Introduction to Procedural Animation

As Simulation

Physical World
Basic Physics
Spring-damper-mass model (flexible objects, cloth, clothes)
Particle systems
Rigid body dynamics
Flexible body dynamics
Natural Phenomena
Plants
Clouds
Water
Fire

Human (and other) Figures
Kinematic linkages: forward kinematics, inverse kinematics
Walking
Reaching
Skin deformation
Facial animation
Emotions, Expressions
Conversational animation, gestures
Lip-sync animation
Behavior
Path planning
Task Planning
Flocking
Prey-preditor
crowds

Kinematics v. Dynamics

Kinematics - position, velocity
Dynamics - forces, acceleration

Articulated Figure kinematics

Linked appendages
Constrained to remain attached to each other
Reduce dimensionality of positioning linkages
from 6 degrees of freedom for each linkage
to one joint angle per joint angle
Forward Kinematics
Specify: T, $\theta_{1}, \theta_{2}, \theta_{3}$
Solve for: position and rotation of each linkage
Inverse Kinematics
Specify: desired goal position of "end effector"
Solve for: joint angles
Compute direction vector from end effector to goal position: dP
Compute, for each joint, effect on end effector position of incremental change to joint angle: cross product of joint axis and vector from joint to end effector. Collect these in J
Solve for change in joint angles, weighted by J, that produces dP
$\mathrm{dP}=\mathrm{J} \mathrm{d} \Theta$

Basic Physics

$$
\mathrm{F}=\mathrm{ma}
$$

Accumulate forces in a vector: $\mathrm{f}=\Sigma \mathrm{f}_{\mathrm{i}}$
Compute acceleration: $a=f / m$
Update velocity: $\mathrm{v}^{\prime}=\mathrm{v}+\mathrm{a}^{*} \mathrm{dt} ; \mathrm{v}_{\mathrm{ave}}=\left(\mathrm{v}+\mathrm{v}^{\prime}\right) / 2$
Update position: $\mathrm{p}^{\prime}=\mathrm{p}+\mathrm{v}_{\text {ave }}{ }^{*} \mathrm{dt}$

BASIC ISSUE

What's the best way to update discrete approximation to continuous process?
e.g., force of gravity continually varies for moving objects over time interval

Basic Physics (continued)

Forces - based on position and/or velocity
Spring: $\mathrm{f}=\mathrm{k}_{\mathrm{s}} *\left(\mathrm{~L}_{\mathrm{c}}-\mathrm{L}_{\mathrm{r}}\right)$
Damper: $\mathrm{f}=\mathrm{k}_{\mathrm{d}} * \mathrm{dL}_{\mathrm{c}}$
Viscosity: $\mathrm{f}=\mathrm{k}_{\mathrm{v}}{ }^{*} \mathrm{v}$
Gravity: $\mathrm{f}=\mathrm{G}\left(\mathrm{m}_{1} * \mathrm{~m}_{2}\right) / \mathrm{d}^{2}$
Earth gravity: $\mathrm{a}=\mathrm{g}$
Virtual forces to maintain constraints (e.g., non-penetration) Impulse force due to collision
Momentum: $\mathrm{P}=\mathrm{mv}$
$\mathrm{dP}=\mathrm{F}$
Rotational force: torque
Rotation matrix, $\mathrm{R}(\mathrm{t})$
Angular velocity, $\omega(\mathrm{t})$
Angular acceleration, $\alpha(\mathrm{t})$
Inertia tensor, I(t)
Angular momentum
$\mathrm{L}(\mathrm{t})=\mathrm{I}(\mathrm{t}) \omega(\mathrm{t})$
Energy minimization
e.g., of deformed surface

