Computer Animation Algorithms and Techniques

Computational Fluid Dynamics

Fluids

types

viscous v. non-viscous compressible v. incompressible

conservation of

mass

momentum

energy

characteristics

laminar flow

turbulent

steady state flow

properties

velocity

density

pressure

heat

gravity

Models

grid-based (Eulerian)

d	d	d	d
d	d	d	d
d	d	d	d
d	d	d	d

particle-based (Lagrangian)

Hybrid

Notation

$$\nabla F = (\frac{\delta F}{\delta x}, \frac{\delta F}{\delta y}, \frac{\delta F}{\delta z})$$

$$\nabla \cdot F = \frac{\delta F}{\delta x} + \frac{\delta F}{\delta y} + \frac{\delta F}{\delta z}$$

Divergence Theorem

The integral of the flow field's divergence over the volume of the cell is the same as the integral of the flow field over the cell's boundary

Conservation of Mass

dx

$$(\rho v_x)_x \xrightarrow{(\rho v_x)_{x+dx}}$$

$$-\frac{d\rho}{dt} = \frac{\delta(\rho v_x)}{\delta x} + \frac{\delta(\rho v_y)}{\delta y} + \frac{\delta(\rho v_z)}{\delta z}$$

Conservation of Mass

$$-\frac{d\rho}{dt} = \frac{\delta(\rho v_x)}{\delta x} + \frac{\delta(\rho v_y)}{\delta y} + \frac{\delta(\rho v_z)}{\delta z}$$

$$-\frac{d\rho}{dt} = \nabla \cdot (\rho v)$$

If incompressible:

$$0 = \nabla \cdot (\rho v)$$

Conservation of Momentum

$$-\frac{d\rho}{dx} = \frac{\delta(\rho v_x^2)}{\delta x} + \frac{\delta(\rho v_y v_x)}{\delta y} + \frac{\delta(\rho v_z v_x)}{\delta z} + \frac{d(\rho v_x)}{dt}$$

Rick Parent

Conservation of Momentum

$$-\frac{d\rho}{dx} = \frac{\delta(\rho v_x^2)}{\delta x} + \frac{\delta(\rho v_y v_x)}{\delta y} + \frac{\delta(\rho v_z v_x)}{\delta z} + \frac{d(\rho v_x)}{dt}$$
$$-\frac{d\rho}{dy} = \frac{\delta(\rho v_x v_y)}{\delta x} + \frac{\delta(\rho v_y^2)}{\delta y} + \frac{\delta(\rho v_z v_y)}{\delta z} + \frac{d(\rho v_y)}{dt}$$
$$-\frac{d\rho}{dz} = \frac{\delta(\rho v_x v_z)}{\delta x} + \frac{\delta(\rho v_y v_z)}{\delta y} + \frac{\delta(\rho v_z v_z)}{\delta z} + \frac{d(\rho v_z)}{dt}$$

Euler Equations - 2D

Velocity: u,v

Coordinates: x,y

Density: p

Pressure: p

$$\frac{\delta(\rho u)}{\delta x} + \frac{\delta(\rho v)}{\delta y} = 0$$

$$\frac{\delta(\rho u^2)}{\delta x} + \frac{\delta(\rho uv)}{\delta y} = -\frac{\delta p}{\delta x}$$

$$\frac{\delta(\rho uv)}{\delta x} + \frac{\delta(\rho v^2)}{\delta y} = -\frac{\delta p}{\delta y}$$

Euler Equations - incompressible form

$$\frac{\delta u}{\delta x} + \frac{\delta v}{\delta y} = 0$$

$$u\frac{\delta u}{\delta x} + v\frac{\delta u}{\delta y} = -\frac{1}{\rho}\frac{\delta p}{\delta x}$$

$$u \frac{\delta v}{\delta x} + v \frac{\delta v}{\delta y} = -\frac{1}{\rho} \frac{\delta p}{\delta y}$$

Stable Fluids

Density grid

Move densities around using velocity grid and dissipate densities

Move velocities around using velocity grid and dissipate velocities

Stable Fluids

Source

$$rac{d
ho}{dt} = s + \kappa igtriangleup^2
ho - (u \cdot igtriangleup)
ho$$
Force
Dissipation Advection
 $rac{du}{dt} = f + \mu igtriangleup^2 u - (u \cdot igtriangleup) u$