Computer Animation Algorithms and Techniques

Optimization \& Constraints

Enforcing Soft and Hard Constraints

Soft constraints - Minimizing energy terms
Hard constraints - constrained optimization
Example: Space-time constraints

Constrained optimization

Use whenever the best, shortest, least error, is needed:
Fit surface with least curvature to set of points

Reach for object with minumu torque

Find motion in database whose start pose is closest to end of current motion

Minimum (or maximum) of a function

Ballistic motion

$$
\begin{gathered}
f(t)=p_{0}+v_{0} t-\frac{1}{2} g t^{2} \\
f^{\prime}(t)=v_{0}-g t=0 \\
t=\frac{v_{0}}{g}
\end{gathered}
$$

Analytic derivative \& solution

Minimum (or maximum) of a function

$$
\begin{aligned}
& \text { Multivariate case } \\
& \nabla f(\vec{x})=\left[\begin{array}{l}
\frac{\partial f}{x_{1}} \\
\frac{\partial f}{x_{2}} \\
\frac{\partial f}{x_{3}} \\
\cdots
\end{array}\right]=0
\end{aligned}
$$

Gradient / Jacobian

Energy function

Define energy terms
in terms of geometric features
$=0$ for desirable configuration
increases for less desirable configurations

Useful geometric features- easy to compute
Parametric position function $\mathrm{P}(\mathrm{u}, \mathrm{v})$
Surface normal function, $\mathrm{N}(\mathrm{u}, \mathrm{v})$
Implicit function $\mathrm{I}(\mathrm{x})$ - distance to surface
Search parameter space
modify parameters to reduce energy

Useful Constraints

$$
\begin{aligned}
& E=|P(u, v)-Q|^{2} \\
& E=\left|P^{a}\left(u_{a}, v_{a}\right)-P^{b}\left(u_{b}, v_{b}\right)\right|^{2} \\
& E=\left|P^{a}\left(u_{a}, v_{a}\right)-P^{b}\left(u_{b}, v_{b}\right)\right|^{2}+N^{a}\left(u_{a}, v_{a}\right) \bullet N^{b}\left(u_{b}, v_{b}\right)-1.0 \\
& E=\left(I^{b}\left(P^{a}\left(u_{a}, v_{a}\right)\right)\right)^{2}
\end{aligned}
$$

Finding the minimum

$$
f^{\prime}(\vec{x})=0 \quad \text { Newton's method } ~\left(x_{i+1}=x_{i}-\frac{f^{\prime}\left(\vec{x}_{i}\right)}{f^{\prime \prime}\left(\vec{x}_{i}\right)}\right.
$$

Steepest descent - step in direction of negative of gradient

Conjugate gradient method

Figure 10: Conjugate gradient minimization path for the two-dimensional Kosenbrock function.

Constrained Optimization

$$
\begin{array}{cc}
\text { minimize } & f(\vec{x}) \\
g_{i}(\vec{x})=0 & \text { Equality constraints }
\end{array}
$$

$h_{i}(\vec{x}) \geq 0 \quad$ Inequality constraints

Lagrange multipliers

$$
\Lambda(x, y, \lambda)=f(x, y)+\lambda g(x, y)
$$

$$
\begin{aligned}
& \nabla \Lambda(x, y, \lambda)=\nabla f(x, y)+\nabla \lambda g(x, y)=0 \\
& \nabla_{x y} \Lambda(x, y, \lambda)=\nabla_{x y} f(x, y)+\nabla_{x y} \lambda g(x, y)=0 \\
& \nabla_{\lambda} \Lambda(x, y, \lambda)=g(x, y)=0 .
\end{aligned}
$$

Spacetime constraints

http://www.cs.cmu.edu/~aw/pdf/spacetime.pdf

Constrained optimization problem in time and space

Constraints - e.g.
locating certain points in time and space
Non penetration constraints

Objective function - e.g.
Minimize the amount of force used over time interval
Minimize maximum torque.

Spacetime constraint example

Particle position is function of time, $\mathrm{x}(\mathrm{t})$

Time-varying force function, $\mathrm{f}(\mathrm{t})$

Equation of motion

$$
m \ddot{x}(t)-f(t)-m g=0
$$

Given $\mathrm{f}(\mathrm{t}), \mathrm{x}\left(\mathrm{t}_{0}\right), \quad \dot{\mathrm{x}}\left(\mathrm{t}_{0}\right) \quad$ - integrate to get $\mathrm{x}(\mathrm{t})$.

Spacetime constraint example

Need to determine $f(t)$

Subject to constraints

$$
\begin{aligned}
& \mathrm{x}\left(\mathrm{t}_{0}\right)=\mathrm{a} \\
& \mathrm{x}\left(\mathrm{t}_{1}\right)=\mathrm{b}
\end{aligned}
$$

Objective: to minimize total force
Objective function:

$$
R=\int_{t_{0}}^{t_{1}}|f|^{2} d t
$$

Spacetime constraint example

Use discrete $x(t), f(t), R$, constraints
Time derivatives approximated by finite differences

$$
\dot{x}_{i}=\frac{x_{i}-x_{i-1}}{h} \quad \ddot{x}_{i}=\frac{x_{i+1}-2 x_{i}+x_{i-1}}{h^{2}}
$$

Constraints: $\left\{\begin{array}{c}p_{i}=m \frac{x_{i+1}-2 x_{i}+x_{i-1}}{h^{2}}-f_{i}-m g=0 \\ c_{a}=x_{1}-a=0 \\ c_{b}=x_{n}-b=0\end{array}\right.$
R - minimize discrete version subject to constraints.

$$
R=h \sum_{i}|f|^{2}
$$

Spacetime constraint canonical form

Numerical Solution - canonical form
S_{j} - collection of scalar independent variables
x, y, z components of the x_{i} 's and f_{i} 's
$R\left(S_{j}\right)$ - objective function to be minimized sum of forces squared used at each time step
$\mathrm{C}_{\mathrm{i}}\left(\mathrm{S}_{\mathrm{j}}\right)$ - collection of scalar constraint functions $=>0$. components of p_{i} 's, c_{a}, and c_{b}.

Spacetime constraint - canonical

Numerical problem statement

Find S_{j} that minimizes $R\left(S_{j}\right)$ subject to $C_{i}\left(S_{j}\right)=0$

Numerical solution method:

- Request values of R and C_{i} for given S_{j}
- Access to derivatives of R and C_{i} with respect to S_{j}
- Iteratively provides updated values for solution vector S_{i}.

Spacetime constraint

Sequential Quadratic Programming (SQP)

Computes second-order Newton-Raphson step in R

Computes first-order Newton-Raphson step in the C_{i} 's

Projects the first onto the null space of the second to the hyperplane for which all the C_{i} 's are constant to the first order.

Spacetime constraint using SQP

Sequential Quadratic Programming (SQP)
Computes first-order Newton-Raphson step in the C_{i} 's

$$
\text { Jacobian: } \quad J_{i j}=\frac{\partial C_{i}}{\partial S_{j}}
$$

Computes second-order Newton-Raphson step in R

$$
\text { Hessian } \quad H_{i j}=\frac{\partial^{2} R}{\partial S_{i} \partial S_{j}}
$$

Plus the first derivative vector:

$$
\frac{\partial R}{\partial S_{j}}
$$

Spacetime constraint example

$$
p_{i}=m \frac{x_{i+1}-2 x_{i}+x_{i-1}}{h^{2}}-f_{i}-m g=0
$$

Matrices

$$
\begin{aligned}
\frac{\partial p_{i}}{\partial x_{j}} & =2 m / h^{2} & & \mathrm{i}=\mathrm{j} \\
& =-m / h^{2} & & \mathrm{i}=\mathrm{j}-1, \mathrm{j}+1 \\
& =0 & & \text { otherwise } \\
\frac{\partial p_{i}}{\partial f_{j}} & =1 & & \\
& =0 & & \mathrm{i}=\mathrm{j} \\
& & & \text { Otherwise. }
\end{aligned}
$$

Spacetime constraint example

Matrices

$$
\begin{align*}
\frac{\partial R}{\partial f_{i}} & =2 f_{i} & & \\
\frac{\partial^{2} R}{\partial f_{i} \partial f_{j}} & =2 & & \mathrm{i}=\mathrm{j} \\
& =0 & & \text { Otherwise. }
\end{align*}
$$

Spacetime constraint example

SQP step

Solve 2 linear systems in sequence

$$
-\frac{\partial R}{\partial S_{i}}=\sum_{j} H_{i j} \hat{S}_{j}
$$

Yields a step that minimizes a $2^{\text {nd }}$ order approx. to R
2

$$
-C_{i}=\sum_{j} J_{i j}\left(\tilde{S}_{j}+\hat{S}_{j}\right)
$$

Yields a step that drives linear approx. to C_{i} 's to zero And projects optimization step S_{j} to null space of constraint Jacobian.

Spacetime constraint example

Final update: $\quad \tilde{S}_{j}+\hat{S}_{j}$

Reaches fixed point:

- When C_{i} 's = 0
- Any further decrease in R violates constraints.

Constrained optimization

Spacetime constraint example

Note about Linear system solving
Large matrices often with spacetime problems
Inverting is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
Spacetime problems almost always sparse
Over and under constrainted systems easily arise
Under constrained: pseudo-inverse
Pseudo-inverse for sparse matrix sparse conjugate gradient algorithm: $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

