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Animation

Animator specified
interpolation
key frame

Algorithmically controlled
Physics-basedy
Behavioral

Data-driven
motion capturemotion capture
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Motivation

Common problem: given a set of points
Smoothly (in time and space) move an object 
through the set of points

E l dditi l t l t i tExample additional temporal constraints:
From zero velocity at first point, smoothly 
accelerate until time t1, hold a constant 
velocity until time t2, then smoothly 
decelerate to a stop at the last point at time t3
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Motivation – solution steps
1 C t t th t1. Construct a space curve that 
interpolates the given points with 
piecewise first order continuity p=P(u)

2. Construct an arc-length-parametric-
l f ti f th u=U(s)value function for the curve

3 Construct time arc length function

u U(s)

s=S(t)3. Construct time-arc-length function 
according to given constraints

s S(t)
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p=P(U(S(t)))



Interpolating function

Interpolation v. approximation 

Complexity: cubic

Continuity: first degree (tangential)

Local v. global control: localLocal v. global control: local

Information requirements: tangents needed?
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Interpolation v. Approximation
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Complexity
Low complexity

reduced computational cost

Point of Inflection
Can match arbitrary tangents at 

CUBIC polynomial

end points

CUBIC polynomial
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ContinuityContinuity
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L l  Gl b l C t lLocal v. Global Control
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Information requirementsInformation requirements

just the points

tangents

interior control points

just beginning and 
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Curve FormulationsCurve Formulations

Lagrange Polynomial

Piecewise cubic polynomials

Lagrange Polynomial

Hermite
Catmull-Rom
Blended Parabolas
Bezier
B-spline
Tension Continuity BiasTension-Continuity-Bias
4-Point Form
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Polynomial Curve FormulationsPolynomial Curve Formulations

Need to match real-world data v. design from scratchNeed to match real world data v. design from scratch
Information requirements: just points? tangents?
Qualities of final curve?
Intuitive enough? BlendingIntuitive enough?
Other shape controls?

AUFBMBUP TT ===

Blending
Functions

AUFBMBUP ===

Algebraic

[ ]123 uuu
Geometric 
informationCoefficient 

matrix

Algebraic 
coefficient 
matrix
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HermiteHermite
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Cubic BezierCubic Bezier
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Interior control points play 
the same role as the tangents 
of the Hermite formulation
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Blended Parabolas/Catmull Rom*Blended Parabolas/Catmull-Rom

⎤⎡⎤⎡

[ ] ⎥
⎥
⎤

⎢
⎢
⎡

⎥
⎥
⎤

⎢
⎢
⎡

−−
−−

=

−1

23 5.025.21
5.05.15.15.0

1 i

i

p
p

uuuP [ ]
⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣
⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣

−
=

+

+

2

1

0010
05.005.0

1

i

i

p
p

uuuP

⎦⎣⎦⎣ +2ip

* End conditions are handled differently
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 End conditions are handled differently



Controlling Motion g
along p=P(u) 

Step 2. Reparameterization by arc lengthp p y g

u = U(s)       where s is distance along the curve

Step 3. Speed control

s = ease(t)       where t is time
for example, ease-in / ease-out
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Reparameterizing by Arc Length

AnalyticAnalytic
Forward differencing

Supersampling
Adaptive approachAdaptive approach

Numerically
Adaptive Gaussian

Computer AnimationRick Parent



Reparameterizing by p g y
Arc Length - analytic
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Can’t always be solved analytically for our curves 
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R t i i  b  A  Reparameterizing by Arc 
Length - supersample

1.Calculate a bunch of points at small increments in u
2.Compute summed linear distances as approximation to arc 

lengthlength
3.Build table of (parametric value, arc length) pairs

NotesNotes
1.Often useful to normalize total distance to 1.0
2.Often useful to normalize parametric value for 
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multi-segment curve to 1.0



i d Aindex u Arc 
Length

0 0 00 0 000
Build 
t bl  f 0 0.00 0.000

1 0.05 0.080

table of 
approx. 

2 0.10 0.150lengths

3 0.15 0.230

... ... ...

20 1 00 1 000
Computer AnimationRick Parent

20 1.00 1.000



Adaptive ApproachAdaptive Approach
How fine to sample?

Compare successive 
approximations and see pp
if they agree within some 
tolerance

Test can fail subdivide toTest can fail – subdivide to 
predefined level, then start testing
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Reparameterizing by Arc p g y
Length - quadrature

∑∫ =
+

−
i

ii ufwduuf )()(
1

1

dcubuauuP +++= 23)(

∫
+

−
++++

1

1

234 EDuCuBuAu

Lookup tables of weights and parametric values

Can also take adaptive approach here
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Reparameterizing by Arc Length

AnalyticAnalytic
Forward differencing

Supersampling
Adaptive approachAdaptive approach

Numerically
Adaptive Gaussian

Sufficient for many problems
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S d C t lSpeed Control
distance

Time-distance function
Ease-in

distance

Ease in
Cubic polynomial
Sinusoidal segment
Segmented sinusoidalSegmented sinusoidal
Constant acceleration

General distance-time functions

time
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Time Distance FunctionTime Distance Function
S

s
S

s = S(t)

tt

Computer AnimationRick Parent



Ease in/Ease out FunctionEase-in/Ease-out Function

s Ss S
1.0

s = S(t)

t
0.0

1 0 t0.0 1.0

Normalize distance and time to 1.0 to facilitate reuse
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E i  Si id lEase-in: Sinusoidal

( ) 2/)12/sin()( +−== ππtteases

Computer AnimationRick Parent



Ease-in: Piecewise SinusoidalEas n  c w s  S nuso a
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Ease-in: Piecewise SinusoidalEas n  c w s  S nuso a
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E i  Si l  C biEase-in: Single Cubic

23 32)( ttteases +−==
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E i  C t t A l tiEase-in: Constant Acceleration
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E i  C t t A l tiEase-in: Constant Acceleration
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E i  C t t A l tiEase-in: Constant Acceleration
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E i  C t t A l tiEase-in: Constant Acceleration
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Constant Acceleration
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Motivation – solution steps
1 C t t th t1. Construct a space curve that 
interpolates the given points with 
piecewise first order continuity p=P(u)

2. Construct an arc-length-parametric-
l f ti f th u=U(s)value function for the curve

3 Construct time arc length function

u U(s)

s=S(t)3. Construct time-arc-length function 
according to given constraints

s S(t)
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p=P(U(S(t)))



Arbitrary Speed Control
A i t k iAnimators can work in:

Distance-time space curves

Velocity-time space curves

Acceleration-time space curves

S t ti di t t i tSet time-distance constraints

etc.
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Curve fitting to distance-time pairsg p
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W ki  ithWorking with
time-distance 
curves
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Interpolating distance time pairsInterpolating distance-time pairs
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Frenet Frame – control orientationFrenet Frame – control orientation
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Frenet Frame 
tangent & curvature vector
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Frenet Frame 
tangent & curvature vector
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Frenet Frame 
tangent & curvature vector

MBUuP
UMBuP

')('
)( =

MBUuP
MBUuP
'')(''

')('
=
=

[ ]
[ ]0123'

1
2

23

U
uuuU =

[ ]
[ ]0026''

0123' 2

uU
uuU

=
=

Computer AnimationRick Parent



Frenet FrameFr n t Fram
local coordinate system

•Directly control orientation of 
object/camera

•Use for direction and bank 
into turn, especially for 

•v is perpendicular to w if curve 
is parameterized by arclength; 

otherwise probably notground-planar curves (e.g. 
roads)

otherwise probably not 
perpendicular

•For general curve must 

Computer AnimationRick Parent

v = wxu



Frenet Frame undefinedFrenet Frame - undefined
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Frenet Frame discontinuityFrenet Frame - discontinuity
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Other ways to control orientationOther ways to control orientation
Use auxiliary curve to define direction or up vector

Use point P(s+ds) for direction
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Use point P(s+ds) for direction



Direction & Up vectorDirection & Up vector

To keep ‘head up’ use y-axis
v = u x w

To keep head up , use y-axis 
to compute over and up 
vectors perpendicular to 
di ti t

w

direction vector

If t li d

Direction vector

w

u=w x y-axis
If up vector supplied, use 
that instead of y-axis
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Orientation interpolationOrientation interpolation

Preliminary note:
1. Remember that
2 Affects of scale are divided out by the inverse

)()( vRotvRot kqq ≡
2. Affects of scale are divided out by the inverse 

appearing in quaternion rotation
3.When interpolating quaternions, use UNIT quaternions 

th i it d i t f ith i f– otherwise magnitudes can interfere with spacing of 
results of interpolation
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Orientation interpolationOrientation interpolation
Quaternions can be interpolated to produce in-between 

i t tiorientations:

21)1( kqqkq +−=
2 problems analogous to issues when interpolating 

positions:
1. How to take equi-distant steps along orientation1. How to take equi distant steps along orientation 

path?
2. How to pass through orientations smoothly (1st

order continuous)order continuous)

3. And another particular to quaternions: with dual 
i i i hi h ?
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unit quaternion representations, which to use?



Dual Dual 
representation

)()( vRotvRot kqq =

Dual unit quaternion 
representations

For Interpolation between q1 and q2, compute cosine between 
q1 and q2 and between q1 and –q2; choose smallest angle
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q1 and q2 and between q1 and q2; choose smallest angle



Interpolating quaternions
Unit quaternions form set of points on 4D sphere

Linearly interpolating unit quaternions: not equally spaced
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Interpolating quaternions in 
t   l igreat arc => equal spacing
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Interpolating quaternions Interpolating quaternions 
with equal spacing

2121 sin
sin

sin
)1sin(),,(slerp ququuqq

θ
θ

θ
θ

+
−

=

θcos21 =⋅qqwhere

‘slerp’, sphereical linear interpolation is a function of 
• the beginning quaternion orientation, q1
• the ending quaternion orientation, q2
• the interpolant, u
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Smooth Orientation interpolation

Use quaternions

Interpolate along great arc (in 4-space) using cubic Bezier on 
sphere

1 S i f1. Select representation to use from duals
2. Construct interior control points for cubic Bezier
3. use DeCastelajue construction of cubic Bezierj
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S th t i  i t l tiSmooth quaternion interpolation
Similar to first order continuitySimilar to first order continuity 
desires with positional 
interpolation

How to smoothly interpolate 
through orientations q1, q2, 
q3,…qn

Bezier interpolation – geometric 
construction
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B i  i t l tiBezier interpolation
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B i  i t l ti
Construct interior 

Bezier interpolation control points

pn-1

pn

pan

tn

pn-1

pn

a

bn

pn+1

pn+2
n pn 1

pn+1

pn+2
an

pn-1

pn

p
pn+2

an
a0pn+1

tn+1

an+1bn+1

p2

p1

p0

0
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Q t i  tQuaternion operators
q2bisect(q q ) qb

Similar to forming a vector 
between 2 points, form the 

q1

q2bisect(q1, q2) qb

p ,
rotation between 2 orientations

Given 2 orientations, form result 
f l i t ti b t th

q1

q2double(q1, q2)

of applying rotation between the 
two to 2nd orientation

q1

qd
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Quaternion operators:Q p

‘Double’ where q’ is the mid-
Given p and q, form rrqpdouble =),(

p q

q
orientation between p and the yet-
to-be-determined r

( ))(' θ

If p and q are unit quaternions,
Then q’ = cos(θ)q and cos(θ)= qp ⋅

rθθ

q’

pqqppqqrqpdouble −⋅=−+== )(2)'('),(

( )qqpqq ⋅== )cos(' θ θ

Bisect 2 orientations: 
qrprp +)(bisect

qrp =),(bisect
Given p and r, form q
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+
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B i  i t l tiBezier interpolation

Need quaternion-friendly operators 
to form interior control points
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B i  i t l tiBezier interpolation Construct interior 
control points

t

)),,(double(bisect 11 +−= nnnn pppa
pn-1

pn

pn+2
an

tn

)( qadoubleb =
pn+1

pn-1

pn

pn+2
an

bn

),( nnn qadoubleb =
pn+1

p 1

pn
a

Bezier segment:
qn, an, bn+1, qn+1

pn-1

pn+1

pn+2
an

an+1bn+1
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Bezier construction using z r construct on us ng 
quaternion operators

Need quaternion-friendly operations to interpolate 
cubic Bezier curve using ‘quaternion’ points

de Casteljau geometric construction algorithm

Computer AnimationRick Parent



Bezier construction using z r construct on us ng 
quaternion operators For p(1/3)

t1=slerp(qn, an,1/3)
t2=slerp(an, bn+1,1/3)
t =slerp(b q 1/3)

t12=slerp(t1, t2,1/3)
t23=slerp(t12, t23,1/3) q=slerp(t12, t23,1/3)
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t3=slerp(bn+1, qn+1,1/3)



Working with paths

Smoothing a path
Determining a path along a surfaceDetermining a path along a surface
Finding downhill direction
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Smoothing data
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Smoothing dataSmoothing data
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Smoothing dataSmoothing data
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Smoothing data
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Smoothing data
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Smoothing data

Computer AnimationRick Parent



Smoothing data
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Smoothing data
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Smoothing data
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Smoothing data
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Smoothing data
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h  Smoothing data
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h fPath finding
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h f  h llPath finding - downhill
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