Computer Animation Algorithms and Techniques

Kinematic Linkages

Hierarchical Modeling

Constrains motion
\longrightarrow Reduces dimensionality

Modeling \& animating hierarchies

3 aspects

1. Linkages \& Joints - the relationships
2. Data structure - how to represent such a hierarchy
3. Converting local coordinate frames into global space

Some terms

Joint - allowed relative motion \& parameters Joint Limits - limit on valid joint angle values
Link - object involved in relative motion
Linkage - entire joint-link hierarchy
Armature - same as linkage
End effector - most distant link in linkage
Articulation variable - parameter of motion associated with joint
Pose - configuration of linkage using given set of joint angles
Pose vector - complete set of joint angles for linkage

Arc - of a tree data structure - corresponds to a joint Node - of a tree data structure - corresponds to a link

Use of hierarchies in animation

Forward Kinematics (FK) animator specifies values of articulation variables global transform for each linkage is computed

Inverse Kinematics (IK)

animator specifies final desired global transform for end effector (and possibly other linkages)

Values of articulation variables are computed

Forward \& Inverse Kinematics

Joints - relative movement

Complex Joints

Ball-and-socket joint

Ball-and-socket joint modeled as 3 one-degree joints with zero-length links

Planar joint

zero-length linkage
Planar joint modeled as 2 one-degree prismatic joints with zero-length links

Hierarchical structure

Tree structure

Node $_{i}$ contains

- a transformation to be applied to object data to position it so its point of rotation is at the origin (optional)
- object data

Arc_{i} contains
- a constant transformation of Link $_{j}$ to its neutral position relative to Link ${ }_{i-1}$.
- a variable transformation responsible for articulating Link ${ }_{i}$

Tree structure

Original definition of root object (Link ${ }_{0}$)

Root object (Link ${ }_{0}$) transformed (translated and scaled) by T_{0} to some known location in global space

Link k_{1} transformed by T_{1} to its position relative to untransformed Link $_{0}$

Link $_{1.1}$ transformed by $T_{1.1}$ to its position relative to untransformed Link $_{1}$

Tree structure

Relative movement

Relative movement

Tree structure

Tree
 structure

Implementation note Nodes \& arcs

NODE
Pointer to data
Data transformation
Pointer to arcs

ARC
Transform of one next node relative to parent node
Articulation transform
Pointer to node

Implementation note

Representing arbitrary number of children

 with fixed-length data structureUse array of pointers to children In node, arcPtr[]

Node points to first child
Each child points to sibling Last sibling points to NULL In node: arcPtr for $1^{\text {st }}$ child In arc: arcPtr for sibling

Tree traversal


```
traverse (arcPtr,matrix)
{
    // concatenate arc matrices
    matrix = matrix*arcPtr->Lmatrix
    matrix = matrix*arcPtr->Amatrix;
    // get node and transform data
    nodePtr=acrPtr->nodePtr
    push (matrix)
    matrix = matrix * nodePTr->matrix
    aData = transformData(matrix,dataPTr)
    draw(aData)
    matrix = pop();
    // process children
    If (nodePtr->arcPtr != NULL) {
        nextArcPtr = nodePTr-> arcPtr
        while (nextArcPtr != NULL) {
        push(matrix)
        traverse(nextArcPtr,matrix)
        matrix = pop()
        nextArcPtr = nextArcPtr->arcPtr
        }
    }
}
```


OpenGL Single linkage

```
glPushMatrix();
For (i=0; i<NUMDOFS; i++) {
    gIRotatef(a[i],axis[i][0], axis[i][1], axis[i][2]);
        if (linkLen[i] != 0.0) {
        draw_linkage(linkLen[i]);
        gITranslatef(0.0,linkLen[i],0.0);
    }
}
gIPopMatrix();
```

OpenGL concatenates matrices

> A[i] - joint angle Axis[i] - joint axis linkLen[i] - length of link

Inverse kinematics

Given goal position (and orientation) for end effector
Compute internal joint angles

If simple enough => analytic solution Else => numeric iterative solution

Inverse kinematics - spaces

Configuration space
 Reachable workspace
 Dextrous workspace

Analytic inverse kinematics

$$
\begin{aligned}
& \text { (X,Y) } \\
& \cos \left(\theta_{T}\right)=\frac{\mathrm{X}}{\sqrt{X^{2}+Y^{2}}} \\
& \theta_{T}=\operatorname{acos}\left(\frac{X}{\sqrt{X^{2}+Y^{2}}}\right) \\
& \cos \left(\theta_{1}-\theta_{T}\right)=\frac{L_{1}^{2}+X^{2}+Y^{2}-L_{2}^{2}}{2 L_{1} \sqrt{X^{2}+Y^{2}}} \\
& \theta_{1}=\operatorname{acos}\left(\frac{L_{1}^{2}+X^{2}+Y^{2}-L_{2}^{2}}{2 L_{1} \sqrt{X^{2}+Y^{2}}}\right)+\theta_{T} \\
& \cos \left(180-\theta_{2}\right)=-\cos \left(\theta_{2}\right)=\frac{L_{1}^{2}+L_{2}^{2}-\left(X^{2}+Y^{2}\right)}{2 L_{1} L_{2}} \\
& \theta_{2}=a \cos \left(-\frac{L_{1}^{2}+L_{2}{ }^{2}-\left(X^{2}+Y^{2}\right)}{2 L_{1} L_{2}}\right) \\
& \text { (cosine rule) } \\
& \text { (cosine rule) }
\end{aligned}
$$

IK - numeric

If linkage is too complex to solve analytically E.g., human arm is typically modeled as 3-1-3 or 3-2-2 linkage

Solve iteratively - numerically solve for step toward goal

Desired change from this specific pose Compute set of changes to the pose to effect that change

IK math notation

$$
\begin{gathered}
y_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
y_{2}=f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
y_{3}=f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
y_{4}=f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
y_{5}=f_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
y_{6}=f_{6}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
\quad Y=F(X)
\end{gathered}
$$

IK - chain rule

$$
\begin{gathered}
\frac{d y_{i}}{d t}=\frac{\partial f_{i}}{\partial x_{1}} \frac{d x_{1}}{d t}+\frac{\partial f_{i}}{\partial x_{2}} \frac{\partial x_{2}}{d t}+\frac{\partial f_{i}}{\partial x_{3}} \frac{\partial x_{3}}{d t}+\frac{\partial f_{i}}{\partial x_{4}} \frac{\partial x_{4}}{d t}+\frac{\partial f_{i}}{\partial x_{5}} \frac{\partial x_{5}}{d t}+\frac{\partial f_{i}}{\partial x_{6}} \frac{\partial x_{6}}{d t} \\
\dot{Y}=\frac{\partial F}{\partial X} \dot{X}
\end{gathered}
$$

Inverse Kinematics - Jacobian

$$
\dot{Y}=\frac{\partial F}{\partial X} \dot{X}
$$

Desired motion of end effector

Unknown change in articulation variables

The Jacobian is the matrix relating the two: it's a function of current variable values

Inverse Kinematics - Jacobian

IK - computing the Jacobian

(need to convert to global coordinates)

Change in orientation
Change in position Only valid instantaneously

IK - configuration

IK - compute positional change vectors induced by changes in joint angles

Instantaneous positional change vectors
Desired change vector

One approach to IK computes linear combination of change vectors that equal desired vector

IK - compute position and axis of joints

```
Set identity matrix
for (i=0; i<NUMDOFS; i++) {
    record_transformed_joint(i)
    glRotate(angle[i],axis[i][0],axis[i][1],axis[i][2]);
    append_rotation(angle[i],axis[i][0],axis[i][1],axis[i][2]);
    if (linkLen[i] != 0) {
        draw_linkage(linkLen[i]);
    glTranslatef(0.0,linkLen[i],0.0);
    append_translation(0,linkLen[i],0);
    }
}
record_endEffector();
```


IK - append rotation

If joint axis is:

one of major axes: 3 cases ofsimple rotation
Arbitrary axis - angle-axis to matrix conversion

IK - append translation

Form translation matrix

Matrix

Transformed coordinate system
Position
Transforms axis of rotation

IK - record joint information

Joint position - last column of matrix
Joint coordinate system - upper left 3×3 submatrix
Joint axis - transform local joint axis vector by matrix

IK - singularity

Some singular configurations are not so easily recognizable Near singular configurations are also problematic - why?

Inverse Kinematics - Numeric

Given

- Current configuration
- Goal position/orientation

Determine

- Goal vector
- Positions \& local coordinate systems of interior joints (in global coordinates)
- Jacobian
$V=J(\theta) \dot{\theta} \quad$ Is in same form as more recognizable : $\quad A x=b$
Solve \& take small step - or clamp acceleration or clamp velocity

Repeat until:

- Within epsilon of goal
- Stuck in some configuration
- Taking too long

Solving

If J square, compute inverse, J^{-1}
If J not square, usually under-constrained: more DoFs than constraints Requires use of pseudo-inverse of Jacobian

$$
\begin{aligned}
& V=J \dot{\theta} \\
& J^{T} V=J^{T} J \dot{\theta} \\
& \left(J^{T} J\right)^{-1} J^{T} V=\left(J^{T} J\right)^{-1} J^{T} J \dot{\theta} \\
& J^{+} V=\dot{\theta}
\end{aligned}
$$

Solving

Avoid direct computation of inverse by substitution solving $\mathrm{Ax}=\mathrm{B}$ form, then substituting back

$$
V=J \dot{\theta}
$$

IK - Jacobian solution

IK - Jacobian solution - problem

When goal is out of reach Bizarre undulations can occur
As armature tries to reach the unreachable
\longrightarrow Add a damping factor

IK - Jacobian w/ damped least squares

Undamped form: $\quad \dot{\theta}=\left(J^{T} J\right)^{-1} J^{T} V$

Damped form with user parameter:

$$
\dot{\theta}=J^{T}\left(J J^{T}+\lambda^{2} I\right)^{-1} V
$$

IK - Jacobian w/ control term

Physical systems (i.e. robotics) and synthetic character simulation (e.g., human figure) have limits on joint values

IK allows joint angle to have any value
Difficult (computationally expensive) to incorporate hard constraints on joint values

Take advantage of redundant manipulators - Allow user to set parameter that urges DOF to a certain value

Does not enforce joint limit constraints, but can be used to keep joint angles at mid-range values

IK - Jacobian w/ control term

$$
\begin{aligned}
& \dot{\theta}=J^{+} V+\left(J^{+} J-I\right)^{-1} z \\
& z=\alpha_{i}\left(\theta_{i}-\theta_{c i}\right)^{2}
\end{aligned}
$$

$$
V=J \dot{\theta}
$$

$$
V=J\left(J^{+} J-I\right) z
$$

$$
V=\left(J J^{+} J-J\right) z
$$

$$
V=0 z
$$

$$
V=0
$$

Change to the pose parameter in the form of the control term adds nothing to the velocity

IK - Jacobian w/ control term

> | All bias to 0 | |
| :--- | :--- |
| Top gains $=\{0.1,0.5,0.1\}$ | |
| Bottom gains $=\{0.1,0.1,0.5\}$ | $\dot{\theta}=J^{+} V+\left(J^{+} J-I\right)^{-1} z$ |
| $Z=\alpha_{i}\left(\theta_{i}-\theta_{c i}\right)^{2}$ | |

IK - alternate Jacobian

Jacobian formulated to pull the goal toward the end effector

Use same method to form Jacobian but use goal coordinates instead of end-effector coordinates

IK - Transpose of the Jacobian

Compute how much the change vector contributes to the desired change vector:

Project joint change vector onto desired change vector
Dot product of joint change vector and desired change vector => Transpose of the Jacobian

IK - Transpose of the Jacobian

$$
J^{T} V=\dot{\theta}
$$

$$
J^{T}=\left[\begin{array}{llll}
\frac{\partial p_{x}}{\partial \theta_{1}} & \frac{\partial p_{y}}{\partial \theta_{1}} & \cdots & \frac{\partial \alpha_{z}}{\partial \theta_{1}} \\
\frac{\partial p_{x}}{\partial \theta_{2}} & \cdots & & \\
\ldots & & & \\
\frac{\partial p_{x}}{\partial \theta_{6}} & & & \\
\hline \alpha_{z} \\
\hline \theta_{6}
\end{array}\right] \quad V=\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

IK - cyclic coordinate descent

Heuristic solution

Consider one joint at a time, from outside in At each joint, choose update that best gets end effector to goal position

In 2D - pretty simple

IK - cyclic coordinate descent

In 3D, a bit more computation is needed

IK - 3D cyclic coordinate descent

First - goal has to be projected onto plane defined by axis (normal to plane) and EF

Second- determine angle at joint

IK - cyclic coordinate descent - 3D

Other orderings of processing joints are possible

Because of its procedural nature

- Lends itself to enforcing joint limits
- Easy to clamp angular velocity

Inverse kinematics - review

Analytic method
Forming the Jacobian
Numeric solutions
Pseudo-inverse of the Jacobian
J^{+}with damping
\mathbf{J}^{+}with control term
Alternative Jacobian
Transpose of the Jacobian
Cyclic Coordinate Descent (CCD)

Inverse kinematics - orientation

Change in orientation at end-effector is same as change at joint

Inverse kinematics - orientation

How to represent orientation (at goal, at end-effector)?
How to compute difference between orientations?
How to represent desired change in orientation in V vector?
How to incorporate into IK solution?
Matrix representation: $\mathbf{M}_{\mathbf{g}}, \mathbf{M}_{\text {ef }}$
Difference $\mathbf{M}_{\mathrm{d}}=\mathbf{M}_{\text {ef }}{ }^{-\mathbf{1}} \mathbf{M}_{\mathbf{q}}$
Use scaled axis of rotation: $\theta\left(a_{x} a_{y} a_{z}\right)$:

- Extract quaternion from \mathbf{M}_{d}
- Extract (scaled) axis from quaternion
E.g., use Jacobian Transpose method:

Use projection of scaled joint axis onto extracted axis

