
C t A i tiComputer Animation
Algorithms and TechniquesAlgorithms and Techniques

Interpolating ValuesInterpolating Values

Computer AnimationRick Parent

Animation

Animator specified
interpolation
key frame

Algorithmically controlled
Physics-basedy
Behavioral

Data-driven
motion capturemotion capture

Computer AnimationRick Parent

Motivation

Common problem: given a set of points
Smoothly (in time and space) move an object
through the set of points

E l dditi l t l t i tExample additional temporal constraints:
From zero velocity at first point, smoothly
accelerate until time t1, hold a constant
velocity until time t2, then smoothly
decelerate to a stop at the last point at time t3

Computer AnimationRick Parent

Motivation – solution steps
1 C t t th t1. Construct a space curve that
interpolates the given points with
piecewise first order continuity p=P(u)

2. Construct an arc-length-parametric-
l f ti f th u=U(s)value function for the curve

3 Construct time arc length function

u U(s)

s=S(t)3. Construct time-arc-length function
according to given constraints

s S(t)

Computer AnimationRick Parent

p=P(U(S(t)))

Interpolating function

Interpolation v. approximation

Complexity: cubic

Continuity: first degree (tangential)

Local v. global control: localLocal v. global control: local

Information requirements: tangents needed?

Computer AnimationRick Parent

Interpolation v. Approximation

Computer AnimationRick Parent

Complexity
Low complexity

reduced computational cost

Point of Inflection
Can match arbitrary tangents at

CUBIC polynomial

end points

CUBIC polynomial

Computer AnimationRick Parent

ContinuityContinuity

Computer AnimationRick Parent

L l Gl b l C t lLocal v. Global Control

Computer AnimationRick Parent

Information requirementsInformation requirements

just the points

tangents

interior control points

just beginning and

Computer AnimationRick Parent

ending tangents

Curve FormulationsCurve Formulations

Lagrange Polynomial

Piecewise cubic polynomials

Lagrange Polynomial

Hermite
Catmull-Rom
Blended Parabolas
Bezier
B-spline
Tension Continuity BiasTension-Continuity-Bias
4-Point Form

Computer AnimationRick Parent

L xLagrange
Polynomial

∏
≠
= −

−
=

x

jk
k kj

k
jj xx

xxyxP
1

)(

≠ jk

Computer AnimationRick Parent

L xLagrange
Polynomial

∏
≠
= −

−
=

x

jk
k kj

k
jj xx

xxyxP
1

)(

≠ jk

Computer AnimationRick Parent

Polynomial Curve FormulationsPolynomial Curve Formulations

Need to match real-world data v. design from scratchNeed to match real world data v. design from scratch
Information requirements: just points? tangents?
Qualities of final curve?
Intuitive enough? BlendingIntuitive enough?
Other shape controls?

AUFBMBUP TT ===

Blending
Functions

AUFBMBUP ===

Algebraic

[]123 uuu
Geometric
informationCoefficient

matrix

Algebraic
coefficient
matrix

Computer AnimationRick Parent

matrix

HermiteHermite

⎤⎡⎤⎡

[] ⎥
⎥
⎤

⎢
⎢
⎡

⎥
⎥
⎤

⎢
⎢
⎡

−−−
−

= +0.10.20.30.3
0.10.10.20.2

1 123 i

i

p
p

uuuP []
⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣
⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣

=

+ '
'

0.00.00.00.1
0.00.10.00.0

1

1i

i

p
p

uuuP

⎦⎣⎦⎣ +1ip

Computer AnimationRick Parent

Cubic BezierCubic Bezier

⎤⎡⎤⎡

[] ⎥
⎥
⎤

⎢
⎢
⎡

⎥
⎥
⎤

⎢
⎢
⎡

−
−

= +123 0.00.30.60.3
0.10.30.30.1

1 i

i

p
p

uuuP []
⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣
⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣

−
=

+

+

3

2

0.00.00.00.1
0.00.00.30.3

1

i

i

p
p

uuuP

⎦⎣⎦⎣ +3ip

Interior control points play
the same role as the tangents
of the Hermite formulation

Computer AnimationRick Parent

Blended Parabolas/Catmull Rom*Blended Parabolas/Catmull-Rom

⎤⎡⎤⎡

[] ⎥
⎥
⎤

⎢
⎢
⎡

⎥
⎥
⎤

⎢
⎢
⎡

−−
−−

=

−1

23 5.025.21
5.05.15.15.0

1 i

i

p
p

uuuP []
⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣
⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣

−
=

+

+

2

1

0010
05.005.0

1

i

i

p
p

uuuP

⎦⎣⎦⎣ +2ip

* End conditions are handled differently

Computer AnimationRick Parent

 End conditions are handled differently

Controlling Motion g
along p=P(u)

Step 2. Reparameterization by arc lengthp p y g

u = U(s) where s is distance along the curve

Step 3. Speed control

s = ease(t) where t is time
for example, ease-in / ease-out

Computer AnimationRick Parent

Reparameterizing by Arc Length

AnalyticAnalytic
Forward differencing

Supersampling
Adaptive approachAdaptive approach

Numerically
Adaptive Gaussian

Computer AnimationRick Parent

Reparameterizing by p g y
Arc Length - analytic

∫
2u

dcubuauuP +++= 23)(

∫=
2

1

/
u

dududPs

()duudzduudyduudxdudP /)(/)(/)(/ = ()duudzduudyduudxdudP /)(/)(/)(/ =

() () ()222 /)(/)(/)(/ duudxduudyduudxdudP ++() () ()/)(/)(/)(/ duudxduudyduudxdudP ++=

Can’t always be solved analytically for our curves

Computer AnimationRick Parent

y y y

R t i i b A Reparameterizing by Arc
Length - supersample

1.Calculate a bunch of points at small increments in u
2.Compute summed linear distances as approximation to arc

lengthlength
3.Build table of (parametric value, arc length) pairs

NotesNotes
1.Often useful to normalize total distance to 1.0
2.Often useful to normalize parametric value for

Computer AnimationRick Parent

multi-segment curve to 1.0

i d Aindex u Arc
Length

0 0 00 0 000
Build
t bl f 0 0.00 0.000

1 0.05 0.080

table of
approx.

2 0.10 0.150lengths

3 0.15 0.230

...

20 1 00 1 000
Computer AnimationRick Parent

20 1.00 1.000

Adaptive ApproachAdaptive Approach
How fine to sample?

Compare successive
approximations and see pp
if they agree within some
tolerance

Test can fail subdivide toTest can fail – subdivide to
predefined level, then start testing

Computer AnimationRick Parent

Reparameterizing by Arc p g y
Length - quadrature

∑∫ =
+

−
i

ii ufwduuf)()(
1

1

dcubuauuP +++= 23)(

∫
+

−
++++

1

1

234 EDuCuBuAu

Lookup tables of weights and parametric values

Can also take adaptive approach here

Computer AnimationRick Parent

Can also take adaptive approach here

Reparameterizing by Arc Length

AnalyticAnalytic
Forward differencing

Supersampling
Adaptive approachAdaptive approach

Numerically
Adaptive Gaussian

Sufficient for many problems

Computer AnimationRick Parent

S d C t lSpeed Control
distance

Time-distance function
Ease-in

distance

Ease in
Cubic polynomial
Sinusoidal segment
Segmented sinusoidalSegmented sinusoidal
Constant acceleration

General distance-time functions

time

Computer AnimationRick Parent

Time Distance FunctionTime Distance Function
S

s
S

s = S(t)

tt

Computer AnimationRick Parent

Ease in/Ease out FunctionEase-in/Ease-out Function

s Ss S
1.0

s = S(t)

t
0.0

1 0 t0.0 1.0

Normalize distance and time to 1.0 to facilitate reuse

Computer AnimationRick Parent

E i Si id lEase-in: Sinusoidal

() 2/)12/sin()(+−== ππtteases

Computer AnimationRick Parent

Ease-in: Piecewise SinusoidalEas n c w s S nuso a

Computer AnimationRick Parent

Ease-in: Piecewise SinusoidalEas n c w s S nuso a

ftk /))(sin(2(ππ
− kt <

=)(tease

f
k

k /))
22

(sin((
1

1 π
−

fktk /)1(1 −+

1kt <=

21 ktk <=<)(tease fkt /)1
2/

(−+
π

fktkkkk /)))(sin(2)1((2
212

1 −
−+−+

π

21 ktk <=<

tk <2f
k

kkk /))
)1(2

sin()1(
2/

(
2

212 −
++

ππ 2

2)1(2 kkkkfh

P id li (t t l it) iddl t

ππ
)1(2121 kkkkf −+−+=where

Computer AnimationRick Parent

Provides linear (constant velocity) middle segment

E i Si l C biEase-in: Single Cubic

23 32)(ttteases +−==

Computer AnimationRick Parent

E i C t t A l tiEase-in: Constant Acceleration

Computer AnimationRick Parent

E i C t t A l tiEase-in: Constant Acceleration

Computer AnimationRick Parent

E i C t t A l tiEase-in: Constant Acceleration

Computer AnimationRick Parent

E i C t t A l tiEase-in: Constant Acceleration

Computer AnimationRick Parent

Constant Acceleration

1

2

0 2t
tvd =

10.0 tt ≤<

)(
2 10
1

0 ttvtvd −+=
21 ttt ≤<2

)(ttt))(
)1(2

)(1()(
2 2

2

2
0120

1
0 tt

t
ttvttvtvd −
−
−

−+−+= 0.12 ≤< tt

Computer AnimationRick Parent

Motivation – solution steps
1 C t t th t1. Construct a space curve that
interpolates the given points with
piecewise first order continuity p=P(u)

2. Construct an arc-length-parametric-
l f ti f th u=U(s)value function for the curve

3 Construct time arc length function

u U(s)

s=S(t)3. Construct time-arc-length function
according to given constraints

s S(t)

Computer AnimationRick Parent

p=P(U(S(t)))

Arbitrary Speed Control
A i t k iAnimators can work in:

Distance-time space curves

Velocity-time space curves

Acceleration-time space curves

S t ti di t t i tSet time-distance constraints

etc.

Computer AnimationRick Parent

Curve fitting to distance-time pairsg p

Computer AnimationRick Parent

W ki ithWorking with
time-distance
curves

Computer AnimationRick Parent

Interpolating distance time pairsInterpolating distance-time pairs

Computer AnimationRick Parent

Frenet Frame – control orientationFrenet Frame – control orientation

Computer AnimationRick Parent

Frenet Frame
tangent & curvature vector

Computer AnimationRick Parent

Frenet Frame
tangent & curvature vector

=
)('

)(
uP

UMBuP

=
=

)(''
)('

uP
uP

[]123U []123 uuuU =

Computer AnimationRick Parent

Frenet Frame
tangent & curvature vector

MBUuP
UMBuP

')('
)(=

MBUuP
MBUuP
'')(''

')('
=
=

[]
[]0123'

1
2

23

U
uuuU =

[]
[]0026''

0123' 2

uU
uuU

=
=

Computer AnimationRick Parent

Frenet FrameFr n t Fram
local coordinate system

•Directly control orientation of
object/camera

•Use for direction and bank
into turn, especially for

•v is perpendicular to w if curve
is parameterized by arclength;

otherwise probably notground-planar curves (e.g.
roads)

otherwise probably not
perpendicular

•For general curve must

Computer AnimationRick Parent

v = wxu

Frenet Frame undefinedFrenet Frame - undefined

Computer AnimationRick Parent

Frenet Frame discontinuityFrenet Frame - discontinuity

Computer AnimationRick Parent

Other ways to control orientationOther ways to control orientation
Use auxiliary curve to define direction or up vector

Use point P(s+ds) for direction

Computer AnimationRick Parent

Use point P(s+ds) for direction

Direction & Up vectorDirection & Up vector

To keep ‘head up’ use y-axis
v = u x w

To keep head up , use y-axis
to compute over and up
vectors perpendicular to
di ti t

w

direction vector

If t li d

Direction vector

w

u=w x y-axis
If up vector supplied, use
that instead of y-axis

Computer AnimationRick Parent

Orientation interpolationOrientation interpolation

Preliminary note:
1. Remember that
2 Affects of scale are divided out by the inverse

)()(vRotvRot kqq ≡
2. Affects of scale are divided out by the inverse

appearing in quaternion rotation
3.When interpolating quaternions, use UNIT quaternions

th i it d i t f ith i f– otherwise magnitudes can interfere with spacing of
results of interpolation

Computer AnimationRick Parent

Orientation interpolationOrientation interpolation
Quaternions can be interpolated to produce in-between

i t tiorientations:

21)1(kqqkq +−=
2 problems analogous to issues when interpolating

positions:
1. How to take equi-distant steps along orientation1. How to take equi distant steps along orientation

path?
2. How to pass through orientations smoothly (1st

order continuous)order continuous)

3. And another particular to quaternions: with dual
i i i hi h ?

Computer AnimationRick Parent

unit quaternion representations, which to use?

Dual Dual
representation

)()(vRotvRot kqq =

Dual unit quaternion
representations

For Interpolation between q1 and q2, compute cosine between
q1 and q2 and between q1 and –q2; choose smallest angle

Computer AnimationRick Parent

q1 and q2 and between q1 and q2; choose smallest angle

Interpolating quaternions
Unit quaternions form set of points on 4D sphere

Linearly interpolating unit quaternions: not equally spaced

Computer AnimationRick Parent

Interpolating quaternions in
t l igreat arc => equal spacing

Computer AnimationRick Parent

Interpolating quaternions Interpolating quaternions
with equal spacing

2121 sin
sin

sin
)1sin(),,(slerp ququuqq

θ
θ

θ
θ

+
−

=

θcos21 =⋅qqwhere

‘slerp’, sphereical linear interpolation is a function of
• the beginning quaternion orientation, q1
• the ending quaternion orientation, q2
• the interpolant, u

Computer AnimationRick Parent

Smooth Orientation interpolation

Use quaternions

Interpolate along great arc (in 4-space) using cubic Bezier on
sphere

1 S i f1. Select representation to use from duals
2. Construct interior control points for cubic Bezier
3. use DeCastelajue construction of cubic Bezierj

Computer AnimationRick Parent

S th t i i t l tiSmooth quaternion interpolation
Similar to first order continuitySimilar to first order continuity
desires with positional
interpolation

How to smoothly interpolate
through orientations q1, q2,
q3,…qn

Bezier interpolation – geometric
construction

Computer AnimationRick Parent

B i i t l tiBezier interpolation

Computer AnimationRick Parent

B i i t l ti
Construct interior

Bezier interpolation control points

pn-1

pn

pan

tn

pn-1

pn

a

bn

pn+1

pn+2
n pn 1

pn+1

pn+2
an

pn-1

pn

p
pn+2

an
a0pn+1

tn+1

an+1bn+1

p2

p1

p0

0

Computer AnimationRick Parent

Q t i tQuaternion operators
q2bisect(q q) qb

Similar to forming a vector
between 2 points, form the

q1

q2bisect(q1, q2) qb

p ,
rotation between 2 orientations

Given 2 orientations, form result
f l i t ti b t th

q1

q2double(q1, q2)

of applying rotation between the
two to 2nd orientation

q1

qd

Computer AnimationRick Parent

Quaternion operators:Q p

‘Double’ where q’ is the mid-
Given p and q, form rrqpdouble =),(

p q

q
orientation between p and the yet-
to-be-determined r

())(' θ

If p and q are unit quaternions,
Then q’ = cos(θ)q and cos(θ)= qp ⋅

rθθ

q’

pqqppqqrqpdouble −⋅=−+==)(2)'('),(

()qqpqq ⋅==)cos(' θ θ

Bisect 2 orientations:
qrprp +)(bisect

qrp =),(bisect
Given p and r, form q

Computer AnimationRick Parent

if p and r are unit length q
rp

rp =
+

=),(bisect

B i i t l tiBezier interpolation

Need quaternion-friendly operators
to form interior control points

Computer AnimationRick Parent

B i i t l tiBezier interpolation Construct interior
control points

t

)),,(double(bisect 11 +−= nnnn pppa
pn-1

pn

pn+2
an

tn

)(qadoubleb =
pn+1

pn-1

pn

pn+2
an

bn

),(nnn qadoubleb =
pn+1

p 1

pn
a

Bezier segment:
qn, an, bn+1, qn+1

pn-1

pn+1

pn+2
an

an+1bn+1

Computer AnimationRick Parent

tn+1

Bezier construction using z r construct on us ng
quaternion operators

Need quaternion-friendly operations to interpolate
cubic Bezier curve using ‘quaternion’ points

de Casteljau geometric construction algorithm

Computer AnimationRick Parent

Bezier construction using z r construct on us ng
quaternion operators For p(1/3)

t1=slerp(qn, an,1/3)
t2=slerp(an, bn+1,1/3)
t =slerp(b q 1/3)

t12=slerp(t1, t2,1/3)
t23=slerp(t12, t23,1/3) q=slerp(t12, t23,1/3)

Computer AnimationRick Parent

t3=slerp(bn+1, qn+1,1/3)

Working with paths

Smoothing a path
Determining a path along a surfaceDetermining a path along a surface
Finding downhill direction

Computer AnimationRick Parent

Smoothing data

Computer AnimationRick Parent

Smoothing dataSmoothing data

Computer AnimationRick Parent

Smoothing dataSmoothing data

Computer AnimationRick Parent

Smoothing data

Computer AnimationRick Parent

Smoothing data

Computer AnimationRick Parent

Smoothing data

Computer AnimationRick Parent

Smoothing data

Computer AnimationRick Parent

Smoothing data

Computer AnimationRick Parent

Smoothing data

Computer AnimationRick Parent

Smoothing data

Computer AnimationRick Parent

Smoothing data

Computer AnimationRick Parent

h Smoothing data

Computer AnimationRick Parent

h fPath finding

Computer AnimationRick Parent

h f h llPath finding - downhill

Computer AnimationRick Parent

