IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 4, AUGUST 1991

489

A Combined Optimization Method for Solving
the Inverse Kinematics Problem of Mechanical
Manipulators

Li-Chun Tommy Wang and Chih Cheng Chen

Abstract— A new method for computing numerical solutions
to the inverse kinematics problem of robotic manipulators is
developed in this paper. The proposed method is based on a
combination of two nonlinear programming techniques and the
forward recursion formulas, with the joint limitations of the
robot being handled implicitly as simple boundary constraints.
This method is numerically stable since it converges to the
correct answer with virtually any initial approximation, and it is
not sensitive to the singular configurations of the manipulator.
In addition, this method is computationally efficient and can be
applied to serial manipulators having any number of degrees of
freedom.

1. INTRODUCTION

HE transformation of the position and orientation of a

manipulator end-effector from Cartesian coordinates to
joint coordinates is known as the inverse kinematics problem.
The problem is important for off-line robot trajectory plan-
ning, motion control, and work space analysis.

Closed-form solutions to this problem are available only
for certain classes of industrial robots with simplified struc-
tures [4], [10]' In addition, these solutions are not only
manipulator dependent but are also subject to uncertainty due
to manufacturing errors [18]. Therefore, for the development
of a general-purpose computer-aided robot design and analy-
sis program, a numerical approach is essential.

There are basically two types of numerical methods that
have been developed for solving the inverse kinematics prob-
lem of manipulators and general spatial mechanisms. The
first type uses either the Newton-Raphson method to solve
the nonlinear kinematic equations [1], [21] or predictor-cor-
rector-type algorithms to integrate the differential kinematic
equations [7], [19]. The major difficulty with this method is
that, when the Jacobian matrix is singular (or ill-conditioned),
it does not find a solution. In addition, if the initial approxi-
mation of the solution vector (i.e., the vector of joint vari-
ables) is not sufficiently accurate, this method may become

Manuscript received April 5, 1989; revised December 18, 1990. This
work was supported by the National Science Committee of the Republic of
China under Grant NSC78-0422-E001-06.

The authors are with the Department of Mechanical Engineering and
Technology, National Taiwan Institute of Technology, Taipei 10772, Tai-
wan, Republic of China.

IEEE Log Number 9144670.

'Jt should be noted that there exist methods for finding the closed-form
inverse kinematics solutions for more general robot configurations [18].
Such methods, however, are very elaborate and do not seem to be useful for
real-time applications.

unstable. Several modifications have been developed to over-
come these difficulties [7], [19], [20]; however, when the
manipulator is in an exact singular configuration, these
algorithms still fail to converge [12].

The second type is based on optimization techniques.
Instead of solving the inverse kinematics problem directly,
this method uses gradient-based nonlinear programming (NP)
algorithms to solve an equivalent minimization problem [6],
{71, [9]. In general, since the inverse Jacobian matrix is not
used, this method is numerically more stable than the first
method. The complexity of the minimization problem, is
highly dependent on the formulation of the objective func-
tion. In addition, due to the highly nonlinear nature of the
manipulator kinematic equations, the gradient vector of the
objective function is usually evaluated numerically [9]. This,
however, may increase the computation time considerably.

There also exist algorithms that are based on heuristic
direct search techniques (which do not require the gradient
information [12], [14]), but the local convergence rate of
these methods are generally expected to be much slower than
that of the gradient-based method [13], [15].

The method developed in this paper is based on the
concept of combined optimization. It uses the cyclic coordi-
nate descent (CCD) method [13] to rapidly find a feasible
point that is near to the true solution and then uses the
Broyden-Fletcher-Shanno (BFS) variable metric method
[13], [15] to obtain a solution at the desired degree of
precision. The joint variable limitations of the robot are
handled implicitly as simple boundary constraints. This
method is not sensitive to the initial or the singular configu-
rations of the manipulator, and it fully exploits the strength of
both the CCD and the BFS methods. In addition, instead of
using the conventional Denavit—Hartenberg matrices [3], the
kinematic equations and all related vectors are computed
based on the more efficient forward recursion formulas devel-
oped by Wang and Ravani [23]. Therefore, this method is not
only numerically stable but also computationally efficient.

The organization of this paper is as follows: The formula-
tion of the problem and the objective function are presented
in the next section. Section III gives a detailed derivation of
the CCD method together with a complete solution proce-
dure. The analytic form of the gradient vector and an efficient
line search technique for computing the optimum search step
size for the BFS method are developed in Section IV. Section
V presents various numerical examples to demonstrate the

1042-296X /91 /0800-0489301.00 © 1991 IEEE

N

More — on the OIIE[ﬂC.

490

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 4, AUGUST 1991

Fig. 1.

b4

i+l

Definition of link parameters.

stability and efficiency of the method. The conclusions from
this work are provided in the last section.

II. PROBLEM FORMULATION

In this paper we are only concerned with manipulators
with rigid binary links, open-loop kinematic structures, and
single-degree-of-freedom joints. Fig. 1 shows such a manipu-
lator with n degrees of freedom. There are a total of n + 1
coordinate systems attached to the manipulator. The first
(base) coordinate system is used as a frame of reference and
is fixed to the ground. The last coordinate system (x, ¥,
z,) is attached to the end-effector. The other coordinate
systems are attached to the links, noting that the one attached
on link i is the i + 1th coordinate system. The definitions
and symbols used in this paper for link parameters are the
same as those used in Wang and Ravani’s study [23], as
illustrated in Fig. 2. It should be noted that the joint axes are
aligned with the z axes of the coordinate systems; if joint 7 is
a rotational joint, then the rotation angle 6/ is the joint
variable; if joint 7 is a translational (or prismatic) joint, then
the joint variable is the link offset s;.

Link n-1

Schematic diagram of a general » DOF manipulator.

Y

Fig. 3. The current and the desired end-effector configurations.

The Cartesian coordinates of the end-effector are defined
as the position vector P,(g), and the orientation matrix
[R,(q)]. where

P(q) is the current position of the origin of the
coordinate system, (X, ¥, Z,);

[Ri(@)] = [h(@)| hy(@)| hy(D), where hy(q), hy(q)
and h3(g) are unit vectors along the x,, ¥,
and z, axes, as shown in Fig. 3; and

q =1[q,, q5," ", q,) is the n X 1 vector of the

joint variables.
The inverse kinematics problem can be stated as follows:

Problem PI: Given the desired Cartesian coordinates of the
end-effector, P, and [R,] = [d;| d,| d;], where d; (j =1
to 3) are unit vectors along the x,, y,;, and x, axes (see
Fig. 3). Find the joint variable vector g such that P,(q) = P,
and [R,(q)] = [R,]. In addition, the solution vector should
satisfy the physical limitations of the joints, i.e., gl <g;<

WANG AND CHEN: SOLVING INVERSE KINEMATICS PROBLEM OF MANIPULATORS 491

g} for i = 1to n. Where g/ and g are, respectively, the
lower and upper bounds of the ith joint variable.

For any given ¢, the Cartesian location (position and
orientation) of the end-effector can be computed by using the
forward recursion formulas [23]. If ¢ is not a solution of
problem P1, then the computed location will not agree with
the desired location, as shown in Fig. 3. However, if we can
find a correction vector 8g such that ¢* = ¢ + 6q is a
solution to problem P1, then point o0, should coincide with
0, and the orientation of the two coordinate systems should
be identical. This implies that [|§P(g*)|| = | P, — Py(¢®)|
=0and d; - h;(g*) = 1for j = 1to 3, where | - || denotes
the Euclidean norm of a vector and a () denotes the vector
dot product. Therefore, the errors between the current and
the desired locations of the end-effector can be described by
the following positive scalar functions of ¢:

Position error: AP(q) =06P(q) - 8P(q))
3

Orientation error: AO(g) = >_ (d; " h;(g) — 1)* (2)
i=1

The total error: E(g) = Afj’(q) + AO(g) 3

and the original inverse kinematics problem can be trans-
formed into the following minimization problem:

Problem P2: Find g* such that E(¢*)min { E(q)| g/ < g;
<g}, i=1to n} and E(q*) < € where e =~ 0 is a pre-
scribed small tolerance.

Note that (2) gives equal weighting of the orientation error
to each of the three directions; this, however, may not be
necessary in some practical applications. In order to handle
such situations, (2) can be modified to

A0(q) = > o d;" hy(q) - 1)’

j=1
{0

For example, when a robot is used for arc welding, only the
direction of the electrode (or the welding torch) is important.
For this case, we can arrange the electrode to coincide with
the z, axis of the end-effector and then assign o, = 0, =0
and o; = 1.

where

if the jth direction needs specifying
otherwise.

ITI. THE SOLUTION PROCEDURE

The forenamed minimization problem (P2) is an n-dimen-
sional nonlinear programming (NP) problem. In order to
solve this problem efficiently, the solution procedure devel-
oped in this section consists of two phases. The first phase
uses the cyclic coordinate descent (CCD) method, and the
second phase uses the Broyden-Fletcher-Shanno (BFS)
method.?

2In fact, any NP algorithm that has good local convergence properties can
be used. The BFS method is selected because numerical experiments indicate
that it is less dependent upon an exact line search [15].

A. The Cyclic Coordinate Descent (CCD) Method

The CCD method is a heuristic direct search method [13],
[15]. Each cycle of this method consists of 7 steps; at the ith
(i varying from n to 1) step, only the ith joint variable is
allowed to be changed to minimize the objective function.
The configuration of the robot is updated after each com-
pleted cycle. This cyclic process is continued until the value
of the objective function reaches a predetermined small toler-
ance.

It should be pointed out that Kazerounian [12] has also
developed a direct search algorithm to solve the inverse
kinematics problem based on the same concept developed in
the CCD method. However, while Kazerounian’s method
uses zero position analysis and forward cycles (i.e., i vary-
ing from 1 to n), the CCD method developed here uses
forward recursion formulas and backward cycles. In addi-
tion, the objective function formulation of the two methods
are quite different. Consequently, the computations required
by the CCD method are considerably less than those required
by Kazerounian’s method, as shown in Table I.

Fig. 4 illustrates one step in the CCD method. Here,
vector P; indicates the current position of point o; (the origin
of the ith coordinate frame), P, is the vector from o; to the
current position of the end-effector, and p,, is a vector from
0; to the desired position of the end-effector. At the ith step,
vectors P;; and P; remain constant, and in order to minimize
the position and orientation error of the end-effector, vector
P, and the coordinate system (x,, y,, z,) are allowed to
either rotate about or translate along the z; axis depending on
the type of joint i. Hence, two cases must be considered.

Case A—Joint i Is a Rotational Joint

In this case, the joint variable g; is the rotation angle 6.
Since the other joint variables (g,, k=1---i—1, i+
1-+- n) are not allowed to be changed, P;, can be consid-
ered as a free vector. If we rotate it about the z; axis with an
angle ¢, then the rotated vector can be written as

Py (¢) = [R(zmb)]l’,,,)

where [R(z;,¢)] is the 3 X 3 spatial rotation matrix, and z;
is an unit vector along the z; axis (expressed with respect to
the base coordinate frame). Consequently, the position error
becomes a single variable function of ¢

Ap(¢) = (Py— Py (¢)) - (P - w(9)). (5)

Substituting (4) into (5) and noting that [R(z;,¢)] is an
orthogonal matrix, one obtains

Ap(¢) = Py Pig + Py ([R(zi’d))]t[R(zi’d))]Pih)
— 2Py, ([R(zi’¢)]})ih)
=Py Py+ Py Py - 2P, ([R(zi’d))]Pih)
where [-]’ indicates the transposed matrix. Since P,-P,

and P, - P,, are positive constants, to minimize A p(¢)
would be the same as to maximize

8(¢) =Py~ [R(zi’d))]Pih‘ (6)

u

More — on the OIIE[ﬂC.

492

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 4, AUGUST 1991

TABLE 1
CoMPARISON OF COMPUTATIONAL REQUIREMENTS FOR KAZEROUNIAN'S METHOD AND THE CCD METHOD
Method ith Step* One Cycle* n==6
Mult. 18(n — i) + 212 9n? + 209n 1578
Kazerounian
Add. 15n — 9i + 181 104n? + 17630 + 3 1440
Mult. 141 171n -5 1021
CCD
Add. 101 1197+ 3 717

* The computational requirements are for rotational joints only.

Fig. 4. One step of the CCD method.

Similarly, if we rotate the last coordinate system about the
z,; axis with an angle ¢ then the orientation vectors become

hyi (9) = [R(z:.9)]h;)

and the orientation error (see (2)) becomes

forj=113

3
’ 2
Ao(¢) = E; (d;-h/(e)-1) (8)
j=
which is also a function of ¢ only. Noting that both d; and
h j’ () are unit vectors; thus

d; by (6) = cosv;(6)

where Y;(¢) is the direction angle between vectors d; and
h j» as shown in Fig. 5. Consequently, (8) can be written as

3

Ao(¢) = X (cos (o) - 1)2.

Jj=1

©)

The physical meaning of (9) can be interpreted with the help
of Fig. 5. It is clear from this figure that the orientation error
between the two coordinate systems would be minimized as
¥;(¢) approaches zero for all j, or when the three direction

Fig. 5.

Definition of the direction angles.

cosines, cos Y (), simultaneously approach one; this can be
achieved by minimizing (9). Alternatively, since cos ¥ ,(¢) is
bounded between =+ 1, the orientation error can also be
effectively reduced by maximizing

3

8:(¢) = 2 cos ¥,;(9)

3

=Y d;-h/(¢). (10)
J=1 j=1
It should be pointed out that it is not exactly equivalent to
minimize (9) or maximize (10), since the optimum solutions
for ¢ in the two functions, in general, would be different.
However, as ¢ is iteratively adjusted so that cos ¥ ;(¢)
coverges to one for all j, the solutions are asymptotically
equivalent. The reason for using (10) instead of (9) to
formulate the orientation error is that the computations in-
volved in minimizing (9) are much more complicated than
those involved in maximizing (10), since the main purpose of
the CCD method is to efficiently find a good starting value
for the joint variables for use in the BFS method; therefore,
in order to increase computational efficiency, (10) is, in
general, a more suitable alternative. Also notice that (10)
gives equal weighting of the orientation error to each of the
three directions of the end-effector coordinate system, and, if
desired, it can be easily modified to

3

Z o dj : hj’(d))

Jj=1

8:(¢) =

WANG AND CHEN: SOLVING INVERSE KINEMATICS PROBLEM OF MANIPULATORS

where o; is equal to either 1 or 0, depending on whether the
Jth direction needs to be specified or not.

Combining (6) and (10), the objective function (for this
case) can be defined as

£(9) = w,21(¢) + W, 2(9) (11)

where w, and w, are weighting factors that are arbitrary
positive real numbers.> Now the problem becomes:

Problem P3: Find ¢*, such that g(¢*) = max{g(¢)|¢' <
¢ < ¢}, where ¢' = 0,. — 0/, ¢* =6F — 0,,, 6} and 6}
are the lower and upper bounds of the joint variable 6,
respectively, and 6, is the current value of 6.

The analytical solution of problem P3 can be easily de-
rived. According to the vector form of Rodrigues’ equation
[23], it can be shown that

[R(2:,6)] Pin = 2:(P - 2,) (1 — cos ¢)
+ Py cos ¢ + (2, X Py)sing (12)

where X denotes the vector cross product. Substituting (12)
into (6), g,(¢) becomes

£1(9) = (Pia* 2:) (P 2,)(1 = cos ¢)
+(Pld ' P",)COSd) + I)id : (z,' X P",) sin ¢.

Similarly, (10) can be expanded into

(9) = £ {4, 2)(hy-2)(1 - cos0)
+(dj : hj) cos¢ +d;- (z; X h;)sin ¢}

Substituting these expressions into (11) after combining
terms, the objective function becomes

g(¢) = k(1 —cos @) + k,cos ¢ + kysing

where k,, k,, and k; are constant coefficients given by

3
ky=wy (P 2) (P~ 7)) + wozl (d; - z;)(h; " z,)
iz
3
ky = w,(Py Py) + Wy Zl (dj ’ hi)
iz
3
ky=2z;" | w,(Py X Pg) + WOZI (h; % d;){.
iz

If there are no boundary constraints imposed on ¢, then
g(¢) is maximized when

d;
_g&(d;i)= (ky ~ k,)sin¢ + kycos ¢ =0

3The following weighting factors are suggested in this paper: wo = 1,
w, = a(l + p), where « is a sizing factor depending on the dimension of
the link lengths, and

p = min (|| Pigll, || Ponll) /max (Il Pigll, || Piall) -

493

and
d*g(¢)

premle (ky — ky)cos ¢ — kysing <0

A unique value of ¢, denoted as d~>, can be determined from
these conditions. The actual solution of problem P3, how-
ever, s~hou1d also satisfy the boundary constraints. Thus, if
¢! < @ < ¢" then ¢* = $ (notice that the periodic solutions
5 + 27 should also be checked to see if they are inside the
boundary constraints). Otherwise, if g(¢*) > g(¢'), then
o* = o5 if g(¢") > (¢7), then ¢* = ¢'.

Case B—Joint i Is a Translational Joint

For this case, only the position error can be reduced
because the orientation of the end-effector is independent of
the joint variable s;. Denoting the change of s; as N\ (mea-
sured from s,,, the current value of s;), the position error
becomes

Ap(N) = (Pyy— (Pip+ 2N) * (Prg— (P + ZN)
=8P 6P -2(8P - z) N+ ¥

where 8P = P,; — P,,, as shown in Fig. 4, and the problem
becomes:

Problem P4: Find ¥, such that A p(¥) = min {AP(N| N
< A= N}, where N =5;. — s/, ¥ = s¥ — 5., and s/ and
s} are the upper and lower bounds of s;, respectively.Since

dAp(N)
— = =2(AN-6P-
an (z;)
and
d*Ap(N
__p(_) =2>0.
d\

Thus, if there are no boundary constraints imposed on A,
then A p()) is minimized when A = X = 8P - z,. Similar to
the previous case, the actual solution of problem P4 should
satisfy the boundary constraints. Thus, if N < X< N, then
Nt = . Otherwise, if Ap(N) < Ap(N), then X = N if
Ap(X) < Ap(N), then X = X.

Hence, at each step in the CCD method, for either case,
the original n-dimensional minimization problem is reduced
to a simple one-dimensional problem. In addition, the analyt-
ical solution of the one-dimensional problem can be easily
computed. Furthermore, since the value of the objective
function is reduced with each step, the global convergency of
this method is guaranteed. It also is not sensitive to the
singular configuration of the manipulator. Therefore, the
initial approximation of the solution vector can be arbitrary.
However, due to the heuristic nature of this method, the rate
of convergency is highly dependent on the structure of the
manipulator. Our experience shows, in general, when the
initial approximation is far away from the true solution,
applying only a few cycles of this method will bring the
solution vector into the neighborhood of the true solution, but
it may become very slow thereafter. On the other hand, when
the solution vector is near the true solution, the BFS method

n B

More — on the OIIE[ﬂC.

494

is generally expected to give a superlinear or a near-quadratic
convergence rate [15]. Therefore, the CCD method is espe-
cially suitable for finding good starting values for the BFS
method. The criterion for switching between the two methods
can be designated as follows:

After each completed cycle of the CCD method, compare
the current value of the objective function E_. with the one
computed from the previous cycle, E,. If E, <@ and
E > E; (where 8 <1 is a small positive constant to indi-
cate the closeness of the solution vector, the value can be
designated according to the dimension of the manipulator),
then the solution vector is in the neighborhood of the true
solution and the convergence rate is less than quadratic;
switch to the BFS method.

B. Numerical Algorithm
The complete solution procedure is summarized below:

Step 1: Input the link parameters of the robot and the-
boundary constraints g/ and g (i=1 to n),
specify the desired location of the end-effector, P
and [R,], the termination criterion ¢, and the

initial guess for the joint variable vector.
Phase I

Comp‘ne I)i’ Pi‘—l» Xis YVis L4y fori=2ton+1
using the forward recursion formulas. Also compute
P,=P, ,—-P,fori=ntol.
Set by = x,,1, by = yp4q, B3 = 2,,, and P, =
P, n+1°
Compute the current total error E_ by using (1),
(2), and (3).
If E.<e, then stop; otherwise, go through the
switch method criterion:
If E,<f and E, > E?, then go to step 4 (the
initial value of E, can be specified by a large real
number); otherwise, set E, = E_ and go to the next
step.
Step 3: For i=nto 1 do
if joint i is a rotation joint
then compute ¢* by using the method developed
in Case A of Section III-A. Update g; = g;
+ 0% and Py, = P,/ (6%, h; = b ($H0
= 1 to 3) by using (4) and (7).
else (joint / is a translational joint)
compute X* by using the method developed
in Case B of Section III-A. Update q; = g;
+ X, Py =Py + X'z,
endif;
If i > 1 then set P,_,,h = Py, + P},
end do;
go to Step 2.

Step 2:

Phase IT

Start the BFS method. The BFS algorithm used in
this paper is based on the one given in [13] with a
self-scaling and restart feature. However, in order
to handle the joint variable constraints, minor modi-
fications are required (see the Appendix).

Step 4:

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 4, AUGUST 1991

The above algorithm is robust and converges rapidly-for
all the problems that we have tested. However, it should be
pointed out that there are two difficulties in using this algo-
rithm. One difficulty is that it seldom converges to a local
minimum point (i.e., the objective function stops decreasing,
but is still greater than €), which does not help to solve the
inverse kinematics problem. Another difficulty is that for
manipulators that have multiple solutions (each solution cor-
responding to one of the global minimum points), this method
does not guarantee the finding of all possible solutions. These
difficulties are generic to all iterative algorithms of solving
systems of nonlinear equations [9]. Nevertheless, both of the
difficulties are not severe since they can usually be resolved
by perturbing the initial guesses, as illustrated by a numerical
example presented in Section V.

IV. CoMPUTATIONAL CONSIDERATIONS

It is well known that the most time-consuming steps of the
BFS algorithm (or any other gradient-based NP algorithm)
are the computation of the gradient vector of the objective
function and the evaluation of the optimum step size in the
search direction [2], [13], [15].

In this section, the analytical form of the gradient vector
and an effective method to approximate the optimum search
step size are developed. As a result, the computation load of
the BFS method is significantly reduced.

A. The Gradient Vector

The objective function E(q) defined in the second section
can be written as

E(q) = (P, — Py(q)) - (P4~ Py(q))

+Y (d;-hy(g) - 1) (13)

J=1

The gradient vector VE(q) is defined by

t

IE(q)
aq,

. 9E(e) 9E(9)
aq; aq,

VE(q) =

’

According to (13), the elements of the gradient vector are

dE(q)
aq;

. aPh(q)
aq

i

~{ir@ -2

e Lo - 1] 0 242

fori = 1ton. (14)

It can be shown that [22]

aPh(‘])
aq;

=b (15)

WANG AND CHEN: SOLVING INVERSE KINEMATICS PROBLEM OF MANIPULATORS

where
_ |z x Py, if joint i is a rotational joint
T g if joint is a translational joint

and
dh,(q)
—= =0, 16

re = O (16)
where
0,= z; X h;(q) if joint i is a rotational joint
o if joint i is a translational joint.

Substituting (15) and (16) into (14), after rearranging and
combining terms, one obtains

2z [(Pd_ Py(q)) X Py

dE(q)
aq; -

3
+ Zl(dj-hj(q) - 1)(h;(q) x d;)
j=
if joint / is a rotational joint

2z, (Pu(q) - Pu)
if joint i is a translational joint.

Given g, the vectors P,(q), hj(q) (j=1t03), Py, and z;
(i=1 to n) can be recursively computed by using the
forward recursion formulas. Consequently, the gradient vec-
tor VE(q) can be efficiently evaluated.

B. Line Search Technique

The BFS method uses an approximated Hessian matrix and
the gradient vector to obtain the search direction. After the
search direction is obtained, the objective function (see (1)) is
reduced to a single variable function

E(a) = AP(a) + AO(a) (17)

where

AP(a) = (P, = Py(q. + au)) - (Py — Py(g. + au))
(18)

and
AO(a) = jf;{dj-hj(qc + au) - 1}2 (19)

where u is the search direction, g, is the current joint
positions, and « is the search step size. The line search
problem is to find o* such that o minimizes E (c).

Due to the highly nonlinear nature of the manipulator
kinematic equations, the exact solution of this problem is
difficult to obtain. Nevertheless, an approximated solution
can be derived. In addition, this approximation is well justi-
fied when the solution vector is in the neighborhood of the
true solution; this is the case for the algorithm developed in

495

this paper since the BFS method is always started from a
feasible point that is close to the true solution.

If « is sufficiently small, then the differential kinematic
equations of the manipulator can be written as

8X =alJ |u

or in partitioned form

[51'] [Jpc]]

— =« u

so [Tocl

where [J,] is the 6 X n Jacobian matrix (evaluated with
respect to the current configuration of the manipulator),
[J,.] and [J,] are the upper and lower 3 X n submatrices
of [J.]; ép and b0 are, respectively, the corresponding
Cartesian space differential displacement and rotation of the
end-effector.

Therefore, the position vector P,(g. + au) can be ap-
proximated by

Ph(qc + au) = Ph(qc) + 6p

=Py + as,,

where P, = P,(q.) and s,. = [J,Ju, and the position
error (see (18)) becomes

AP(a) = (8P, - aspc) - (8P, - as,,) (20)

where 6P, = P, — P,.

Noting that vector 8o represents a differential rotation of
the end-effector coordinate system, the orientation vectors
hi(q.+ auw) (j = 1 to 3) can be approximated by [16], [17]

hj(qc + au) = hj(qc) + 80 X h](qc)
=h;, + a(s, X hj)

where h;, = hy(q,) and s,. = [J,.]u, and the orientation
error (see (19)) becomes

AO(a) = Z

() Byt dy (s X Bye)er -)%
=

(21)

Substituting (20) and (21) into (17), after rearranging and
simplifying terms, (17) becomes

E(oz) =A - 2Ba + Ca?

where
3 2
A=8P,-8P,+ Y (h;,-d;—1)
j=1
3
B=s5, '8P +5," zl(hjc-dj - I)(d; x h;,)
iz

More — on the OIIE[ﬂC.

496

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 4, AUGUST 1991

TABLE 11
THE LINK PARAMETERS OF THE PUMA 560 RosoT

Link Length Twist Angle Offset Length Rotation Angle
Joint a (meters) a (degrees) s (meters) 6 (degrees)
1 0 9 0.6604 q
2 0.432 0 0.200 q>
3 0 90 ~0.0505 a
4 0 -90 0.432 44
5 0 90 0.0 gs
6 0 0 0.0565 s
TABLE 1II
THE JOINT VARIABLE LiMiTATIONS OF THE PUMA 560 RoBoT
Lower Bound UpperBound
Joint q' (degrees) q" (degrees)
1 -160 160
2 —225 45
3 —45 225
4 -110 170
5 —100 100
6 —266 266
2 .
S d’E(a) 5C > 0. Ela) is minimized wh 100 problems were given to each of the four methods to
mnee P > 0, E(e) is minimized when solve. Both the initial and the desired configurations of the
problems were randomly generated within the working space
dE(a) = 2(-B+Ca) =0 of the robot. The program was run on a VAX 780 computer,
da

and the optimum search step size is

Given ¢, and u, the Jacobian matrix and vectors P, and
h;. (j =1 to 3) can be recursively computed by using the
algorithms developed by Wang and Ravani [23]. Conse-
quently, the (approximated) optimum step size a™ can be
efficiently evaluated.

V. NuMERICAL EXAMPLES

A computer program for solving the inverse kinematics
problem for general manipulators has been developed by the
authors. Users of this program can interactively input the
structure of the manipulator to be studied and choose any one
of the following four methods to solve their problem, namely,
the CCD method, the BFS method, the combined CCD-BFS
method, and the Newton-Raphson (NR) method (the original
NR algorithm has been modified to handle the joint limits by
using an algorithm similar to the one presented in the Ap-
pendix that restricts the step size). This program is used here
to compare the reliability and efficiency of these methods.

Example 1: The structure of the manipulator used in this
example is based on the PUMA 560 robot [11]. This robot is
chosen simply because a closed-form solution can be ob-
tained [4], which can be used for checking the accuracy of
the numerical solution. The link parameters and the joint
limits of this robot are listed in Tables II and III.

The convergence criterion for this example is defined by
e = 10~ %, where k varies from 2 to 8. For each value of k,

and the average execution (CPU) times of the solved prob-
lems are plotted in Fig. 6. From this figure, the NR method
appears to be the most efficient method. However, while the
other three methods were able to solve all of the given
problems to the desired precision, the NR method diverged
when trying to solve approximately 30% of the problems.
Since numerical stability is an important consideration, there-
fore, the combined CCD-BFS method may be the most
suitable as a general-purpose program.

Example 2: This example is similar to the first example
except that while all of the desired configurations were
randomly generated within the working space of the robot,
the initial configurations were intentionally given at an exact
singular configuration (g; = g, = **+ = g4 = 0). Since the
modified NR method is unable to solve problems of this kind,
only the other three methods are compared. It turned out that
three methods were still able to solve all of the problems to
the desired degree of precision. The average CPU times are
plotted in Fig. 7. It is clear from this figure that the combined
CCD-BFS method is the most efficient method, especially
when the required degree of precision is high.

Example 3: The PUMA 560 robot can have at most eight
solutions when there are no joint limits imposed [4]. There-
fore, in order to demonstrate that the proposed method has
the potential of finding @/l of the multiple solutions, the joint
limitations were released in this example. The desired con-
figuration of the end-effector was given by: P, = [0.740 m,
0.331 m, 0.788 m)’, and d, = [—0.636, 0.771, —0.008}’,
d, = [0.022, 0.029, 0.999]’, d; = [0.771, 0.635, —0.036]’,
which corresponds to an exact solution of ¢ = [10°, 20°,
30°, 40°, 50°, 60°]. The algorithm had been modified to run
iteratively. The initial guesses of the joint variables were

WANG AND CHEN: SOLVING INVERSE KINEMATICS PROBLEM OF MANIPULATORS

497
o CCD 5.00
- o BFS
5 © a COMBINED S 400 4 ;;";;:gg%mm
g + NR 8 st CO
Ll w
28 a2
g 2™
- [
Z o
Sh % 2.00 -
- [
o =
o]
é i)
8 %5 1.00
a8 = 0.00 LBELC N RRLL e EAL . B Rl SRRALL meEal meral am i
P RALLLU SRR RRALILLBRRELL BRELIL SRALLL BRRRLL SRRLLL 10~ - 10 107 10
s - = 2 B CONVERGENCE CRITERIA
CONVERGENCE CRITERIA 10 Fig. 7. Average execution time for numerical example 2
Fig. 6. Average execution time for numerical example 1. g. /- S .
TABLE IV
THE MULTIPLE SOLUTIONS OF THE PuMa 560 RoBoT
Solution
Number q, (degrees) q, (degrees) q5 (degrees) q, (degrees) g5 (degrees) ge (degrees)
1 10.0264 19.9956 29.9771 39.3377 49.9444 60.3699
2 10.0342 —40.0295 150.0456 118.6216 33.4653 -35.3132
3 10.0253 19.9661 29.9964 —140.7245 -50.2606 -119.7849
4 —147.0222 159.9971 150.0357 8.8718 —42.6454 -96.8326
5 —147.0244 159.9910 150.0411 -171.0534 42.6024 82.1593
6 10.0408 —40.0320 149.9682 —62.8692 —33.5067 146.6351
7 —147.0298 —139.9917 29.9429 161.1484 -19.2311 106.8562
8 —147.0981 —139.9995 30.0623 —22.4287 18.7000 —69.6390
assigned as zeros in the first iteration, then perturbed by an TABLE V
increment of 7 degrees for the successive iterations. All eight THE Link PARAMETERS OF THE STANFORD Rosot
solutions were found successfully (with ¢ = 10~%) after 95 Link Length ~ Twist Angle Offset Length Rotation angle
iterations (see Table IV). The total execution time was about _Joint a(meters) « (degrees) s (meters) 0 (degrees)
60s. 1 0 -90 0 4,
Example 4: This example demonstrates that the proposed 2 015 % 0 ‘102
meth(?d can also be used for contim}ous joint space trajectory 4 0 90 %3 4
planning. The robot structure for this example is based on the 5 0 90 0 as
Stanford arm; the link parameters are given in Table V. The 6 0 0 0 9s

desired trajectory of the wrist center point is a circle centered
at (0.2 m, —0.05 m, 0.5 m) with respect to the base
coordinate frame and a radius equal to 0.2 m as shown in
Fig. 8. The trajectory is discretized into 72 equally spaced
points. The initial guesses of the joint variables used for the
first point were zeros. Noting that multiple solutions do exist
for the Stanford arm, and hence, in order to prevent a sudden
jump to another solution branch, the initial guess for the
solution vector for each of the successive points was given by
the solution of the preceding point. Note that the convergence
rate of the algorithm can also be significantly improved by
using this scheme. The computed joint trajectories are plotted
in Figs. 9 and 10. The fotal computation time for this
example on the VAX 780 was only about 8 s.

Example 5: This example illustrates the ability of the
proposed method for solving the inverse kinematics of redun-
dant manipulators (i.e., n > 6). The link parameters of a

redundant robot (n = 7) are given in Table VI. The desired
configuration of the end-effector was given by: P, = [-0.2
m, 0.6 m, 0.5 m)’, and d, = [1, O, O], d,= [0, 1, 0,1,
d; = [0, 0, 1. The initial guesses of the joint variables were
assigned as zeros. The algorithm successfully converged
(e = 107%) to a solution of g = [—181.914, —26.682,
137.791, 163.214, —75.440, —66.823, —32.284]" (de-
grees). It should be noted that this is just one solution among
an infinite number of solutions, but it can be used as an initial
feasible solution in the search for the ‘‘optimum’’ solution

[51.

VI. ConcLusION

In this paper, a combined optimization method to find the
numerical solutions to the inverse kinematics problem of

|

More — on the OIIE[ﬂC.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 4, AUGUST 1991

498
o —_—
~
/ AN
/
0.2m \
(.2m,.05m,.5m) /
AN _ /
™~ ~
2
3
Y, <
B
Fig. 8. The Stanford Arm and a circular trajectory.

JOINT 4

o JOINT 5
: Y

JOINT VALUE [DEGREE]
0

0 48 96 jery 192
CIRCLE DEGREE

Fig. 9. Computed trajectories of the revolute joints—example 4.

240 288 336

mechanical manipulators has been developed. The major
advantages of this method are that it is not sensitive to the
initial and singular configurations of the manipulator, and it
implicitly handles the joint variable boundary constraints. In
addition, it can be applied to serial manipulators with any
degree of freedom. This method is also computationally
efficient and can be used for finding multiple solutions for the
manipulator as well as for continuous trajectory planning, as
indicated by the numerical examples presented in the last
section.

With minor modifications, this method can also be applied
to simple closed (single loop) spatial linkages for displace-
ment analysis. Therefore, a promising future research topic is

L]
——

6.80

; X JOINT 3

4.40 5.60

JOINT VALUE [MI xiwo!

3.20

g
s 0 @ % 144 192 240 288 336
CIRCLE DEGREE

Fig. 10. Computed trajectory of the prismatic joint—example 4.

TABLE VI
THE LINK PARAMETERS OF THE REDUNDANT RoBOT

Link Length ~ Twist Angle

Offset Length Rotation Angle

Joint a (meters) o (degrees) s (meters) 0 (degrees)
1 0.700 90 0.0 q,
2 0 90 0.6604 q;
3 0.432 0 0.200 qs
4 0 90 —0.0505 q,
5 0 -90 0.432 gs
6 0 90 0.0 qs
7 0 0 0.0565 q,

to extend this method to manipulators that have combined
open-loop and closed-loop structures.
APPENDIX
In order to apply the BFS method to problems with simple
boundary constraints, two modifications are necessary [15].
A. The Search Direction

Denote the unconstrained search direction as u = [,
u,, +*,u,)’, for the (simple) constrained problem; this di-
rection vector should be modified to

u, = [Uyetyes s “rm]r
where
0 ifg,=gqfandu;>0
=140 ifqg,<qlandu;<0 fori= lton
u; otherwise

where g, is the current value of the ith joint variable, and
g/ and g} are the lower and upper bounds of g;.

B. The Search Step Size

The optimum search step size o* (see Section IV-B)
should be checked (and modified if necessary) using the
following procedure.

Step 1
Step 2

set counter { = 1

if g;. + a*u;, = g then o = (qf = q;0)/ -
else

if g, + @*u,, < g then o* = (CHE AV

WANG AND CHEN: SOLVING INVERSE KINEMATICS PROBLEM OF MANIPULATORS

Step 3

(1
[2]
[3]

[4]

151

[6]

in

(8]

9]

{10}

[11]

12]

(13]

[14]

[15]
[16]

(17

if i = n then output o* and update the joint
variables accordingly, else set i = i + 1 and go
to step 2.

REFERENCES

J. Angeles, ‘‘On the numerical solution for the inverse kinematic
problem,”” Int. J. Robotics Res., vol. 4, no. 2, pp. 21-37, 1985.
M. S. Bazaraa and C. M. Shetty, Nonlinear Programming, Theory
and Algorithms. New York: Wiley, 1979.

J. Denavit and R. S. Hartenberg, *‘A kinematic notation for lower-pair
mechanisms based on matrices,”” ASME J. Appl. Mechan., vol. 22,
no. 2, pp. 215-221, June 1955.

S. Elgazzar, ‘“‘Efficient kinematic transformations for the PUMA 560
robot,” IEEE J. Robotics Automat., vol. RA-1, no. 3, pp. 142-151,
Sept. 1985.

R. G. Fenton, B. Benhabib, and A. A. Goldenberg, ‘‘Optimal point-
to-point motion control of robots with redundant degrees of freedom,”
ASME J. Eng. Industry, vol. 108, pp. 120-126, May 1986.

A. A. Goldenberg and D. L. Lawrence, ‘“‘A generalized solution to
the inverse kinematics of robotic manipulators,”” ASME J. Dynamic
Syst., Measure., Control, vol. 107, pp. 103-106, Mar. 1985.

A. A. Goldenberg, J. A. Apkarian, and H. W. Smith ““A new
approach to kinematic control of robot manipulators,”” ASME J.
Dynamic Syst., Measure., Control, vol. 109, pp. 97-103, June
1987.

K. C. Gupta and K. Kazerounian, ‘‘Improved numerical solutions of
inverse kinematics of robots,”’ presented at Int. Conf. Robotics Au-
tomat., St. Louis, MO, Mar. 1985.

A. S. Hall, Jr., R. R. Root, and E. Sandgren, ‘‘A dependable method
for solving matrix loop equations for the general three-dimensional
mechanism,”” ASME J. Eng. Industry, pp. 547-550, Aug. 1977.
J. M. Hollerback and G. Sahar, ‘‘ Wrist-partitioned, inverse kinematic
accelerations and manipulator dynamics,”” Int. J. Robotics Res.,
vol. 2, no. 4, pp. 61-76, 1983.

R. ibarra and N. D. Perreira, ‘‘Determination of linkage parameter
and pair variable errors in open chain kinematic linkages using a
minimal set of pose measurement data,”” ASME J. Mechanisms,
Transmissions, Automat. Design, vol. 108, pp. 159-166, June
1986.

K. Kazerounian, ‘‘On the numerical inverse kmemancs of robotic
manipulators,”” ASME J. Mech Tr ions, Automat.
Design, vol. 109, pp. 8-13, Mar. 1987.

D. G. Luenberger, Linear and Nonlinear Programming. Reading,
MA: Addison-Wesley, 1984.

S. Mahalingam and A. M. Sharan, ‘‘The nonlinear displacement
analysis of robotic manipulators using the complex optimization
method,”” Mechanism Machine Theory, vol. 22, no. 1, pp. 89-95,
1987.

G. V. Reklaitis et al., Engineering Optimization Methods and
Applications. New York: Wiley, 1983.

R. M. Rosenberg, Analytical Dynamics of Discrete Systems. New
York: Plenum, 1980.

1. H. Shames, Engineering Mechanics, Vol. II, Dynamics.
wood Cliffs, NJ: Prentice-Hall, 1966, p. 738.

Engle-

(18]

[19]

{20}

(21]

[22]

[23]

499

L. W. Tsai and A. P. Morgan, ‘‘Solving the kinematics of the most
general six- and five-degree-of-freedom mampulators by continuation
methods,”” ASME J. Mechanisms, Tr jons, Automat. De-
sign, vol. 107, pp. 189-200, June 1985.

Y. T. Tsai and E. D. Orin, ‘‘A strictly convergent real-time solution
for inverse kinematics of robot manipulators,”” J. Robotic System.,
vol. 4, no. 4, pp. 477-501, 1987.

M. Tucker and N. D. Perreira, ‘‘Generalized inverses for robotic
manipulators,”” Mechanism and Machine Theory, vol. 22, no. 6,
pp. 507-514, 1987.

J. J. Uicker, Jr., J. Denavit, and R. S. Hartenberg, ‘‘An iterative
method for the displacement analysis of spatial mechanisms,”” ASME
J. Appl. Mechanics, vol. 107, pp. 189-200, 1954.

L. T. Wang and D. Kohli, ‘‘Closed and expanded form of manipula-
tor dynamics using lagrangian approach,”” ASME J. Mechanisms,
Transmissions, Automat. Design, vol. 107, no. 2, pp. 223-225,
June 1985.

L. T. Wang and B. Ravani, ‘‘Recursive computations of kinematic
and dynamic equations for mechanical manipulators,”” IEEE J.
Robotics Automat., vol. RA-1, no. 3, pp. 124-131, Sept. 1985.

Li-Chun Tommy Wang received the B.E. degree
in 1978 from Chung Yuan University, Chungli,
Taiwan, Republic of China, the M.S. degree in
1983 from the University of Wisconsin, Milwau-
kee, and the Ph.D. degree in 1986 from the Uni-
versity of Wisconsin, Madison, all in mechanical
engineering.

From 1986 to 1987, he was a Visiting Associate
Professor with the Department of Mechanical En-
gineering at National Sun Yat-Sen University,
Kaohsiung, Taiwan. In 1987, he joined the Depart-

ment of Mechanical Engineering and Technology, National Taiwan Institute
of Technology, Taipei, Taiwan, where he is currently an Associate Profes-
sor. His research interests include robotics, the computational kinematics
and dynamics of multibody systems, design automation, and computer
graphics and animation.

Chih Cheng Chen received the B.S. degree in
1985 from National Cheng-Kung University,
Tainon, Taiwan, and the M.S. degree in 1987 from
National Taiwan University, Taipei, Taiwan, both
in mechanical engineering. He is currently working
toward the Ph.D. degree in mechanical engineering
at the National Taiwan Institute of Technology.
His research interests include robotics and the
kinematics and dynamics of mechanisms.

—r—

More — on the OIIE[ﬂC.

