Computer Animation Algorithms and Techniques

Behavioral Animation: Knowing the environment Flocking

Rick Parent

Behavioral Animation

Knowing the environment

Aggregate behavior

Primitive behavior

Intelligent behavior

Crowd management

Rick Parent

Knowing the environment

Vision – what do you know about the present

Memory – what is recorded about the environment

More about AI than graphics

Rick Parent

Vision

Geometric issue – what's in sight? OR Can I see X?

Computation v. accuracy

Perceptual issue – what do you see?

Cognitive modeling – necessary? At what level?

Omniscience

Everything in database is 'known'

Computer Animation

Rick Parent

Use surrogate bounding volumes, or sample points

Rick Parent

Occluded Vision

Use surrogate bounding volumes

Rick Parent

Target-testing vision

Rick Parent

Object Recognition

Cognitive modeling How much and what part is needed?

Application need? Not yet addressed in literature More AI than graphics

Rick Parent

Other senses?

Hearing? Smell?

Model sensors & signal propagation

Spatial occupancy approach?

Applications?

Rick Parent

Memory

What is recorded about the environment Spatial occupancy

Transience of objects: time-stamps

hierarchy: short-term, long-term

Rick Parent

Spatial Occupancy transiency

Aggregate Behavior: E pluribus unum Emergent Behavior

Typical qualities

Туре	Elements	Physics	Intelligence
		Env/Others	
Particles	10 ² -10 ⁴	Much/none	None
Flocking	10 ¹ -10 ³	Some/some	Limited
Crowds	10 ¹ -10 ²	Little/much	Little-much

Primitive Behavior - Flocking

Local control – for realism, the flock member only reacts to locally accessible information

Perception – FOV vision – angle can change with speed

Interacting with other members – stay with friends, avoid bumping into each other

Interacting with the environment – collision avoidance is primary

Primitive Behavior - Flocking

Original work by Craig Reynolds

Global control – need control of flock script flock leader global migratory urge

Negotiating the motion

Collision avoidance – steer to avoid

Splitting and rejoining – difficult to tune parameters

Modeling flight – e.g., banking into turns

Negotiating the Motion

Navigating Obstacles

Attempt at parallel movement

Problems with repulsive forces

Attempt to fly directly toward a surface

Attempt at finding a passageway

Navigating using bounding sphere

Navigating Testing for being on a collision path with (bounding) sphere

Given: P, V, C, r

Rick Parent

Finding closest non-colliding point Calculate s,t U $k = \sqrt{\left|C - P\right|^2 - r^2}$ B $r^2 = s^2 + t^2$ $k^{2} = s^{2} + (|C - P| - t)^{2}$ $k^{2} = r^{2} - t^{2} + |C - P|^{2} - 2|C - P|t + t^{2}$ $t = \frac{k^2 - r^2 - |C - P|^2}{-2|C - P|}$ $s = \sqrt{r^2 - t^2}$ $U = \frac{C - P}{|C - P|}$ $W = \frac{(U \times V) \times U}{|(U \times V) \times U|}$

$$B = P + (|C - P| - t)U + sW$$

Rick Parent

Navigating – finding a pass

Vision Options: Render in z-buffer Sample environments with rays

Rick Parent

Modeling Flight -common in flocking

Modeling Flight

Primitive Behavior - Prey-Predator

unbalanced abilities vision - distance, movement, fov maximum velocity maximum acceleration maximum angular velocity maximum angular acceleration

Rick Parent

Prey-Predator agility: speed and turning

Rick Parent

Prey-Predator - hidden by forces

Using pure forces May not prevent object penetration Prey can be 'hidden' by environmental repulsive forces