MATH 152, FALL 2004: FINAL

There are five problems. Do all of them. Total score: 160 points.

Problem \#1, (25 points)
For both of the following functions f on $[0, l]$, state whether the Fourier cosine series on $[0, l]$ converges in each of the following senses: uniformly, pointwise, in L^{2}. If the Fourier series converges pointwise, state what it converges to for each $x \in[0, l]$. Make sure that you give the reasoning that led you to the conclusions.

1. $f(x)=x(\sin (\pi x / l))^{2}$,
2. $f(x)=0$, for $0 \leq x \leq l / 2$, and $f(x)=1$ for $l / 2<x \leq l$.

Problem \#2, (25 points total)

1. (8 points) Find the general solution of the PDE

$$
u_{x}+2 y u_{y}=0
$$

on $\mathbb{R}_{x} \times \mathbb{R}_{y}$.
2. (${ }^{7}$ points) Now impose in addition that $u(0, y)=y$. Find u explicitly.
3. (10 points) Consider the PDE

$$
u_{x}+2 y u_{y}=x
$$

on $\mathbb{R}_{x} \times \mathbb{R}_{y}$. Find its general solution.

Problem \#3, (35 points total)
Consider the differential operator

$$
A=-\frac{d}{d x}\left(x^{2} \frac{d}{d x}\right)
$$

on twice differentiable functions f on $[0, l]$ which satisfy Dirichlet boundary conditions $f(0)=f(l)=0$. That is, for these functions $f, A f=-\left(x^{2} f^{\prime}(x)\right)^{\prime}$. Let $(f, g)=\int_{0}^{l} f(x) \overline{g(x)} d x$ denote the standard inner product on functions.

1. (10 points) Show that A is positive: $(A f, f) \geq 0$ for all f satisfying the conditions above.
2. (5 points) Use 1. to prove that all the eigenvalues of A are real and positivek.
3. (10 points) Show that A is symmetric: $(A f, g)=(f, A g)$ for all functions f, g satisfying the boundary conditions.
4. (10 points) Use 3 . to prove that all eigenvectors associated to different eigenvalues are orthogonal.

Problem \#4, (35 points total)
Consider the heat equation $u_{t}=k u_{\theta \theta}$ in a thin ring, and suppose that the initial temperature of the ring is $u(\theta, 0)=\phi(\theta), \theta \in[0,2 \pi], \phi$ is a given function. Since physically θ is defined up to the addition of integer multiples of 2π, we may consider u as a 2π-periodic function of θ.

1. (9 points) The total heat energy in the ring at time t is

$$
Q(t)=\int_{0}^{2 \pi} u(\theta, t) d \theta
$$

Using the PDE, show that $Q(t)$ is a constant (independent of t). (Hint: consider $d Q / d t$.)
2. (12 points) Using the separation of variables, show that the general solution of the heat equation is

$$
A_{0} / 2+\sum_{n=1}^{\infty} e^{-n^{2} k t}\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right)
$$

and find A_{n}, B_{n} in terms of ϕ.
3. (7 points) Find Q in terms of the A_{n} and B_{n}. What does the conservation of heat energy, as in 1., correspond to in the series solution $2 . ?$
4. (7 points) Find $\lim _{t \rightarrow+\infty} u(\theta, t)$ in terms of ϕ. Interpret the result physically.

Problem \#5, (40 points total)
In this problem we compare Laplace's equation and the wave equation in a halfspace. For the sake of uniformity of notation, we let (x, y) be our variables in \mathbb{R}^{2}, work in the half plane $y \geq 0$, and consider

$$
(L) u_{x x}+u_{y y}=0, \text { respectively }(W) u_{x x}-u_{y y}=0
$$

with

$$
u(x, 0)=\phi(x), u_{y}(x, 0)=\psi(x)
$$

where ϕ, ψ are given test functions. Thus, in the wave equation, you can think of y as the time variable, and we have the usual two initial conditions, while in Laplace's equation this amount to imposing both Dirichlet and Neumann boundary conditions at $y=0$. We assume that u is a tempered distribution.

1. (10 points) Take the Fourier transform in x of both PDE's and the conditions at $y=0$. That is, let $\hat{u}(\xi, y)=\mathcal{F}_{x} u(\xi, y)=\int_{\mathbb{R}} e^{-i x \xi} u(x, y) d x$. Recall that $\mathcal{F}_{x}\left(D_{x} u\right)=\xi \mathcal{F}_{x} u$, where $D_{x}=\frac{1}{i} \frac{\partial}{\partial x}$, and show that the PDE's become

$$
(\hat{L})-\xi^{2} \hat{u}+\hat{u}_{y y}=0, \text { respectively }(\hat{W})-\xi^{2} \hat{u}-\hat{u}_{y y}=0
$$

What are the conditions at $y=0$?
2. (12 points) Solve the ODE's (\hat{L}), resp. (\hat{W}), together with the conditions at $y=0$.
3. (8 points) Show that for (\hat{W}), the solution is a tempered distribution in ξ and y. (Recall that every continuous function v such that $|v(\xi, y)| \leq C(1+$ $\left.|\xi|^{2}+|y|^{2}\right)^{N}$ for some C and N is a tempered distribution.) By taking the inverse Fourier transform, write u as a sum of two terms, each of which is the convolution of a source function (which you do not have to calculate explicitly) and ϕ, resp. ψ.
4. (10 points) Show that for (\hat{L}), in general, the solution is exponentially increasing in $y \geq 0$, hence is not a tempered distribution. What equation must ϕ and ψ satisfy to make the exponentially increasing term in \hat{u} disappear? In particular, show that ϕ determines ψ if \hat{u} is polynomially bounded, i.e. it suffices to specify the Dirichlet boundary condition ϕ. Again, in this situation, write u as a convolution.

Solectrou for final
(1) $f:[0, l] \rightarrow \mathbb{R}$. Cosine $F . S$. on $[0, l]$

1) $f(x)=x\left(\sin \left(\frac{\pi x}{e}\right)\right)^{2}$
a) Un form - YES

Conditions for un\& cinvi of cleasiz F.S. are f, f^{\prime} exist, are continuous and the
(10) $B C$ are satisfied. We have $f(0)=f(l)=0$.

$$
\text { Or e. Fans } \left.\cos \left(\frac{\max }{e}\right)^{\prime} \xlongequal{1}, x=e, n>0 \text {. So } \sum_{n=1}^{\infty} A_{n} \operatorname{Ancs}^{(\text {(max }}\right)
$$

6) Pointwise - YES

$$
=\sum_{n=1}^{n} A_{n \text { at }} x=0, \sum_{n=1}^{d}(-1)^{n} A_{n} \text { at } x=1, \text { so B. C an }
$$ be satifitad al appapmele clave

Condition for poutwize come of clasiz ISS.
is that both f and f^{\prime} are piecewise continuous.
Clearly f cont.

$$
f^{\prime}=\left(\sin \left(\frac{\pi x}{e}\right)\right)^{2}+x \cdot 2 \sin \left(\frac{\pi x}{e}\right) \cdot \frac{\pi}{A_{0}} \cos \left(\frac{\pi x}{e}\right) .
$$

also controls $\cdot \frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos \frac{\pi n x}{e}=F(x)$.
c) $L^{2}-Y E S$

Could for L^{2} cons, is that $f \in L^{2}([0, l])$.

$$
\begin{gathered}
\left.\int_{0}^{e}\left(x\left(\sin \frac{\pi x}{e}\right)\right)^{2}\right)^{2} d x=\int_{0}^{e} x^{2} \sin ^{4}\left(\frac{\pi x}{e}\right) d x \\
\leq \int_{0}^{e} x^{2} d x=\frac{1}{3} l^{3}<\infty .
\end{gathered}
$$

2) $f(x)= \begin{cases}0, & 0 \leq x \leq e / 2 \\ 1, & \frac{e}{2}<x \leq l\end{cases}$
(12) a) Uni fam - ND The conditions gee chow for $F i$ net even cont n cols, let alow its dersutive.

 bot $\frac{e}{2}$. So both pieccurce cont.
(\#) carti)
c) $L^{2}-Y E S$
$\sqrt{ } A_{\text {gan, juct ned }} f \in L^{2}([0, e])$

$$
\int_{0}^{e} f^{2} d x=\int_{d / 2}^{e} 1^{2} d x=\frac{e}{2}<\infty,
$$

(2) 1) $u_{x}+2 y u_{y}=0$

Use coord, methud. Coust. lines are $\frac{d y}{d x}=\frac{2 y}{1}$.

$$
\begin{aligned}
& \Rightarrow \frac{d y}{y}=2 d x \\
& \Rightarrow \log y=2 x+c=7 \quad y=C e^{2 x}
\end{aligned}
$$

(8) So u is constant alony $e^{-2 x} y$

$$
\Rightarrow u(x, y)=f\left(e^{-2 x} y\right)
$$

Tret: $u_{x}=f^{\prime}:-2 e^{-2_{x}}$

$$
u_{y}=F^{\prime} \cdot e^{-2 x}
$$

$$
u_{x}+2 y u_{y}=-2 e^{-2 x} y F^{\prime}+2 y e^{-2 x} f^{\prime}=0
$$

2) $u(0, y)=y$
(7) $u(0, y)=f(y)=y$

$$
\Leftrightarrow u(x, y)=z \mid e^{-2 x y}=e^{-2 x} y
$$

3) $u_{x}+2 y u_{y}=x$

Now iusted \& boing constant along $y=C e^{2 x}$, we have the desivi in thre divatrons equel to x.
(10) Do a coordi framform, $x^{\prime}=x$

$$
\begin{aligned}
& y^{\prime}=y e^{-2 x} \\
& U_{x}=\frac{\partial}{\partial x^{\prime}} u \cdot \frac{2 x}{\partial x}+\frac{2}{\partial y^{\prime}} u \cdot \frac{\partial y^{\prime}}{\partial x}=u_{x} \cdot \cdot 1+u_{y} \cdot \cdot-2 y y^{-2 x} \\
& u_{r}=\frac{\partial}{\partial x^{\prime}} u \cdot \frac{\partial x^{\prime}}{\partial y}+\frac{\partial}{\partial y} \cdot u^{\cdot \frac{y^{\prime}}{z}}=u_{x^{\prime}} \cdot 0+u_{y^{\prime}}^{\prime} e^{-2 x} \\
& \text { so } u_{x}+2 y u_{y}=u_{x^{\prime}}-2 y e^{-2 x} u_{y}+2 y e^{-2 x} u_{y^{\prime}}=x^{\prime}=\text { conl }^{\prime} .
\end{aligned}
$$

$$
\begin{aligned}
& (2.3 \text { cont.) } \\
& U_{x}^{\prime}=x^{\prime} \\
& \Rightarrow U\left(x^{\prime}, y^{\prime}\right)=\frac{1}{2} x^{\prime 2}+f\left(y^{\prime}\right) \\
& \Rightarrow \cup(x, y)=\frac{1}{2} x^{2}+f\left(y e^{-2 x}\right)
\end{aligned}
$$

(3) $A=-\frac{d}{d x}\left(x^{2} \frac{d}{d x}\right), f$ twie di; PP, $f(0)=f(l)=0$

1) Show A pasitire

$$
\begin{aligned}
&(A f, f)=\int_{0}^{e} A f: \bar{f} d x=\int_{0}^{e}-\left(x^{2} f^{\prime}(x)\right)^{\prime} \bar{F} d x \\
&=\left[\bar{f} \cdot-x^{2} f^{\prime}(x)\right]_{0}^{e}+f^{e} \frac{e^{e} x^{2} f^{\prime}(x) \cdot \overline{F^{\prime}} d x}{0} \bar{f}(e)=0 \\
&=\left(\bar{f}(e)-e^{2} \bar{f}^{\prime}(e)-\bar{f}(0)-0^{2} F^{\prime}(0)\right)+\int_{0}^{e} x^{2}\left|F^{\prime}(x)\right|^{2} \\
&=\int^{e}\left|x F^{\prime}(x)\right|^{2} d x, \\
& \Rightarrow\left(\left.A F^{\prime}(x)\right|^{2} \geq 0 \quad \forall x \Rightarrow \int_{0}^{e}\left|x f^{\prime}(x)\right|^{2} d x \geq 0 .\right.
\end{aligned}
$$

2) λ s an e. vitue \& A if $A F=\lambda f$ for sore f Let f be an e. fano.

$$
\begin{gathered}
(A f, f)=(\lambda f, f)=\lambda(f, f) \\
P(A f, f) \geq 0 \Rightarrow \lambda(f, f) \geq 0 \\
(f, f) \geq 0 \Rightarrow \lambda \geq 0 .
\end{gathered}
$$

(λ cannt be cimply beence $(G, F) \in \sqrt{R}$ all ax dinct $(A f, f) \in f$
3) Show $(A f, g)=(f, A g) \quad \forall f, g$ satofing B.C.

$$
\begin{aligned}
(A f, g) & =\int_{0}^{l} A f \cdot \bar{g} d x=\int_{0}^{l}-\left(x^{2} F^{\prime}(x)\right)^{\prime} \bar{g} d x \\
& =\left[\bar{g} \cdot-x^{2} F^{\prime}(x)\right]_{0}^{l}-\int_{0}^{l}-x^{2} F^{\prime}(x) \cdot \bar{g} d x \\
& =\left[\bar{g}(l) \cdot-e^{2} f^{\prime}(l)-\bar{g}(0) \cdot 0^{2} f^{\prime}(0)\right]+\int_{0}^{e} x^{2} f^{\prime}(x \mid \bar{g}(x) d x \\
(f, A g) & =\int_{0}^{l} f \cdot\left(\overline{A_{g}}\right) d x=\int^{l} f \cdot\left(-x^{2} g^{\prime}(x)\right)^{\prime} d x \quad \text { 人nt. }
\end{aligned}
$$

(3.3 cont.)

$$
\begin{aligned}
& =\int_{0}^{e} f \cdot\left(-x^{2} \bar{g}^{\prime}(x)\right) d x \\
& =\left[f\left(\cdot-x^{2} g^{\prime}\right]_{0}^{1}-\int_{0}^{l} f^{\prime}-x^{2} \bar{g}^{\prime}(x) d x\right. \\
& =\frac{\left[f(e)-e^{2}(l)\right.}{0, F(l)=0}-\frac{\left.f(0) \theta^{2} g(0)\right]}{[}+\int_{0}^{l} x^{2} f^{\prime}(x) g^{\prime}(x) d x .
\end{aligned}
$$

Nob, there two ra, th are ital $\sigma_{0}(A F, g)=(f, A g)$.
4) Prove all e. vaturs for diff. vales are or hag

Pf Let λ_{1}, λ_{2} be e vales, $\lambda_{1} \neq \lambda_{2}$.

$\lambda_{1} \lambda_{2}$ respectincly.
Thun $A F_{1}=\lambda_{1} F_{1}$

$$
A f_{2}=\lambda_{2} f_{2}
$$

We wart to slow $\left(f_{1}, f_{2}\right)=0$,

$$
\begin{aligned}
\left(f_{1}, f_{2}\right) & =\left(\frac{\lambda_{1} F_{1}}{\lambda_{1}}, F_{2}\right) \\
& =\left(\frac{A F_{1}}{\lambda_{1}}, f_{2}\right) \\
& =\left(\frac{f_{1}}{\lambda_{1}}, A F_{2}\right) \quad(\text { fran part } 3) \\
& =\left(\frac{F_{1}}{\lambda_{1}}, \lambda_{2} f_{2}\right)
\end{aligned}
$$

$$
\text { (} 3.5 \text { cal.) }
$$

So thus seas that

$$
\begin{aligned}
& \int_{0}^{\text {sess }} \frac{\operatorname{lnt}}{} \bar{f}_{2} d x=\int_{0}^{e} \frac{f_{1}}{\lambda_{1}} \cdot\left(\overline{\lambda_{2} f_{2}}\right) d x \\
&=\frac{\lambda_{2}}{\lambda_{1}} f_{1} \bar{f}_{2} d x \quad \text { (shout in spart } 2 \\
& \Rightarrow\left(\frac{\lambda_{2}}{\lambda_{1}}-1\right) \int_{0}^{e} f_{1} \bar{f}_{2} d x=0 . \quad \text { Het गser sat) }
\end{aligned}
$$

(10) Thisis trie orty f $\lambda_{1}=\lambda_{2}$ (imposible, we just sand

$$
\lambda_{1} \neq \lambda_{2}
$$

or if $\int_{0}^{e} \overline{f_{1}} \overline{f_{2}} d x=0$.
This is equiu. to samiz $\left(f_{1}, f_{2}\right)=0$

$$
\Rightarrow f_{1}, f_{2} \text { or thog. }
$$

(4) $U_{t}=k U_{\theta \theta}$ in a thin ring

$$
u(\theta, 0)=\phi(\theta), \quad \theta \in[0,2 \pi]
$$

$$
v(\theta+2 \pi, t)=u(\theta, t)
$$

1) $Q(t)=$ heat energy $=\int_{0}^{2 \pi} u(\theta, t) d \theta$

We moe that becavce U is Z_{π} pesodre. U_{θ} is $+l_{0}$
2π pervade $\quad\left(v_{\theta}(\theta+2 \pi, t)=\lim _{\theta \theta \rightarrow 0} \frac{\Delta(\theta+2 \pi+5 \theta-4 \theta+2 \pi, t)}{8 \theta}\right.$

Thus Q is constant over time.
2) Let $u(\theta, t)=\theta(\theta) \cdot T(t)$

Them $\theta T^{\prime \prime}=k \cdot \theta^{\prime \prime} \cdot T \Rightarrow \frac{T!}{L T}=\frac{\theta^{\prime \prime}}{\theta}=-\lambda$

$$
\Rightarrow \theta^{\prime \prime}=-\lambda \theta
$$

For $\lambda>0, \lambda=\beta^{2} \Rightarrow \theta^{\prime \prime}=-\beta^{2} \theta=\theta(\theta)=C \cdot \cos \beta \theta+D_{\sin \beta} \beta \theta$
Neal $\theta(0)=\theta(2 \pi) \Rightarrow \theta(0)=C$

$$
\begin{aligned}
& \quad \theta(2 \pi)=C \cos 2 \pi \beta+D \sin 2 \pi \beta \\
& \Rightarrow \beta
\end{aligned}
$$

(Note, conditim is actually $\theta(\theta)=\theta(\theta+2 \pi)$, after comply through Absera, this reduces to above condition - see attach Scrap work)

$$
\begin{aligned}
& \left.=\lim _{\theta \rightarrow 0 \rightarrow 0} \frac{u(\theta+\delta \theta, t)-u(\theta, t)}{\varepsilon \theta}=U_{\theta}(\theta, t)\right) \\
& \text { Then } \frac{d Q}{d t}=\frac{d}{d t} \int_{0}^{2 \pi} u(\theta, \theta) d \theta=\int_{0}^{2 \pi} \frac{d}{d t} u(\theta, t) d \theta\left(\begin{array}{l}
s \theta \\
c_{0} \ln ^{3} \text { pastrit }
\end{array}\right. \\
& \text { ex }<1<1,0 \\
& \text { the kat, } \\
& =\int_{0}^{2 \pi} v_{t}(\theta, t) d \theta=\int_{0}^{2 \pi} k v_{\theta \theta}(\theta, t) d \theta \quad(P \eta E) \\
& =k\left[v_{\theta}\right]_{\theta}^{2 \pi}=k\left(v_{\theta}(2 \pi, t)-v_{\theta}(0, t)\right) \\
& =0 \text {. (became vo } 2 \pi \text { perrodie) }
\end{aligned}
$$

(4.2 cml)
So $\theta_{n}(\theta)=C_{n} \cos n \theta+D_{n} \sin n \theta$

$$
\begin{gathered}
\lambda=+n^{2} \\
T^{\prime}=-\lambda L T \Rightarrow T(t)=A e^{-\lambda L t}=A e^{-n^{2} k t} \\
\lambda=0, \theta^{\prime \prime}=0 \Rightarrow \theta(\theta)=C_{x}+D \text { on }\left(0,2_{\pi}\right) \\
\theta(0)=\theta\left(Z_{\pi}\right)=\theta(0)=0, \theta\left(Z_{\pi}\right)=Z_{\pi}(+0) \\
=T C=0 \\
\theta_{0}(\theta)=D_{0} \\
T^{\prime}=0 \Rightarrow T_{0}(t)=A_{0}
\end{gathered}
$$

$\hat{\lambda}<0$ will sut us coh and sinh which will wot safef B, C.
Thur $u(\theta, t)=A_{0} \cdot D_{c}+\sum_{\alpha_{n}=1}^{\infty} e^{-n^{2} h t}\left(C_{n} \cos n \theta+D_{n} \cdot \sin n \theta\right)$
(12)

$$
\theta=\frac{A_{0}}{2}+\sum_{n=1}^{\alpha u=1} e^{-n^{2} \cot }\left(A_{n} \cos n \theta+B_{1} \sin \theta\right)
$$

$$
u(\theta, 0)=\frac{A_{0}}{2}+\sum_{n=1}^{\alpha_{0}}\left(A_{n} \cos \theta+B_{n} \sin \theta\right)=\phi(\theta)
$$

Clearly, ther ${ }^{3}$ a stand and F.S.

$$
\begin{aligned}
\text { So } A_{0} & =\frac{2}{2 \pi} \int_{0}^{2 \pi} \phi(\theta) d \theta=\frac{1}{\pi} \int_{0}^{2 \pi} \phi(\theta) d \theta \\
A_{n} & =\frac{1}{\pi} \int_{0}^{2 \pi} \cos \theta \phi(\theta) d \theta \\
B_{n} & =\frac{1}{\pi} \int_{0}^{2 \pi} \sin \theta \phi(\theta) d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3) } \begin{aligned}
Q(t) & =\int_{0}^{2 \pi} u(\theta, t) d \theta=\int_{0}^{2 \pi}\left(\frac{A_{0}}{2}+\sum_{n=1}^{\infty} e^{-n^{2} L_{t} t}\left(A_{n} \cos \theta \theta+B_{n} \sin \theta\right)\right) d \theta \\
& =\frac{A_{0}}{2} \cdot 2 \pi+\sum_{i}^{\infty} e^{-n^{2} l_{0} t} \int_{0}^{2 \pi}\left(A_{n} \theta+B_{n} \sin \theta\right) d \theta
\end{aligned} \\
& =\frac{A_{0}}{2} \cdot 2_{\pi}+\sum_{n=1}^{\infty} e^{-n^{2} k t} \int_{0}^{2 \pi}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right) d \theta \\
& =A_{0} \pi+\sum_{n=1}^{\infty} e^{-n^{2} h t}\left[A_{n} \sin n^{\theta}=\frac{B_{n} \cos _{n} \theta}{n}\right]_{0}^{0} \\
& \text { (ok to suth } \\
& \text { In perradra } \\
& \Sigma \text { and } S \text { beame } \\
& \text { at foury wex } \\
& =A_{0} \pi
\end{aligned}
$$ $=7.1$

(4.3 cont.)

So the fact that hoot is conserved falls divatly out from the fact that the culutime ara admits a series form. The way to view it is that each of the cos/sin ferns have exactly zero net hat energy. So then terms can be multiplied h $_{y}$
(7) any function al t. \rightarrow vang pood!

The key is that the $\lambda=0$ term (whin does have heat energy) co has a constant t part. This caves the overall hest energy to be indef. If t.
4) $\lim _{t \rightarrow \infty} u\left(\theta_{1} t\right)=\lim _{t \rightarrow \infty}\left(\frac{A_{0}}{2}+\sum_{n=1}^{\infty} e^{-n^{2} h t}\left(A_{n} \cos \theta+B_{n} \sin u \theta\right)\right)$

$$
=\frac{A_{0}}{2}+\lim _{t \rightarrow \infty} \sum_{n=1}^{\infty} e^{-n^{2} h t}\left(A_{n} \cos \theta+B_{n} \sin \theta\right)
$$

$$
=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} \lim _{t \rightarrow \infty} e^{-n^{2} n t}\left(A_{n} \cos n \theta+B_{n} \sin \theta\right)\left(\lim _{1 \mathrm{im} \cdot t_{3}}^{\sin -\beta}\right.
$$

be cure
(7) $=\frac{A_{0}}{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi(\theta) d \theta$.

Note, the is a combatant value equal to the average value if ϕ. so the her equation says that at stent state, the initial heat energy all stans with n the ring, and it gets evenly distribute m the ring.
(5) (L) $v_{x x}+v_{y y}=0$
(w) $u_{x}-v_{y y}=0$$\left\{\begin{array}{l}u(x, 0)=\phi(x) \\ u(x, 0)=\psi(x)\end{array}\right.$
$1 F_{x}\left\{u_{x x} \pm u_{y y f}\right\}=-\left\{2 \hat{u}(\xi, y) \pm \frac{d^{2}}{d_{y}^{2}} \hat{u}(\xi, y)=0\right.$

$$
\begin{aligned}
& \tilde{F}_{x}\{u(x, 0)\}=\hat{u}(\xi, 0)=\hat{\phi}(\xi) \\
& \tilde{F}_{x}\left\{U_{y}(x, 0)\right\}=\frac{d}{d y} \hat{u}(\xi, 0)=\hat{\psi}(\xi)
\end{aligned}
$$

(10)

$$
\begin{array}{r}
\Rightarrow(\hat{\imath})-\xi^{2} \hat{u}+\hat{U}_{y y}=0 \\
(\hat{\omega})-\xi^{2} \hat{u}-\hat{U}_{y y}=0
\end{array}\left\{\begin{array}{l}
\hat{(}(, 0)=\hat{\phi}(\xi) \\
\hat{O}_{y}(\xi, 0)=\hat{\psi}(\xi)
\end{array}\right.
$$

2) $(\hat{\imath}) \hat{u}_{y y}=\xi^{2} \hat{u} \Rightarrow \hat{u}(\xi, y)=A(\xi)^{-\xi y}+B\left(\xi e^{\xi y}\right.$

$$
\begin{aligned}
& \hat{U}(\xi, 0)=A(\xi)+B(\xi)=\hat{\phi}(\xi) \Rightarrow A=\hat{\phi}-B \\
& \left.\hat{U}_{y}(\xi, y)-(-A(\xi)\} e^{-\xi y}+B(\xi) \xi_{i} \xi y\right) \\
& \hat{U}_{y}(\xi, 0)=-A(\xi) \cdot \xi+B(\xi) \cdot=-\hat{\psi}(\xi) \\
& =-(\hat{\phi}-B)\left\{+B \xi=-\xi \hat{\phi}+2 B \xi=\hat{\psi} \Rightarrow B(\xi)=\frac{\hat{\psi}+\xi \hat{\phi}}{2 \xi}=\frac{\psi}{2 \xi}+\frac{1}{2} \hat{\phi}\right.
\end{aligned}
$$

$$
\text { Then } A(\xi)=\Phi(\xi)-B(\xi)
$$

$$
\begin{aligned}
&=\phi(\xi)-B(\xi) \\
&=\frac{1}{2} \phi(\xi)-\frac{4(\xi)}{2 \xi}
\end{aligned}
$$

So.thm $\hat{U}(\xi, y)=\frac{1}{2}\left(\hat{\phi}(\xi)-\frac{\hat{\psi}(\xi)}{\xi}\right) e^{-\xi y}+\frac{1}{2}\left(\hat{\phi}(\xi)+\frac{\hat{\psi}(\xi)}{\xi}\right) e^{\xi y}$
$(\hat{\omega}) \hat{U}_{y y}=-\xi^{2} \hat{u} \Rightarrow \hat{u}(\xi, y)=A(\xi) \cos \xi_{y}+B(\xi) \sin \xi y$

$$
\hat{u}(\xi, 0)=A(\xi)=\hat{\phi}(\xi)
$$

(2)

$$
\text { (2) } \begin{gathered}
\hat{U}_{y}(\xi y)=-\left\{A (\xi) \operatorname { s i n } \left\{y+\left\{B(\xi) \cos \xi_{y}\right.\right.\right. \\
\hat{U}_{y}(\xi, 0)=\{B(\xi)=\hat{\psi}(\xi) \\
\text { So } \hat{u}(\xi, y)=\hat{\phi}(\xi) \cos \xi y+\frac{1}{\xi} \hat{\psi}(\xi) \sin \xi q
\end{gathered}
$$

(15 cont.)
3) Becure ϕ, ψ are test functins, ϕ, ψ we de in $\&$ (Schworto Fais). F. T. maps $\mathcal{S}_{1} \rightarrow \mathcal{D}$ so
$\hat{\Phi}, \hat{\psi}$ ar alos in $\theta d_{1} \psi \in C^{\infty}$ (fas fom) so $\$, \hat{\psi}$ ako nize.

Bu's unds \mid For any fiote todt $P(O, r)$, ean to duote C and N. a bitmone $C_{\text {hooce }} N=1$ \&os simplrity.
con but gou got $\left\{\lim _{i \rightarrow 0} \hat{y}=0\right.$ beame $\hat{\phi}, \xi, \hat{\psi}$, th Schuertz fens.

(8)

$$
\begin{aligned}
u(x, y)=F^{-1}\{\hat{u}\} & =\mathcal{F}^{-1}\left\{\hat { \phi } (\delta) \operatorname { c o s } \left\{y+\frac{1}{\xi} \hat{\psi} \sin \{y\}\right.\right. \\
& =\left(\phi * F^{-1}\{\cos \{ \}\}\right)(x, y) \\
& +\left(\psi * F^{-1}\left\{\frac{1}{\{ } \sin \{y\}\right)(x, y)\right.
\end{aligned}
$$

Of covice, $F^{-1}\left\{\cos \{y\}=\frac{1}{2} \delta(x-y)+\frac{1}{2} S(x+y)\right.$
\forall other term is $\frac{1}{c} H\left(x^{2}-c^{2} t^{2}\right)$ (stanlit ware equad.)
4) Clearty $\hat{U}(\xi, q)$ fo \hat{L} is not bourlat in tans s y m semed.

Imape $\hat{\phi}(\xi)=1, \hat{\psi}(\zeta)=0$. Them

$$
\hat{u}(\xi, y)=\frac{1}{2} e^{-\xi y}+\frac{1}{2} e^{\xi y} y^{-1 \infty} \infty
$$

(10) So we must han $\hat{\phi}(\xi)=-\frac{\hat{\psi}(\xi)}{\xi}$ to have the $e^{\xi y}$ tern drappear.

$$
\text { So fós polynomially Gowad } \Rightarrow \phi(\xi)=-\frac{2(T)}{5} \text { cont }
$$

(ned positve expurnent. 1 gune) \qquad
(5.4 cmat .)
Thin $\delta\left(\xi(y)=\phi(\xi) e^{-\xi y}\right.$

$$
S_{0} u(x, y)=\left(\phi * F^{-1}\left\{e^{-54}\right\}\right)(x, y)
$$

Lpuccibly ned bo work on tern of $e^{-15 y}$ to set the to world property.).

