Computer Animation Algorithms and Techniques

Interpolating Values

Rick Parent

Animation

Animator specified interpolation key frame Algorithmically controlled Physics-based Behavioral Data-driven motion capture

Motivation

<u>Common problem:</u> given a set of points Smoothly (in time and space) move an object through the set of points

Example additional temporal constraints: From zero velocity at first point, smoothly accelerate until time t1, hold a constant velocity until time t2, then smoothly decelerate to a stop at the last point at time t3

Motivation - solution steps

1. Construct a space curve that interpolates the given points with piecewise first order continuity

2. Construct an arc-length-parametricvalue function for the curve

3. Construct time-arc-length function according to given constraints

p=P(U(S(t)))

Rick Parent

Computer Animation

p=P(u)

u=U(s)

s=S(t)

Interpolating function

Interpolation v. approximation

Complexity: cubic

Continuity: first degree (tangential)

Local v. global control: local

Information requirements: tangents needed?

Interpolation v. Approximation

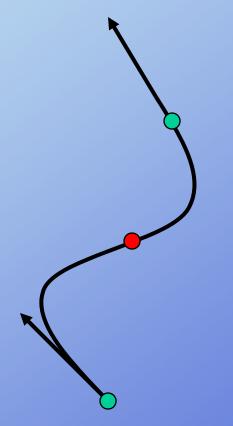
Rick Parent

Complexity

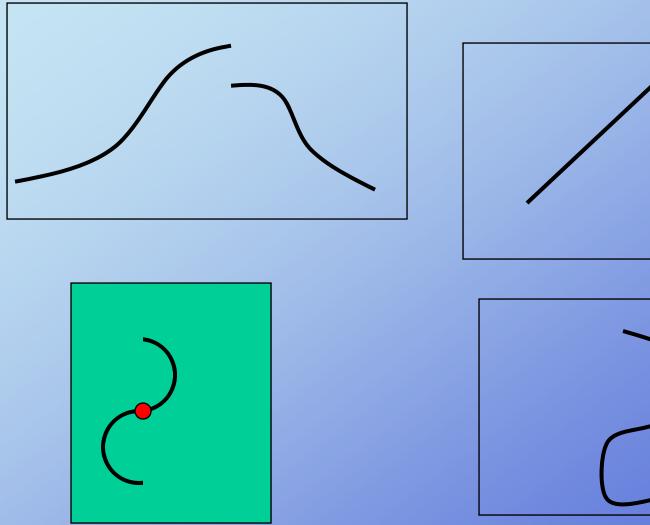
Low complexity reduced computational cost

Point of Inflection Can match arbitrary tangents at end points

CUBIC polynomial

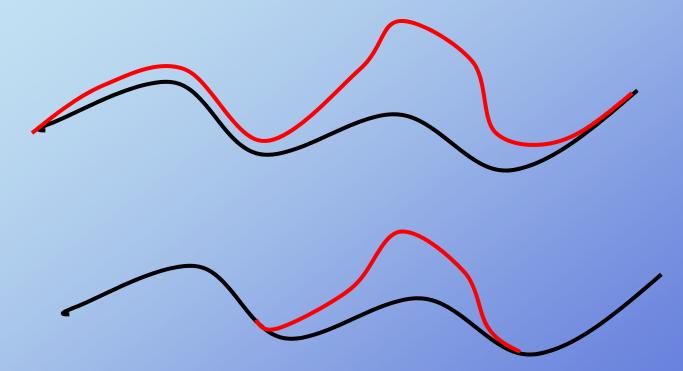


Rick Parent



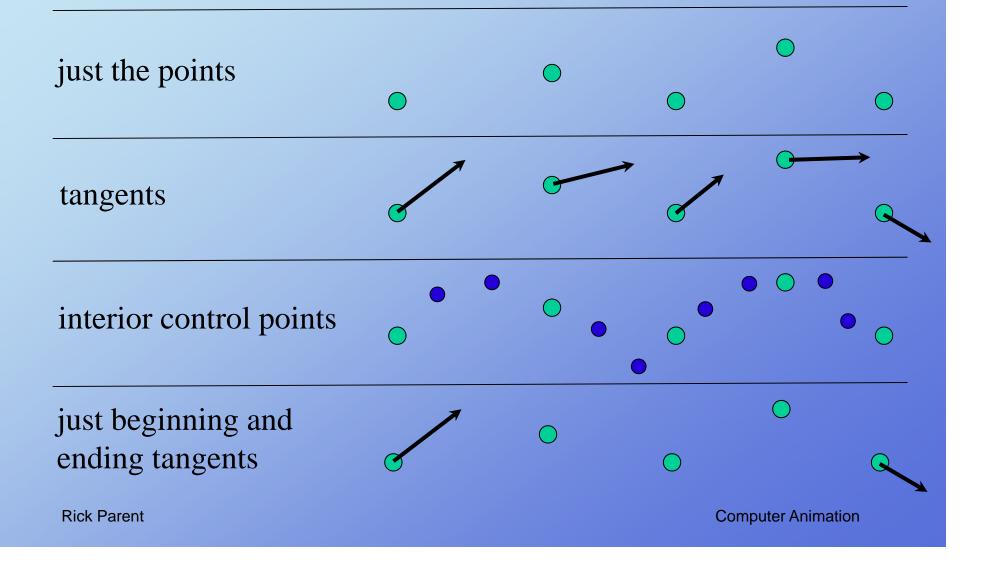
Rick Parent

Local v. Global Control



Rick Parent

Information requirements



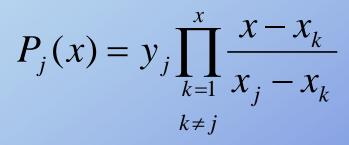
Curve Formulations

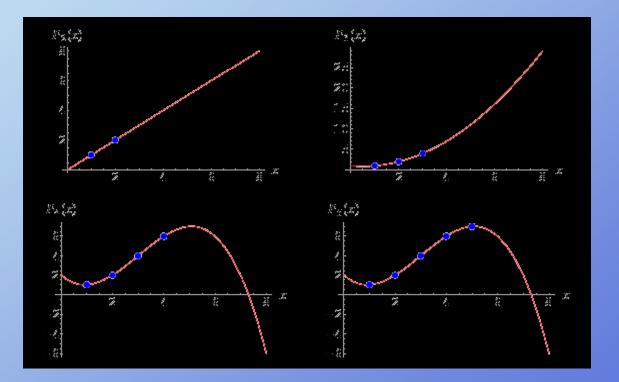
Lagrange Polynomial

Piecewise cubic polynomials Hermite Catmull-Rom Blended Parabolas Bezier B-spline Tension-Continuity-Bias 4-Point Form

Rick Parent

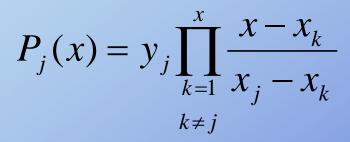
Lagrange Polynomial

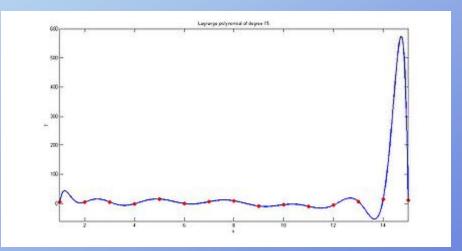




Rick Parent

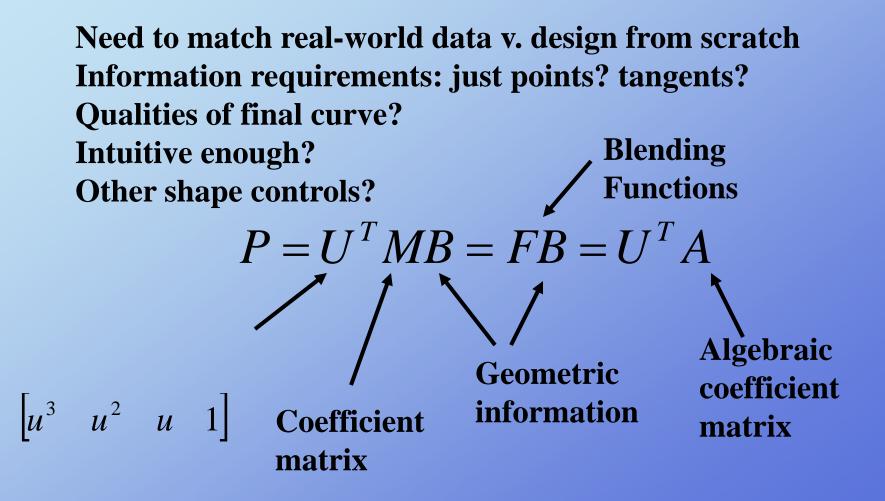
Lagrange Polynomial





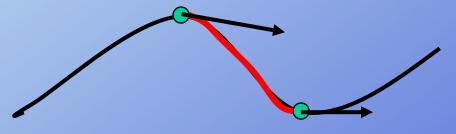
Rick Parent

Polynomial Curve Formulations



Hermite

$$P = \begin{bmatrix} u^3 & u^2 & u \end{bmatrix} \begin{bmatrix} 2.0 & -2.0 & 1.0 & 1.0 \\ -3.0 & 3.0 & -2.0 & -1.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 \end{bmatrix} \begin{bmatrix} p_i \\ p_{i+1} \\ p_i' \\ p_{i+1}' \end{bmatrix}$$

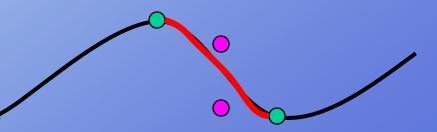


Computer Animation

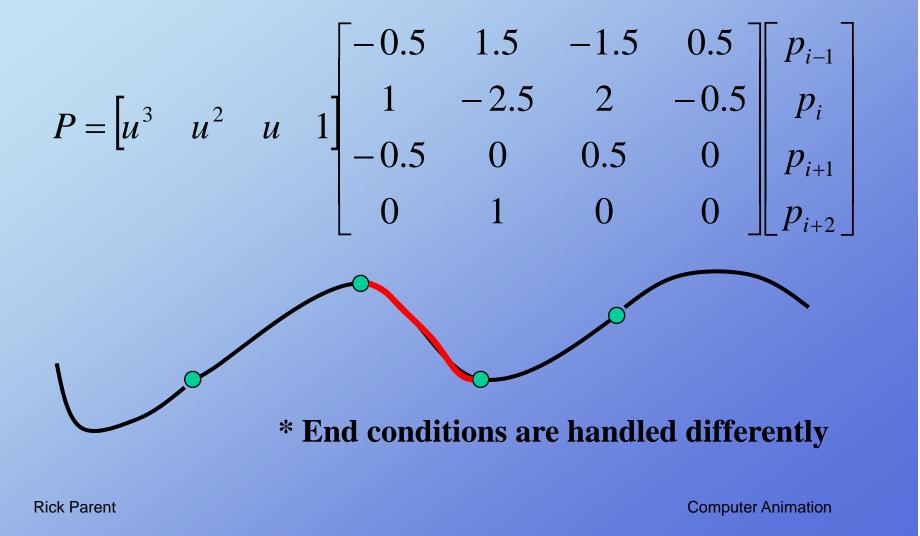
Rick Parent

$$P = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 1.0 & 3.0 & -3.0 & 1.0 \\ 3.0 & -6.0 & 3.0 & 0.0 \\ -3.0 & 3.0 & 0.0 & 0.0 \\ 1.0 & 0.0 & 0.0 & 0.0 \end{bmatrix} \begin{bmatrix} p_i \\ p_{i+1} \\ p_{i+2} \\ p_{i+3} \end{bmatrix}$$

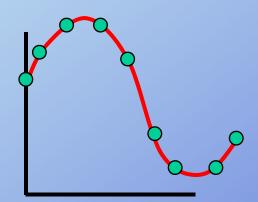
Interior control points play the same role as the tangents of the Hermite formulation



Blended Parabolas/Catmull-Rom*



Controlling Motion along p=P(u)



Step 2. Reparameterization by arc length

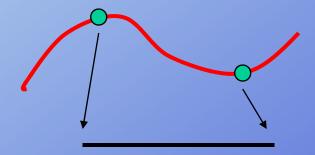
u = **U**(**s**) where **s** is distance along the curve

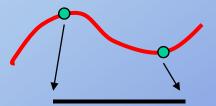
Step 3. Speed control

for example, ease-in / ease-out
s = ease(t) where t is time

Reparameterizing by Arc Length

Analytic Forward differencing Supersampling Adaptive approach Numerically Adaptive Gaussian





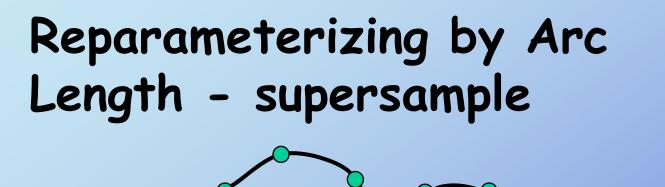
 $P(u) = au^{3} + bu^{2} + cu + d$ $s = \int_{u_{1}}^{u_{2}} |dP/du| \quad du$ $dP/du = (dx(u)/du \quad dy(u)/du \quad dz(u)/du)$ $|dP/du| = \sqrt{(dx(u)/du)^{2} + (dy(u)/du)^{2} + (dx(u)/du)^{2}}$

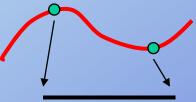
Reparameterizing by

Arc Length - analytic

Can't always be solved analytically for our curves

Rick Parent



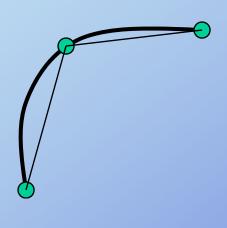


- 2.Compute summed linear distances as approximation to arc length
- **3.Build table of (parametric value, arc length) pairs**

Notes 1.Often useful to normalize total distance to 1.0 2.Often useful to normalize parametric value for multi-segment curve to 1.0

Rick Parent

Build table of approx. lengths

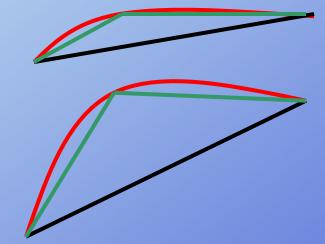


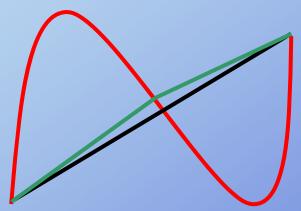
index	U	Arc Length
0	0.00	0.000
1	0.05	0.080
2	0.10	0.150
3	0.15	0.230
•••	•••	•••
20	1.00	1.000

Rick Parent

Adaptive Approach How fine to sample?

Compare successive approximations and see if they agree within some tolerance





Test can fail – subdivide to predefined level, then start testing

Reparameterizing by Arc Length - quadrature

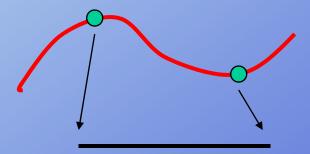
$$\int_{-1}^{+1} f(u) du = \sum_{i} w_{i} f(u_{i})$$
$$P(u) = au^{3} + bu^{2} + cu + d$$

Lookup tables of weights and parametric values

Can also take adaptive approach here

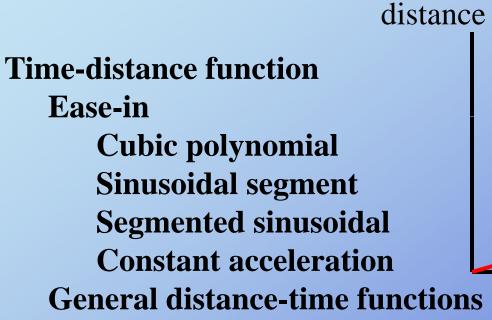
Reparameterizing by Arc Length

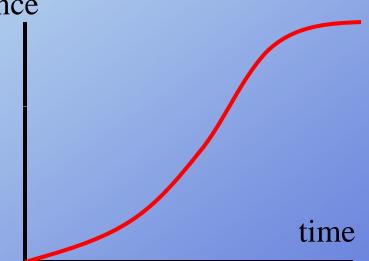
Analytic Forward differencing Supersampling Adaptive approach Numerically Adaptive Gaussian

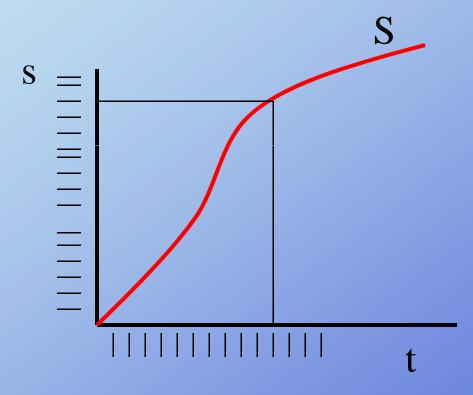


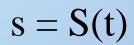
Sufficient for many problems

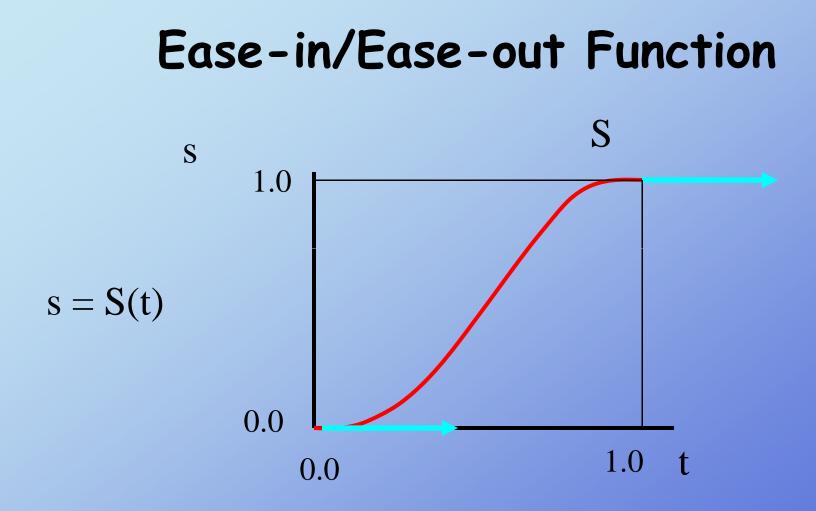
Speed Control





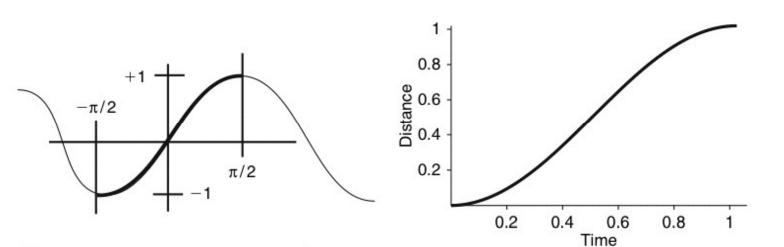






Normalize distance and time to 1.0 to facilitate reuse

Ease-in: Sinusoidal

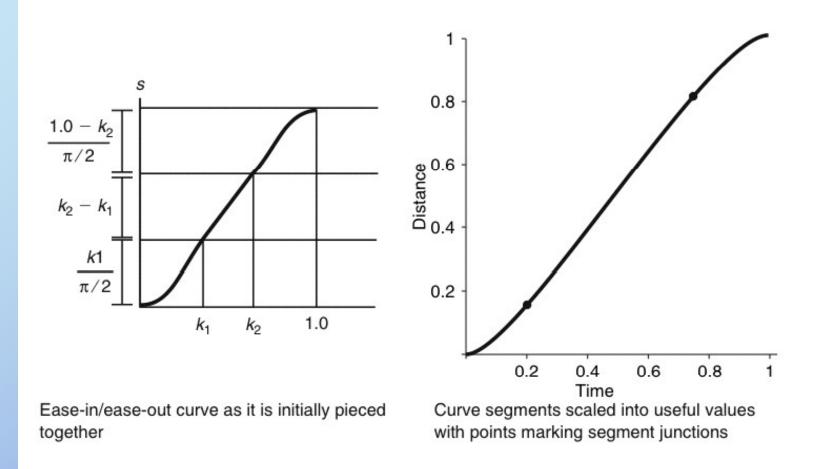


Sine curve segment to use as ease-in/ease-out control

Sine curve segment mapped to useful values

$$s = ease(t) = (sin(t\pi - \pi/2) + 1)/2$$

Ease-in: Piecewise Sinusoidal



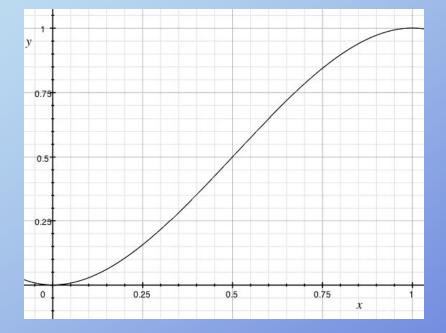
Ease-in: Piecewise Sinusoidal

$$ease(t) = \begin{cases} (k_1 \frac{2}{\pi} (\sin(\frac{t\pi}{2k_1} - \frac{\pi}{2}))/f & t <= k_1 \\ (\frac{k_1}{\pi/2} + t - k_1)/f & k_1 < t <= k_2 \\ (\frac{k_1}{\pi/2} + k_2 - k_1 + (1 - k_2) \frac{2}{\pi} \sin(\frac{\pi(t - k_2)}{2(1 - k_2)}))/f & k_2 < t \end{cases}$$
where $f = k_1 \frac{2}{\pi} + k_2 - k_1 + (1 - k_2) \frac{2}{\pi}$

Provides linear (constant velocity) middle segment

Rick Parent

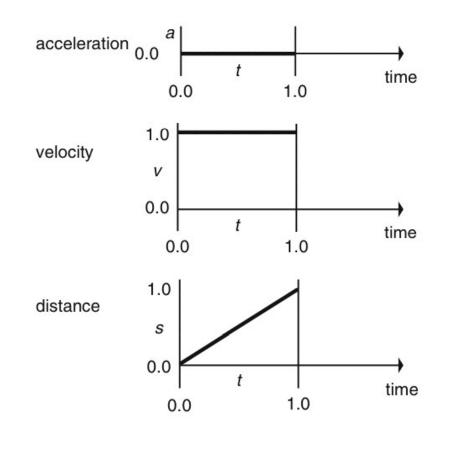
Ease-in: Single Cubic



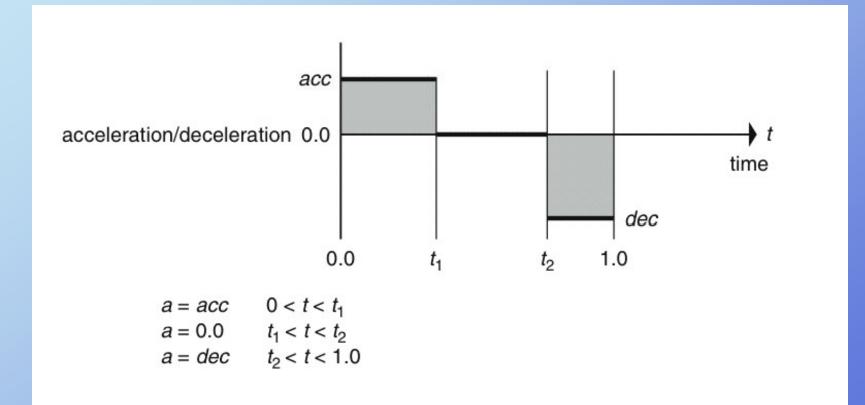
$$s = ease(t) = -2t^3 + 3t^2$$

Computer Animation

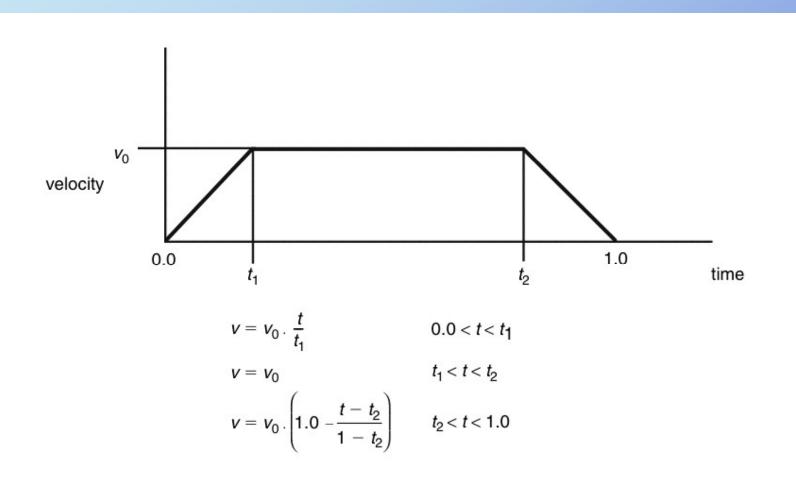
Rick Parent



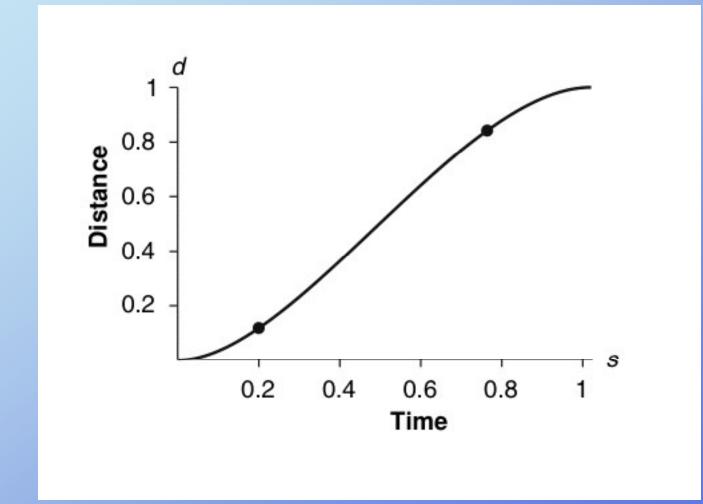
Rick Parent



Rick Parent



Rick Parent



Rick Parent

Constant Acceleration

$$d = v_0 \frac{t^2}{2t_1}$$

$$0.0 < t \le t_1$$

$$d = v_0 \frac{t_1}{2} + v_0 (t - t_1) \qquad t_1 < t \le t_2$$

$$d = v_0 \frac{t_1}{2} + v_0 (t_2 - t_1) + v_0 (1 - \frac{(t - t_2)}{2(1 - t_2)})(t - t_2) \qquad t_2 < t \le 1.0$$

Rick Parent

Motivation - solution steps

1. Construct a space curve that interpolates the given points with piecewise first order continuity

2. Construct an arc-length-parametricvalue function for the curve

3. Construct time-arc-length function according to given constraints

p=P(U(S(t)))

Rick Parent

Computer Animation

p=P(u)

u=U(s)

s=S(t)

Arbitrary Speed Control

Animators can work in:

Distance-time space curves

Velocity-time space curves

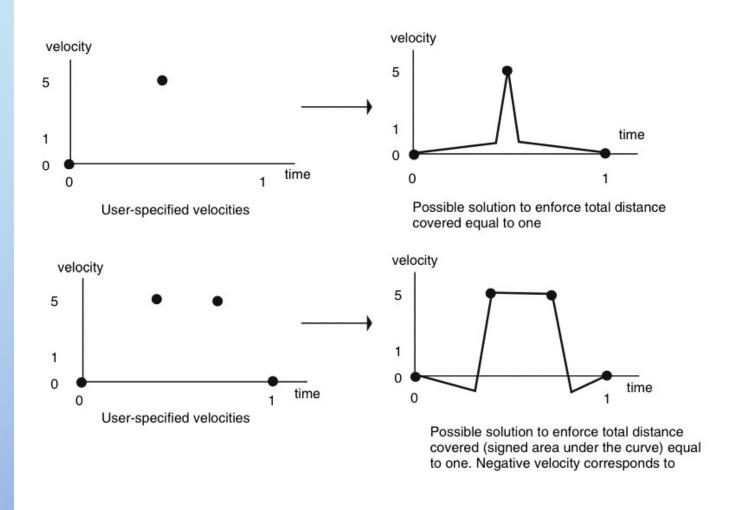
Acceleration-time space curves

Set time-distance constraints

etc.

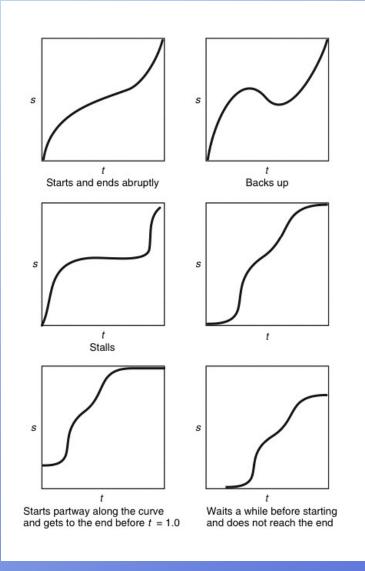
Rick Parent

Curve fitting to distance-time pairs



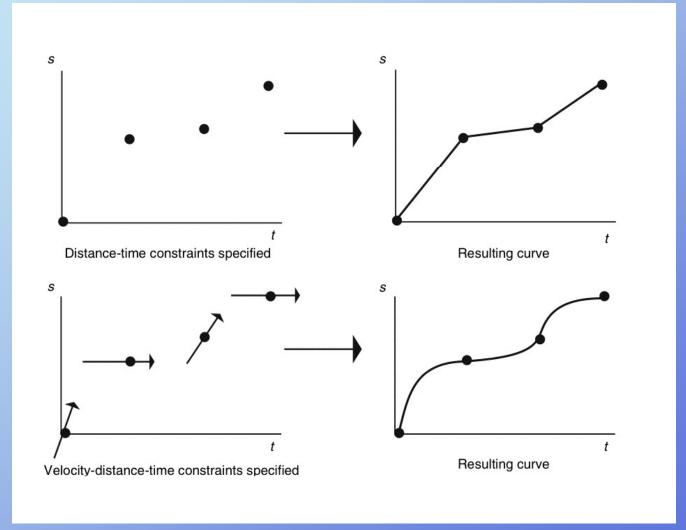
Rick Parent

Working with time-distance curves



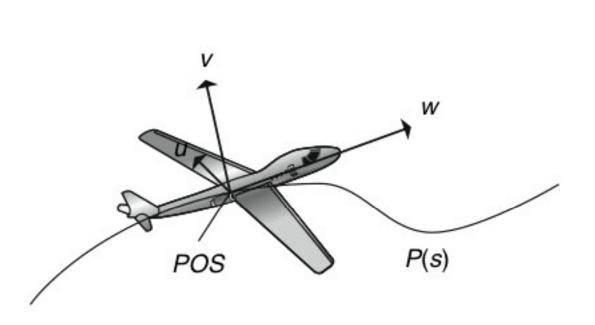
Rick Parent

Interpolating distance-time pairs



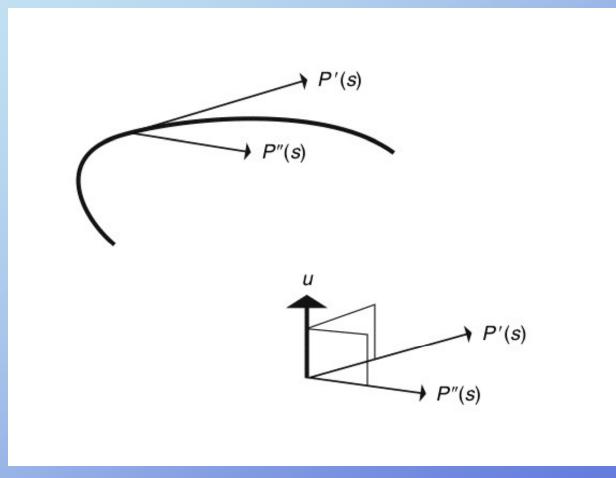
Rick Parent

Frenet Frame - control orientation



Rick Parent

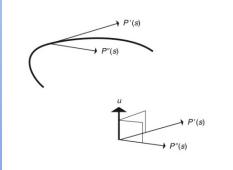
Frenet Frame tangent & curvature vector



Rick Parent

Frenet Frame tangent & curvature vector

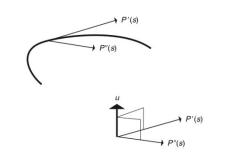
P(u) = UMBP'(u) =P''(u) =



$$U = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix}$$

Frenet Frame tangent & curvature vector

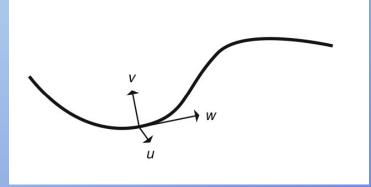
P(u) = UMB P'(u) = U'MB P''(u) = U''MB $U = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix}$ $U' = \begin{bmatrix} 3u^2 & 2u & 1 & 0 \end{bmatrix}$ $U'' = \begin{bmatrix} 6u & 2 & 0 & 0 \end{bmatrix}$



Rick Parent

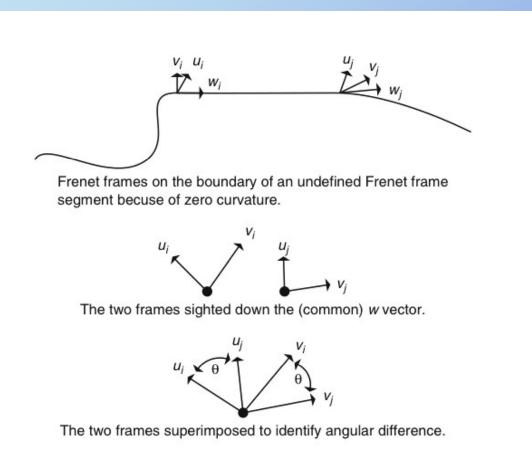
Frenet Frame local coordinate system

•Directly control orientation of object/camera



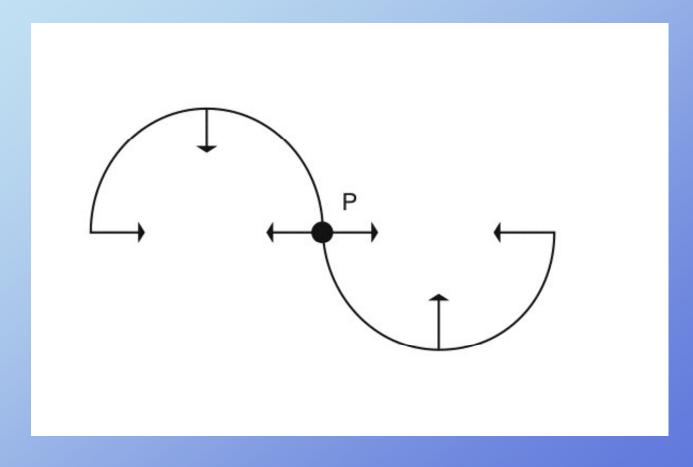
•Use for direction and bank into turn, especially for ground-planar curves (e.g. roads) •v is perpendicular to w if curve is parameterized by arclength; otherwise probably not perpendicular
•For general curve must y = wxu

Frenet Frame - undefined



Rick Parent

Frenet Frame - discontinuity



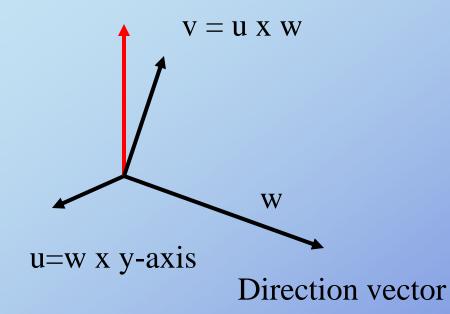
Rick Parent

Other ways to control orientation

Use auxiliary curve to define direction or up vector

Use point P(s+ds) for direction

Direction & Up vector



To keep 'head up', use y-axis to compute over and up vectors perpendicular to direction vector

If up vector supplied, use that instead of y-axis

Rick Parent

Orientation interpolation

Preliminary note:

1. Remember that $Rot_q(v) \equiv Rot_{kq}(v)$

- 2. Affects of scale are divided out by the inverse appearing in quaternion rotation
- 3.When interpolating quaternions, use UNIT quaternions – otherwise magnitudes can interfere with spacing of results of interpolation

Orientation interpolation

Quaternions can be interpolated to produce in-between orientations:

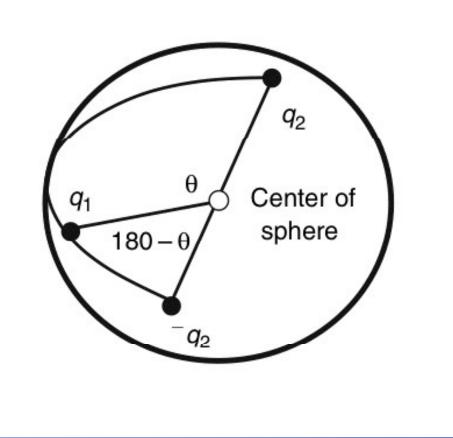
$$q = (1-k)q_1 + kq_2$$

- 2 problems analogous to issues when interpolating positions:
 - 1. How to take equi-distant steps along orientation path?
 - 2. How to pass through orientations smoothly (1st order continuous)
 - **3.** And another particular to quaternions: with dual unit quaternion representations, which to use?

Dual representation

 $Rot_q(v) = Rot_{kq}(v)$

Dual unit quaternion representations

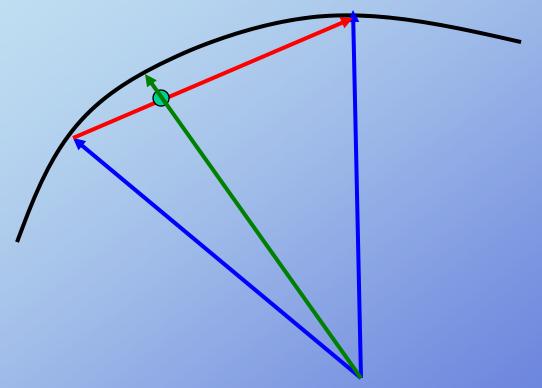


For Interpolation between q1 and q2, compute cosine between q1 and q2 and between q1 and –q2; choose smallest angle

Rick Parent

Interpolating quaternions

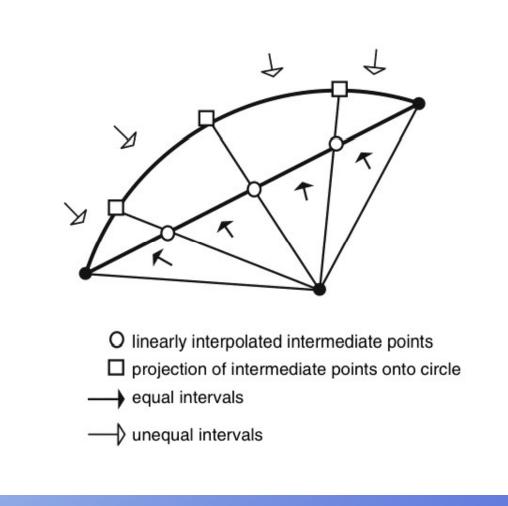
Unit quaternions form set of points on 4D sphere



Linearly interpolating unit quaternions: not equally spaced

Rick Parent

Interpolating quaternions in great arc => equal spacing



Rick Parent

Interpolating quaternions with equal spacing

slerp(q₁,q₂,u) =
$$\frac{\sin(1-u)\theta}{\sin\theta}q_1 + \frac{\sin u\theta}{\sin\theta}q_2$$

where $q_1 \cdot q_2 = \cos \theta$

'slerp', sphereical linear interpolation is a function of

- the beginning quaternion orientation, q1
- the ending quaternion orientation, q2
- the interpolant, u

Smooth Orientation interpolation

Use quaternions

Interpolate along great arc (in 4-space) using cubic Bezier on sphere

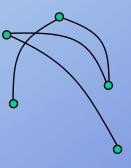
- 1. Select representation to use from duals
- 2. Construct interior control points for cubic Bezier
- **3. use DeCastelajue construction of cubic Bezier**

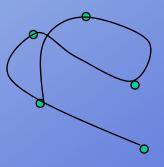
Smooth quaternion interpolation

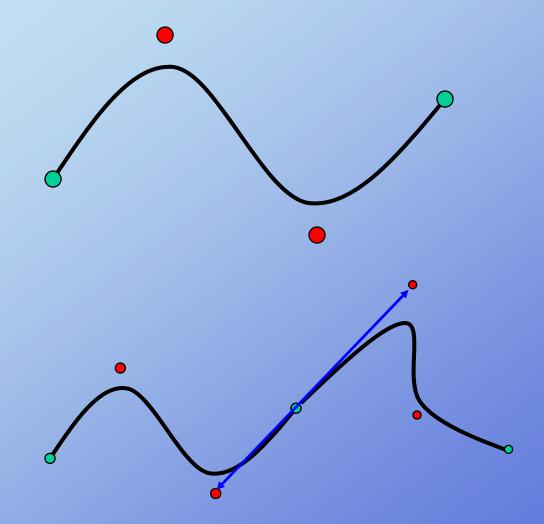
Similar to first order continuity desires with positional interpolation

How to smoothly interpolate through orientations q_1 , q_2 , q_3 ,... q_n

Bezier interpolation – geometric construction

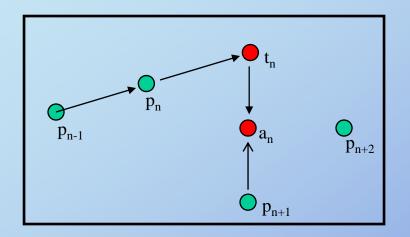


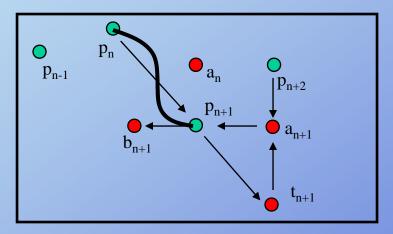


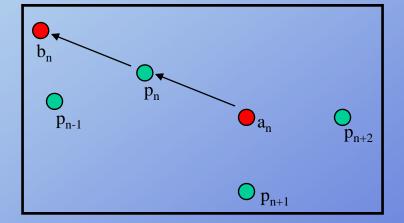


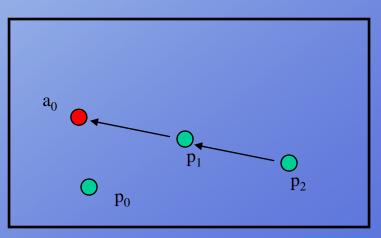
Bezier interpolation

Construct interior control points







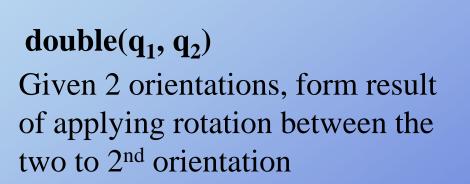


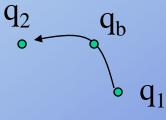
Rick Parent

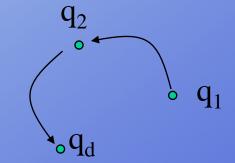
Quaternion operators

$bisect(q_1, q_2)$

Similar to forming a vector between 2 points, form the rotation between 2 orientations







Quaternion operators:

double(p,q) = r

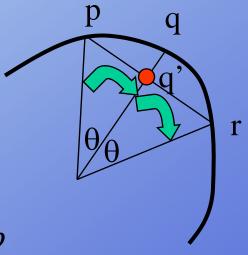
'Double' where q' is the midorientation between p and the yetto-be-determined r

If p and q are unit quaternions, Then q' = $cos(\theta)q$ and $cos(\theta) = p \cdot q$

$$q' = \cos(\theta)q = (p \cdot q)q$$

 $double(p,q) = r = q' + (q'-p) = 2(p \cdot q)q - p$ bisect(p,r) = q

Given p and q, form r



Given p and r, form q

Bisect 2 orientations: if p and r are unit length

bisect
$$(p,r) = \frac{p+r}{\|p+r\|} = q$$

Rick Parent

Bezier interpolation

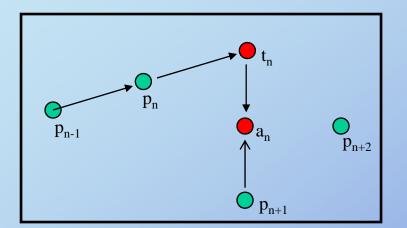
 \bigcirc

Rick Parent

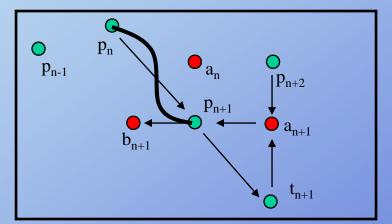
Computer Animation

 \bigcirc

Bezier interpolation

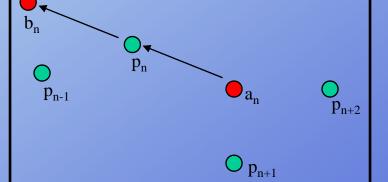


$$b_n = double(a_n, q_n)$$



Construct interior control points

 $a_n = \text{bisect}(\text{double}(p_{n-1}, p_n), p_{n+1})$



Bezier segment: $q_{n,} a_{n,} b_{n+1,} q_{n+1}$

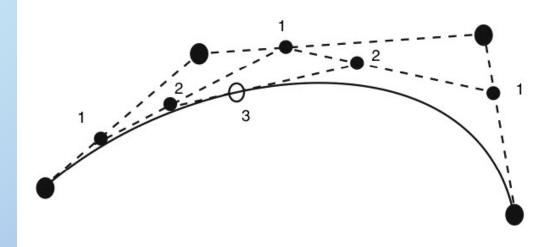
Rick Parent

Bezier construction using quaternion operators

Need quaternion-friendly operations to interpolate cubic Bezier curve using 'quaternion' points

de Casteljau geometric construction algorithm

Bezier construction using quaternion operators For p(1/3)



Interpolation steps

- 1. 1/3 of the way between pairs of points
- 2. 1/3 of the way between points of step 1
- 3. 1/3 of the way between points of step 2

 $t_1 = slerp(q_{n, a_n}, 1/3)$ $t_2 = slerp(a_{n, b_{n+1}}, 1/3)$ $t_3 = slerp(b_{n+1, q_{n+1}}, 1/3)$

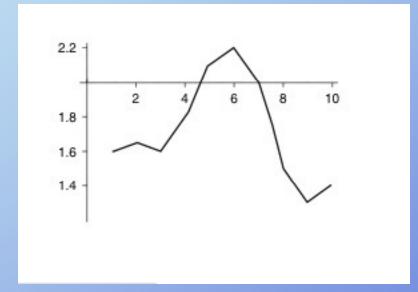
 $t_{12} = slerp(t_{1}, t_{2}, 1/3)$ $t_{23} = slerp(t_{12}, t_{23}, 1/3)$

 $q = slerp(t_{12}, t_{23}, 1/3)$

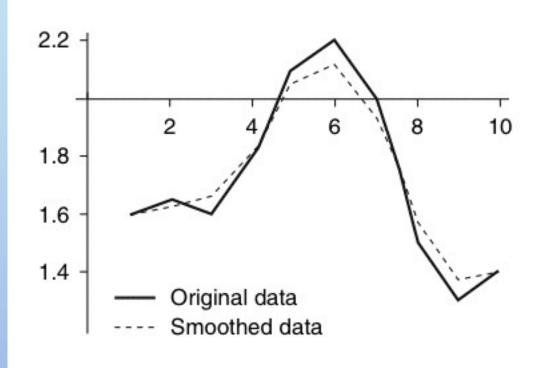
Rick Parent

Working with paths

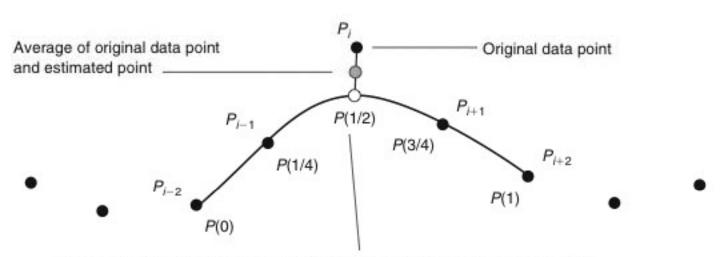
Smoothing a path Determining a path along a surface Finding downhill direction



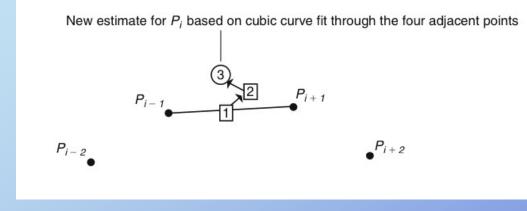
Rick Parent

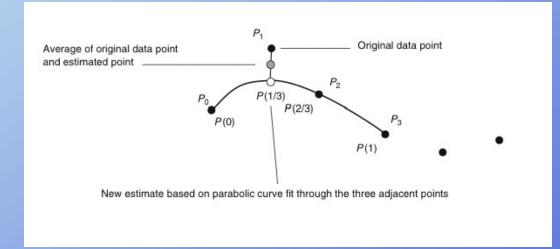


Rick Parent



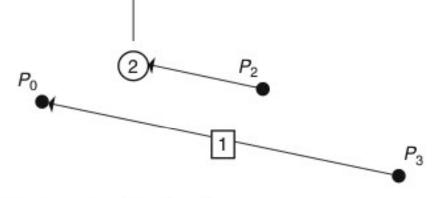
New estimate for Pi based on cubic curve fit through the four adjacent points





Rick Parent

New estimate for P1 based on parabolic curve fit through the three adjacent points

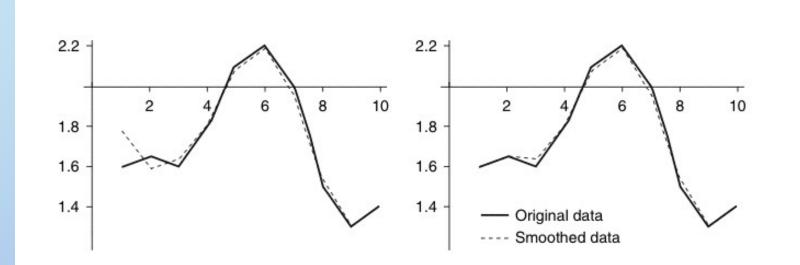


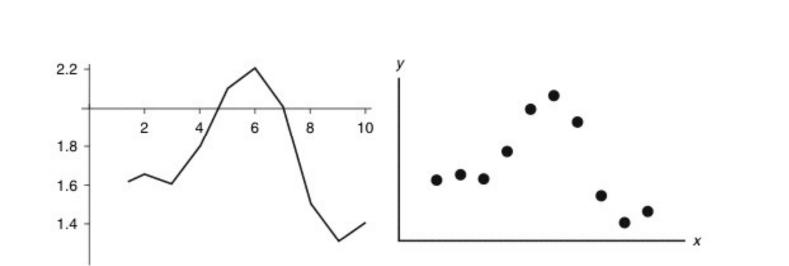
1. Construct vector from P3 to P0

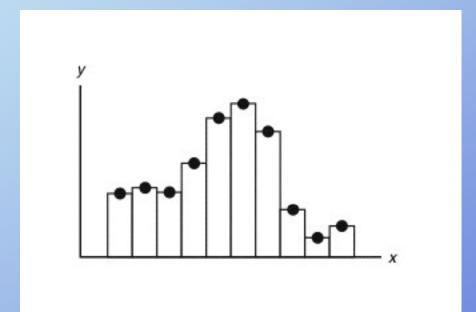
2. Add 1/3 of the vector to P2

3.(Not shown) Average estimated point with original data point

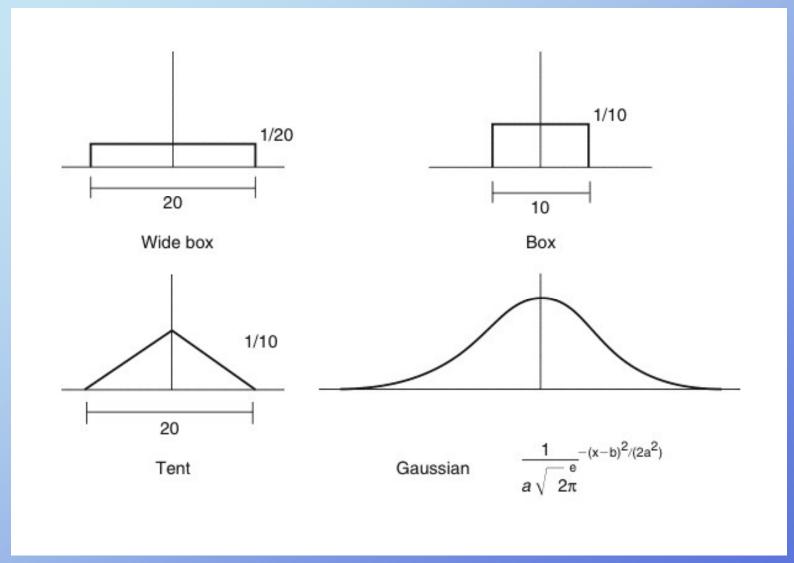
Rick Parent







Rick Parent

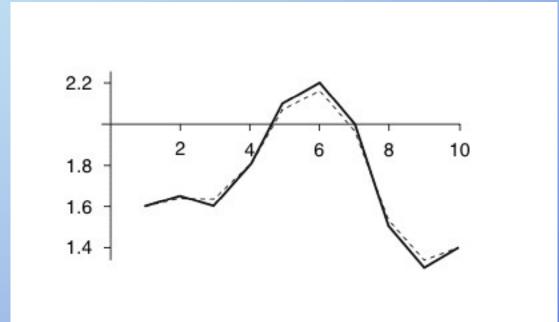


Rick Parent

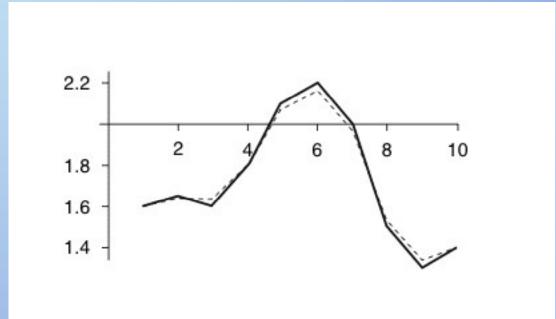


weights to step function values

Rick Parent

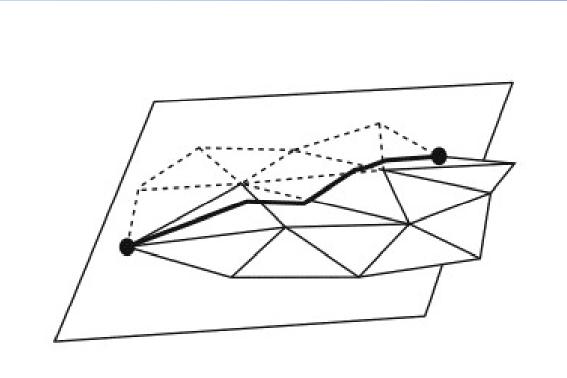


Rick Parent



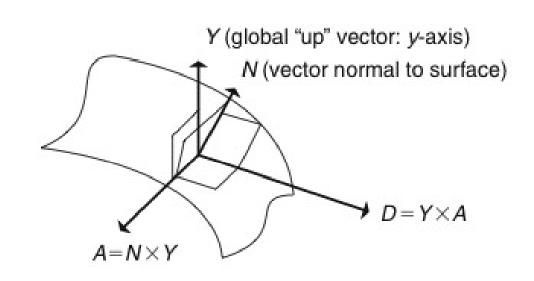
Rick Parent

Path finding



Rick Parent

Path finding - downhill



Rick Parent