Computer Animation Algorithms and Techniques

Motion Capture

Rick Parent

MoCap Technologies

<u>Instrument</u> the *talent* to facilitate tracking feature points on the human figure

Need some kind of <u>sense-able markers</u> from which positional and possibly rotational status can be recorded

"Traditional" MoCap Technologies

• <u>Optical</u> – uses video capture <u>passive</u> – markers just reflect light <u>active</u> – markers emit light

• <u>Magnetic</u> – active sensors sense their position and orientation in magnetic field

• <u>Electro-Mechanical</u> – rotors connected to limb-aligned rods record their status – for hands, optical sensors used sometimes

Optical - Passive

Rick Parem

Optical - Active

Magnetic

e.g. Ascention technology http://www.ascension-tech.com/

Rick Parent

Electro-Mechanical

Rick Parent

Newer MoCap Technologies

- Inertial systems (similar to Wii technology)
- Make-up
- Semi-passive imperceptible markers
- Markerless systems

Markerless

Organic Motion www.organicmotion.com/

Image Metrics (facial) www.image-metrics.com/

Rick Parent

Passive Optical - most common (?)

Motion capture lab

Multiple markers - e.g., 20-40 Multiple cameras - e.g., 8-14 high-res, high-speed Constrained, conditioned space - 20x20 non-reflective Multiple lights - synced w/ cameras

Vicon http://www.vicon.com/applications/animation.html

Motion capture lab

Rick Parent

Processing the Images

PROCESSING STEPS

- **1. Extract markers from video**
- 2. Track markers over time in video
- 3. Marker cleanup
- 4. 3D marker position reconstruction
- **5. Joint position reconstruction**
- 6. Joint angle reconstruction

Extract markers from video

Basic image processing aided by constrained environment:

- High contrast markers
- Special illumination
- Non-reflective environment

Rick Parent

Marker tracking

Given frames each with recognized markers

Associate markers over multiple frames

Temporal coherence using:

- Position
- Frame rate
- Velocity

Rick Parent

Marker Clean-up

Marker1	
Marker2	
Marker3	

Rick Parent

Rick Parent

3D - image plane projection

Projecting marker onto image plane

Camera calibration

Project known 3-space points to camera's image

$$P' = MP$$

Six degrees of freedom - use that many known pointpairs

Rick Parent

Projecting from 2D image out to 3-space

Reconstructing a 3D marker

Fitting to the skeleton

Locate joints relative to markers

Reconstructing angles

Rick Parent

Mocap output

See sample files <u>http://accad.osu.edu/research/mocap/mocap_data.htm</u> http://mocap.cs.cmu.edu/

See sample files linked to at class website

Manipulating the mocap data

Frequency deconstruction & manipulation

Transitioning between two motions – Blending

How to map a motion onto a figure with different geometry - <u>Retargeting</u>

Finding motion clips to create behavior – motion graphs