_{x x} Y \\
C^{2} Y^{\prime \prime}(t)=\frac{x_{2}}{X}=-l
\end{gathered}
$$

Eigudue problen $\left\{\begin{array}{l}x^{\prime \prime}=-l x \\ x(0)=x(L)=0\end{array}\right.$
$l>0$

$$
l_{n}=\left(\frac{n \pi}{L}\right)^{2} \quad n=1, \ldots
$$

$$
\begin{aligned}
& x_{n}(x)=\sin \frac{n \pi x}{L} \\
& f^{\prime \prime}(t)=-c^{2}\left(\frac{n \pi}{L}\right)^{2} \pi(t) \\
& r(t)=A_{n} \cos \frac{c n \pi t}{L} t \\
& \mu(x, t)=\sum_{n} A_{n} \cos \frac{n \pi c t}{L} \sin \frac{n \pi x}{L}
\end{aligned}
$$

c) han from lost tuig idunity

$$
\sin (a+b)+\sin (a-b)=2 \sin a \cos b
$$

so if $a=\frac{n \pi x}{L} \quad b=\frac{n \pi}{L} c t$
then

$$
\begin{array}{r}
\mu(x, t)=\sum_{n} \frac{A_{n}}{2}\left[\operatorname { s i n } \left\{\frac{n \pi}{L}(x+(t)\right.\right. \\
\\
+\sin \frac{n \pi}{L}(x-(t)]
\end{array}
$$

and bucase

$$
h(x)=f(x) \Rightarrow \sum_{n} A_{n} \sin \frac{n \pi x}{L}=f(x)
$$

lince

$$
\left.\left.u(x, t)=\frac{1}{2}[F(x+c t)+F(x-c t))\right] \sin a\right)
$$

