
2/20/2012

1

Linear Systems
LU Factorization

CSE 541

Roger Crawfis

Gaussian Elimination

We are going to look at the algorithm for
Gaussian Elimination as a sequence of
matrix operations (multiplies).

 Not really how you want to implement it,
but gives a better framework for the
theory, and our next topic:
 LU-factorization.

2/20/2012

2

Permutations

 A permutation matrix P is a re-ordering
of the identity matrix I. It can be used to:
 Interchange the order of the equations

 Interchange the rows of A and b

 Interchange the order of the variables
 This technique changes the order of the solution

variables.

 Hence a reordering is required after the solution
is found.

Permutation Matrix

 Properties of a Permutation matrix:
 |P| = 1 => non-singular

 P-1 = P

 PT = P

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

P

Switches equations 1 and 3.

11 12 13 14 31 32 33 34

21 22 23 24 21 22 23 24

31 32 33 34 11 12 13 14

41 42 43 44 41 42 43 44

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

a a a a a a a a

a a a a a a a a
PA

a a a a a a a a

a a a a a a a a

2/20/2012

3

Permutation Matrix

 Order is important!

11 12 13 14 13 12 11 14

21 22 23 24 21 22 23 24

31 32 33 34 33 32 31 34

41 42 43 44 41 42 43 44

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

a a a a a a a a

a a a a a a a a
AP

a a a a a a a a

a a a a a a a a

Switches variables 1 and 3.

Permutation Matrix

 Apply a permutation to a linear system:

 Changes the order of the equations (need to
include b), whereas:

 Permutes the order of the variables (b’s stay
the same).

 PbxPA

 xPxwherebxAP ,

2/20/2012

4

Adding Two Equations

What matrix operation allows us to add
two rows together?

 Consider MA, where:

1000

0110

0010

0001

M

Leaves this equation alone

Leaves this equation alone

Leaves this equation alone

Adds equations 2 and 3

Undoing the Operation

 Note that the inverse of this operation is
to simply subtract the unchanged
equation 2 from the new equation 3.

1000

0110

0010

0001

1M

2/20/2012

5

Gaussian Elimination

 The first set of multiply and add operations in
Gaussian Elimination can thus be represented
as:

bMAx

a

a
a

a
a

a

AxM 1

11

41

11

31

11

21

1

100

010

001

0001

Gaussian Elimination

 Note, the scale factors in the second
step use the new set of equations (a`)!

bMMAxM

a

a
a

a
AxMM 121

22

42

22

32
12

100

010

0010

0001

2/20/2012

6

Gaussian Elimination

 The composite of all of these matrices
reduce A to a triangular form:

 Can rewrite this:
 Ux = y where U=MA

 Mb = y or M-1y = b

1 1 1 1

upper triangular

n nMAx M M A x M M b Mb

Gaussian Elimination

What is M-1?
 Just add the scaled row back in!

100

010

0010

0001

22

42

22

32

1
2

a

a
a

a
M

100

010

001

0001

11

41

11

31

11

21

1
1

a

a
a

a
a

a

M

2/20/2012

7

Gaussian Elimination

 These are all lower triangular matrices.
 The product of lower triangular matrices

is another lower triangular matrix.
 These are even simpler!

 Just keep track of the
scale factors!!!

10

01

001

0001

22

42

11

41

22

32

11

31

11

21

1
2

1
1

a

a

a

a
a

a

a

a
a

a

MM

LU Factorization

 Let L = M-1 and U = MA
 L is a lower triangular matrix with 1’s on the

diagonal.

 U is an upper triangular matrix:

 Given these, we can trivially solve (in
O(n2) time):
 Ly = b – forward substitution

 Ux = y – backward substitution

2/20/2012

8

LU Factorization

 Note, L and U are only dependent on A.
 A = LU – a factorization of A

 Hence, Ax=b implies
 LUx = b or

 Ly = b where Ux = y

 Find y and then we can solve for x.

 Both operations in O(n2) time.

LU Factorization

 Problem: How do we compute the LU
factorization?

 Answer: Gaussian Elimination
 Which is O(n3) time, so no free lunch!

2/20/2012

9

LU Factorization

 In many cases, the matrix A defines the
structure of the problem, while the vector b
defines the current state or initial conditions.
 The structure remains fixed!

 Hence, we need to solve a set or sequence of
problems:

 kk

kk

tbtAx

orbAx

LU Factorization

 LU Factorization works great for these
problems:

 If we have M problems or time steps, we have
O(n3+Mn2) versus O(Mn3) time complexity.
 In many situations, M > n

kk

kk

yUx

bLy

2/20/2012

10

C# Implementation

// Factor A into LU in-place A->LU
for (int k=0; k<n-1; k++) {

try {
for (int i=k+1; i<n; i++) {

a[i,k] = a[i,k] / a[k,k];
for(int j=k+1; j<n; j++)

a[i,j] -= a[k,j] * a[i,k];
}

}
catch (DivideByZeroException e)
{

Console.WriteLine(e.Message);
}

}

This used to be a local
variable s, for scale factor
Now we transform A into
U, but store the lower
triangular L in the bottom
part of A. We do not store
the diagonal of L.

