Computer Animation Algorithms and Techniques

Interpolation-based animation

Interpolation based animation

Key-frame systems - in general
Interpolating shapes
Deforming an single shape
3D interpolation between two shapes
Morphing - deforming an image

Keyframing - interpolating values

key frame
key frame
Simple key frames in which each curve of a frame has the same number of points as its counterpart in the other frame

key frame
key frame
Keys and three intermediate frames with linear interpolation of a single point (with reference showing the progression of the interpolation in x and y)

Keyframing

keys, in-betweens
 track-based

Avars - articulation variables

```
variable name: A
```


Keyframing curves

Time-Curve interpolation

Implement using surface patch technology

Frame $f 1$

Frame $f 2$

Time-Curve interpolation

Establish point correspondence

Time-Curve interpolation

Define time - space-curve "patches"

Interpolate in one dimension for curve (spatially) Interpolate in other dimension temporally

Object interpolation

Correspondence problem Interpolation problem

1. Modify shape of object interpolate vertices of different shapes
2. Interpolate one object into second object
3. Interpolate one image into second image

Object Modification

$$
\text { Modify the vertices directly } \longrightarrow \quad \begin{aligned}
& \text { Vertex } \\
& \text { warping }
\end{aligned}
$$

OR
$\begin{aligned} & \text { Modify the space the } \\ & \text { vertices lie in }\end{aligned}$$\left\{\begin{array}{l}\text { 2D grid-based deforming } \\ \text { Free Form Deformations } \\ \text { Skeletal bending } \\ \text { Global transforms }\end{array}\right.$

Warping

Attenuated displacement propagated to adjacent vertices

Power functions For attenuating warping effects

$$
\begin{aligned}
S(i) & =1.0-\left(\frac{i}{n+1}\right)^{k+1} & & k \geq 0 \\
& =\left(1.0-\frac{i}{n+1}\right)^{-k+1} & & k<0
\end{aligned}
$$

2D grid-based deforming

Assumption

Easier to deform grid points than object vertices

2D grid-based deforming

Inverse bilinear mapping (determine u,v from points)

2D grid-based deforming

2D skeleton-based bending

2D skeleton-based bending

2D skeleton-based bending

Global Transformations

Common linear transform of space

$$
p^{\prime}=M p
$$

In GT, Transform is a function of where you are in space

$$
p^{\prime}=M(p) p
$$

Global Transformations

Original object
Tapered object

Global Transformations

$k=$ twist factor
$x^{\prime}=x \cos (k z)-y \sin (k z)$
$y^{\prime}=x \sin (k z)+y \cos (k z)$
$z^{\prime}=z$

Global Transformations

z above $\mathrm{z}_{\text {min }}$: rotate θ

z between $\mathrm{z}_{\text {min }} \mathrm{z}_{\text {max }} \mathrm{x}$:
Rotate from 0 to θ
z below $\mathrm{z}_{\text {min }}$: no rotation

Compound global transformations

Free-Form Deformations (FFDs)

2D grid-based deforming

2D grid
bi-linear interpolation

FFDs

3D grid
tri-cubic interpolation

Free-Form Deformations

Embed object in rectilinear grid

Free-Form Deformations

Register points in grid: cell $\mathbf{x , y , z ;}(\mathbf{s}, \mathrm{t}, \mathbf{u})$

Free-Form Deformations

As in Bezier curve interpolation
 Continuity controlled by coplanarity of control points

FFDs: alternate grid organizations

FFDs: bending

hierarchical

FFDs - as tools to design shapes

FFDs

Animate by passing over object

FFDs

Animate by

 passing object through FFD

FFDs
 Facial animation by manipulating FFD

FFDs

Exo-muscular system Skeleton -> changes FFD -> changes skin

Interpolate between 2 objects

Correspondence problem: what part of one object to map into what part of the other object

How to handle objects of different genus?
Volumetric approaches with remeshing
Some surface-based approaches
Slice along one dimension; interpolate in other two
Map both to sphere
Recursively divide into panels

Object interpolation

For cylinder-like objects

Radial mapping

If central axis intersects polygonal slice inside kernel Then simple radial mapping possible

Object interp

Sampling Object 1 along rays

Points interpolated halfway between objects

Sampling Object 2 along rays

Resulting object

Object interpolation

Object interp

Sampling Object 1 along rays

Points interpolated halfway between objects

Sampling Object 2 along rays

Resulting object

Object interpolation

Spherical mapping to establish matching edge-vertex topology

1. Map to sphere
2. Intersect arc-edges
3. Retriangulate
4. Remap to object shapes
5. Vertex-to-vertex interpolation

Map to sphere

Object interpolation

Object interpolation - recursive sheets

Continually add vertices to make corresponding boundaries have an equal number

Object interpolation

Object interp

Normalized distances

0	0.00
1	0.15
2	0.20
3	0.25
4	0.40
5	0.70

Normalized distances

0	0.00
1	0.30
2	0.55
3	0.70

Boundary after adding additional vertices

Morphing

Image blending
Move pixels to corresponding pixels
Blend colors

Morphing

Morphing

Morphing

Use the graph to see where the column indices map to image pixels. (Here, half of pixel 3 and all of pixels 4 and 5 are useful)

Use the graph to determine the image pixel's range in terms of the column indices (pixel 6 is shown)

Morphing

Intermediate grid

pixel coordinates

Use row index coordinates to determine the pixel coordinates in auxiliary image

1

For a given pixel in the intermediate image, determine the coordinates in terms of row indices

Morphing

Morphing: feature based

Given: corresponding user-defined feature lines in source and destination images

Morphing: feature based

Locate each pixel relative to each feature line in source and destination images

Morphing: feature based

Source image and feature line

Intermediate feature line and resulting image

First example
Source image and feature line

Intermediate feature line and resulting image

Second example

