Computer animation Hair

"A Survey on Hair Modeling: Styling, Simulation, and Rendering," K. Ward, F. Bertails, T.-Y. Kim S. Marschner, M.-P. Cani, M. Lin

Shape – handle various hair styles

Motion – dynamic grouping and splitting of hair clusters, collision of hairs, seconday motion due to head motion

User Control – over hair style, properties

Properites – coarse v. fine, dry v. wet, stiff v. loose, oily v. clean, hair strand types Shape – handle various hair styles

Distribute strands

Create hair styles

Fig. 1. 2D square patch wrapped onto the 3D model by the method of Kim et al. [9].

Distribute strands

Fig. 2. Modeling hair using NURBS surfaces [16] (left). The Thin Shell Volume [19] (right)

Conform strands to head

Fig. 3. The cluster hair model [20] [21]

Work with clusters of hair strands

Fig. 4. Multiresolution hairstyling [9]

Multi-resolution techniques

Fig. 5. Modeling hair using a fluid fbw [24]

Use fluid flow to define hair strand 'paths'

Constraints for complex hair styles

Vector field

Fig. 6. A styling vector field [8] (left) and constraint-based hairstyling [13] (right)

From photographs

Capture local orientations

Fig. 7. Hair capture from photographs [28]

Comparison of shaping techniques

	Hair Shapes	User Control	Manual Time	
Gen. Cylinders	fexible	high	slow	
Surfaces	limited to straight	high	fast	
Physical Volumes	limited, details hard	cumbersome	medium	
Photos	limited, must exist	none	fast	
Sketches	limited, details hard	medium	fast	

TABLE I

Procedurally generate style Pseudo-random Semi-automatic

Fig. 8. Waves and curls procedurally generated by Yu [8] (left) and Choe et al. [13] (right)

Fig. 9. A real ringlet (left), and a synthetic one (right) automatically generated by the physically-based method of Bertails *et al.* [6]

Physically based method Energy minimization Hair dynamics

Fig. 10. Comparison of hair (a) dry and (b) wet [33].

Allow common hair solon operations Wetting, Blow-drying, etc.

Hair simulation

Mechanics: curl, elasticity, cross section

Fig. 11. An electron micrograph of a hair fi ber that shows the structure of the outer cuticle surface, which is composed of thin overlapping scales [4].

Fig. 12. Left: the polar coordinate system for a hair segment. Right: simulating individual hair strands using one dimensional projective equations for dynamics [3].

Hair strand chain of rigid links v. spring-dampers

Fig. 13. (left) Hair strand as a rigid multi-body serial chain [41] (right) Simulation of hair blowing in the wind using fluid fbw.

Comparison of simulation techniques

	Mass- springs	Projective dynamics	Rigid multi-body serial chain	Dynamic Super-Helices
Bending	yes	yes	yes	yes
Torsion	no	no	yes	yes
Non-stretching	no	yes	yes	yes
Curliness	no	no	no	yes
Constraints	easy	tricky	tricky for hard	tricky for hard

Fig. 14. (left) Particles defining hair, line segments indicate direction (right) Animation of hair with head shaking [10].

Particle physics Fluid dynamics

Fig. 15. (left) Sparse hair model with static links and (right) Rendered image of interpolated dense hair model [32].

Use guide strands for animation Then interpolate for dense hair model

Fig. 16. Hair strips as an approximate hair model [16].

Hair strips to represent hair clusters

Fig. 18. The layered wisp model [12] (bottom) captures both continuities and discontinuities observed in real long hair motion (top).

Level of detail representation for animation

Fig. 20. Illustration of the AWT on long hair (left) and its final rendered version (right) [40].

Adaptive clusters, merge and split

Hair rendering

Fig. 21. Notation for scattering geometry

Fig. 22. Comparison between Kajiya's model (left), Marschner's model (middle) and real hair (right).

Fig. 23. Importance of self-shadowing on hair appearance. (left) Shadows computed using Deep Shadow Maps [75] compared to (right) No shadows. Images courtesy of Pixar Animation Studios.

Fig. 24. Top: a beam of light starting at the shadow camera origin (*i.e.*, the light source) and passing through a single pixel of the deep shadow map. Bottom: the corresponding transmittance (or visibility) function τ, stored as a piecewise linear function.

ŝ.,

Fig. 25. Opacity Shadow Maps. Hair volume is uniformly sliced perpendicular to the light direction into a set of planar maps storing alpha values (top). The resulting shadowed hair (bottom).

Fig. 26. Interactive hair self-shadowing processed by accumulating transmittance values through a light-oriented voxel grid [80]. (left) Animated hair without self-shadows; (right) Animated hair with self-shadows.

Fig. 27. Real-time rendering of long, moving hair using recent graphics hardware [83]. Image Courtesy of NVIDIA Corporation, 2004