
C t A i tiComputer Animation
Algorithms and TechniquesAlgorithms and Techniques

Kinematic LinkagesKinematic Linkages

Computer AnimationRick Parent



Hierarchical ModelingHierarchical Modeling

Parent child relationshipRelative motion Parent-child relationship
Simplifies motion specification

Constrains motion Reduces dimensionality

Computer AnimationRick Parent

Constrains motion Reduces dimensionality



Modeling & animating hierarchies

3 aspects3 aspects
1. Linkages & Joints – the relationships
2. Data structure – how to represent such a hierarchy
3 Con erting local coordinate frames into global3. Converting local coordinate frames into global 

space

Computer AnimationRick Parent



Some terms
Joint – allowed relative motion & parameters
Joint Limits – limit on valid joint angle values
Link – object involved in relative motionLink object involved in relative motion
Linkage – entire joint-link hierarchy
Armature – same as linkage
E d ff t t di t t li k i li kEnd effector – most distant link in linkage
Articulation variable – parameter of motion associated with 

joint
Pose – configuration of linkage using given set of joint angles
Pose vector – complete set of joint angles for linkage

Arc – of a tree data structure – corresponds to a joint
Node – of a tree data structure – corresponds to a link

Computer AnimationRick Parent



Use of hierarchies in animation

Forward Kinematics (FK)( )
animator specifies values of articulation variables
global transform for each linkage is computed

Inverse Kinematics (IK)
animator specifies final desired global transform for 

end effector (and possibly other linkages)

Values of articulation variables are computed 

Computer AnimationRick Parent



Forward & Inverse Kinematics

Computer AnimationRick Parent



Joints – relative movement

Computer AnimationRick Parent



C l  J i tComplex Joints

Computer AnimationRick Parent



Hierarchical structureHierarchical structure

Computer AnimationRick Parent



Tree structureTree structure

Computer AnimationRick Parent



Tree 
structure

Computer AnimationRick Parent



Tree 
structurestructure

Computer AnimationRick Parent



R l ti  Relative 
movement

Computer AnimationRick Parent



R l ti  Relative 
movement

Computer AnimationRick Parent



Tree structure

Computer AnimationRick Parent



TTree
structure

Computer AnimationRick Parent



Implementation noteImplementation note
Nodes & arcs

NODE
Pointer to data
Data transformation
Pointer to arcs

ARC
Transform of one next node relative to parent node
Articulation transform
Pointer to node

Computer AnimationRick Parent



Implementation noteImplementation note
Representing arbitrary number of children 

with fixed-length data structurewith fixed-length data structure
Node points to first child
Each child points to sibling

Use array of pointers 
to children

Each child points to sibling
Last sibling points to NULL
In node: arcPtr for 1st child
In arc: arcPtr for sibling

In node, arcPtr[]

Computer AnimationRick Parent



Tree 
traverse (arcPtr,matrix)
{

// concatenate arc matricesTree 
traversal

matrix = matrix*arcPtr->Lmatrix
matrix = matrix*arcPtr->Amatrix;

// get node and transform datag
nodePtr=acrPtr->nodePtr
push (matrix)
matrix = matrix * nodePTr->matrix
aData = transformData(matrix,dataPTr)

L 
A

( , )
draw(aData)
matrix = pop();

// process children

d,M

p
If (nodePtr->arcPtr != NULL) {

nextArcPtr = nodePTr-> arcPtr 
while (nextArcPtr != NULL) {

push(matrix)p ( )
traverse(nextArcPtr,matrix)
matrix = pop()
nextArcPtr = nextArcPtr->arcPtr

}

Computer AnimationRick Parent

}
}

}



OpenGLOpenGL
Single 
linkage

glPushMatrix();
For (i=0; i<NUMDOFS; i++) {

glRotatef(a[i],axis[i][0], axis[i][1], axis[i][2]);linkage
if (linkLen[i] != 0.0) {

draw_linkage(linkLen[i]);
glTranslatef(0.0,linkLen[i],0.0);

}
}
glPopMatrix();

A[i] – joint angle

OpenGL concatenates matrices

Axis[i] – joint axis
linkLen[i] – length of link

Computer AnimationRick Parent



I  ki tiInverse kinematics

Given goal position (and orientation) for end effectorGiven goal position (and orientation) for end effector

Compute internal joint angles

If simple enough => analytic solution
Else => numeric iterative solution

Computer AnimationRick Parent



Inverse kinematics - spaces

i iConfiguration space
Reachable workspace
Dextrous workspace

Computer AnimationRick Parent

p



Analytic
inverse 
kinematics

)( 2222 YXLL ++

Computer AnimationRick Parent

)
2

)(cos(
21

21
2 LL

YXLLa +−+
−=θ



IK - numericIK numeric
If linkage is too complex to solve analytically

E g human arm is typically modeled asE.g., human arm is typically modeled as 
3-1-3 or 3-2-2 linkage

Solve iteratively – numerically solve for step toward goal

Desired change from this specific pose
Compute set of changes to the pose to effect that change

Computer AnimationRick Parent

Compute set of changes to the pose to effect that change



IK math notationIK math notation

),,,,,( 65432111 xxxxxxfy =

)(
),,,,,(
),,,,,(

65432122

65432111

xxxxxxfy
xxxxxxfy

fy

=
=

),,,,,(
),,,,,(

65432144

65432133

xxxxxxfy
xxxxxxfy

=
=

),,,,,(
),,,,,(

65432166

65432155

xxxxxxfy
xxxxxxfy

=
=

)( 65432166 fy

( )XFY =

Computer AnimationRick Parent



IK – chain ruleIK chain rule

dt
x

x
f

dt
x

x
f

dt
x

x
f

dt
x

x
f

dt
x

x
f

dt
dx

x
f

dt
dy iiiiiii 654321 ∂

∂
∂

+
∂

∂
∂

+
∂

∂
∂

+
∂

∂
∂

+
∂

∂
∂

+
∂
∂

=
dtxdtxdtxdtxdtxdtxdt 654321 ∂∂∂∂∂∂

X
X
FY &&
∂
∂

=
X∂

Computer AnimationRick Parent



Inverse Kinematics - JacobianInverse Kinematics Jacobian

XFY && ∂ X
X

Y
∂

=

( )θθ &JV =
Desired motion 
of end effector

Unknown change in 
articulation variables

The Jacobian is the matrix relating 
the two: it’s a function of current 

i bl l

Computer AnimationRick Parent

variable values



Inverse Kinematics - JacobianInverse Kinematics Jacobian

( )θθ &JV = ( )θθJV
[ ]zyxzyx vvvV ωωω ,,,,,= [ ]654321 ,,,,, θθθθθθθ &&&&&&& =

⎥
⎤

⎢
⎡ ∂∂∂ xxx ppp

Change in
Change in 

ti l ti

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢

∂

∂
∂∂∂

=

621

θ

θθθ
yp

J K

KChange in 
position

articulation 
variables

⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

∂∂

∂=
1

αα

θ

zz

J
KChange in 

orientation
Jacobian

Computer AnimationRick Parent

⎥
⎥
⎦⎢

⎢
⎣ ∂∂ 61 θθ



IK – computing the JacobianK comput ng the Jacob an
(need to convert to global coordinates)

Only valid instantaneously
Change in positionChange in orientation

Computer AnimationRick Parent

Only valid instantaneously



IK - configurationIK configuration

Computer AnimationRick Parent



IK – compute positional change vectors IK compute positional change vectors 
induced by changes in joint angles

Instantaneous positional change vectors

Desired change vector

One approach to IK computes 
linear combination of change 

Computer AnimationRick Parent

g
vectors that equal desired vector



IK – compute position and axis of jointsIK compute position and axis of joints

Set identity matrix

for (i=0; i<NUMDOFS; i++) {for (i 0; i NUMDOFS; i ) {
record_transformed_joint(i)
glRotate(angle[i],axis[i][0],axis[i][1],axis[i][2]);
append_rotation(angle[i],axis[i][0],axis[i][1],axis[i][2]);
if (li kL [i] ! 0) {if (linkLen[i] != 0) {
draw_linkage(linkLen[i]);
glTranslatef(0.0,linkLen[i],0.0);
append translation(0,linkLen[i],0);pp _ ( , [ ], );

}
}
record_endEffector();

Computer AnimationRick Parent



IK – append rotation
If joint axis is:
one of major axes: 3 cases ofsimple rotation
Arbitrary axis angle axis to matrix conversionArbitrary axis – angle-axis to matrix conversion

IK – append translationIK append translation
Form translation matrix

Matrix
Transformed coordinate systemTransformed coordinate system
Position
Transforms axis of rotation

Computer AnimationRick Parent



IK record joint informationIK – record joint information

Joint position – last column of matrix

Joint coordinate system – upper left 3x3 submatrix

Joint axis – transform local joint axis vector by matrix

Computer AnimationRick Parent



IK - singularity

Some singular configurations are not so easily recognizable
Near singular configurations are also problematic – why?

Computer AnimationRick Parent

Near singular configurations are also problematic why?



Inverse Kinematics - NumericInverse Kinematics Numeric
Given
• Current configuration

Determine
• Goal vectorCurrent configuration

• Goal position/orientation
Goal vector

• Positions & local coordinate systems of 
interior joints (in global coordinates)
• Jacobian

( )θθ &JV = Is in same form as more  recognizable : bAx =
Solve & take small step – or clamp acceleration 
or clamp velocity

Repeat until:
• Within epsilon of goal
• Stuck in some configuration

Computer AnimationRick Parent

g
• Taking too long



SolvingSol ng

If J not square, usually under-constrained: more DoFs than constraints 
R i f d i f J bi

If J square, compute inverse, J-1

Requires use of pseudo-inverse of Jacobian

θ

θ
&

&=

JJVJ

JV
TT

( ) ( ) θ

θ
&=

=
−− JJJJVJJJ

JJVJ
TTTT

TT

11( ) ( )
θ&=+VJ

Computer AnimationRick Parent



SolvingSol ng

θβ

θ
&

&=
TJ

JV
Avoid direct computation of 

β

θβ

=

=
TJJV

Jinverse by 
substitution 
solving Ax=B form

θβ &=TJ
solving Ax B form,
then substituting back

Computer AnimationRick Parent



IK – Jacobian solution

Computer AnimationRick Parent



IK – Jacobian solution - problemIK Jacobian solution problem

When goal is out of reach
Bizarre undulations can occurBizarre undulations can occur
As armature tries to reach the unreachable

Add a damping factor

Computer AnimationRick Parent



IK – Jacobian w/ damped least squares

( ) VJJJ TT 1−
=θ&Undamped form: ( )

VIJJJ TT 12 )( −λθ&
Damped form with user parameter: 

Computer AnimationRick Parent

VIJJJ TT 12 )( += λθ



IK – Jacobian w/ control termIK Jacobian w/ control term

Physical systems (i.e. robotics) and synthetic character 
simulation (e g human figure) have limits on joint valuessimulation (e.g., human figure) have limits on joint values

IK allows joint angle to have any valuej g y

Difficult (computationally expensive) to incorporate 
hard constraints on joint values

Take advantage of redundant manipulators - Allow user to set 
parameter that urges DOF to a certain value

hard constraints on joint values

parameter that urges DOF to a certain value

Does not enforce joint limit constraints, but can be used to 
k j i t l t id l

Computer AnimationRick Parent

keep joint angles at mid-range values



IK – Jacobian w/ control termIK Jacobian w/ control term

1)( zIJJVJθ −+= −++&

2)(
)(

ciiiz
zIJJVJ

θθα

θ

−=

+

)( −=

=
+ zIJJJV

JV θ&

0
)(
)(

=
−= +

zV
zJJJJV

0
0

=
=

V
zV

Change to the pose parameter in the form of theChange to the pose parameter in the form of the 
control term adds nothing to the velocity

Computer AnimationRick Parent



IK – Jacobian w/ control termIK Jacobian w/ control term

2

1

)(
)(

z
zIJJVJ

θθα

θ

−=

−+= −++&All bias to 0
Top gains = {0.1, 0.5, 0.1}
Bottom gains = {0 1 0 1 0 5}

Computer AnimationRick Parent

)( ciiiz θθα −=Bottom gains = {0.1, 0.1, 0.5}



IK – alternate Jacobian

J bi f l t d t ll th lJacobian formulated to pull the goal 
toward the end effector

Use same method to form Jacobian but use 
goal coordinates instead of end-effector 
coordinates

Computer AnimationRick Parent

coo d es



IK – Transpose of the Jacobianp

C t h h th h tCompute how much the change vector 
contributes to the desired change vector:

P j t j i t h t t d i d h tProject joint change vector onto desired change vector

Dot product of joint change vector and desired 
h t > T f th J bi

Computer AnimationRick Parent

change vector => Transpose of the Jacobian



IK – Transpose of the Jacobianp

θ&=VJ T

⎤⎡ xv
⎥
⎤

⎢
⎡ ∂∂∂ α zyx pp

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

z

y

x

v
v

V⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢

∂
∂∂∂ 111 θθθ

x

zyx

T
p

p

J K

K

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢=

y

x

V

ω
ω

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢

∂∂

∂=
2

α

θ

zx

T

p

J
K

Computer AnimationRick Parent

⎥
⎥
⎦⎢

⎢
⎣ zω⎥

⎥
⎦⎢

⎢
⎣ ∂∂ 66 θθ

zxp



IK – cyclic coordinate descenty

Heuristic solution

Consider one joint at a time, from outside in
At each joint, choose update that best gets end 
effector to goal positioneffector to goal position

In 2D – pretty simpleIn 2D pretty simple

Goal
axis

EndEffectorJi

axisi

Computer AnimationRick Parent



IK – cyclic coordinate descenty

In 3D, a bit more computation is needed

Computer AnimationRick Parent



IK 3D li  IK – 3D cyclic 
coordinate descent

Goal

EndEffectorJi

axisi

Projected goal

First – goal has to be projected onto plane 
defined by axis (normal to plane) and EFdefined by axis (normal to plane) and EF

Second– determine angle at joint

Computer AnimationRick Parent



IK – cyclic coordinate descent – 3D

Other orderings of processing joints 
are possible

Because of its procedural natureBecause of its procedural nature
• Lends itself to enforcing joint limits
• Easy to clamp angular velocity

Computer AnimationRick Parent



Inverse kinematics - review

Analytic method
Forming the Jacobian
N i l tiNumeric solutions

Pseudo-inverse of the Jacobian
J+ with damping
J+ with control term
Alternative Jacobian
Transpose of the JacobianTranspose of the Jacobian
Cyclic Coordinate Descent (CCD)

Computer AnimationRick Parent



Inverse kinematics - orientation

i

EF

Change in orientation at end-effector is 
same as change at joint Ji

axisi

Computer AnimationRick Parent

same as change at joint i



Inverse kinematics - orientationInverse kinematics orientation
How to represent orientation (at goal, at end-effector)?
How to compute difference between orientations?p
How to represent desired change in orientation in V vector?
How to incorporate into IK solution? 

Matrix representation: Mg, Mef

Difference Md = Mef
-1 Mg

Use scaled axis of rotation: θ(ax ay az ):
• Extract quaternion from Md
• Extract (scaled) axis from quaternion

E.g., use Jacobian Transpose method: 
U j ti f l d j i t i t t t d i

Computer AnimationRick Parent

Use projection of scaled joint axis onto extracted axis


