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Linear Systems
LU Factorization

CSE 541

Roger Crawfis

Gaussian Elimination

We are going to look at the algorithm for 
Gaussian Elimination as a sequence of 
matrix operations (multiplies).

 Not really how you want to implement it, 
but gives a better framework for the 
theory, and our next topic: 
 LU-factorization.
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Permutations

 A permutation matrix P is a re-ordering 
of the identity matrix I. It can be used to:
 Interchange the order of the equations

 Interchange the rows of A and b

 Interchange the order of the variables
 This technique changes the order of the solution 

variables.

 Hence a reordering is required after the solution 
is found.

Permutation Matrix

 Properties of a Permutation matrix:
 |P| = 1  => non-singular

 P-1 = P

 PT = P

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

P

 
 
 
 
 
 

Switches equations 1 and 3.
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Permutation Matrix

 Order is important!

11 12 13 14 13 12 11 14

21 22 23 24 21 22 23 24

31 32 33 34 33 32 31 34

41 42 43 44 41 42 43 44

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1
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Switches variables 1 and 3.

Permutation Matrix

 Apply a permutation to a linear system:

 Changes the order of the equations (need to 
include b), whereas:

 Permutes the order of the variables (b’s stay 
the same).

  PbxPA 

  xPxwherebxAP  ,
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Adding Two Equations

What matrix operation allows us to add 
two rows together?

 Consider MA, where:
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Leaves this equation alone

Leaves this equation alone

Leaves this equation alone

Adds equations 2 and 3

Undoing the Operation

 Note that the inverse of this operation is 
to simply subtract the unchanged 
equation 2 from the new equation 3.
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Gaussian Elimination

 The first set of multiply and add operations in 
Gaussian Elimination can thus be represented 
as:
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Gaussian Elimination

 Note, the scale factors in the second 
step use the new set of equations (a`)!
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Gaussian Elimination

 The composite of all of these matrices 
reduce A to a triangular form:

 Can rewrite this:
 Ux = y where U=MA

 Mb = y or M-1y = b

1 1 1 1

upper triangular

n nMAx M M A x M M b Mb    


Gaussian Elimination

What is M-1?
 Just add the scaled row back in!
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Gaussian Elimination

 These are all lower triangular matrices.
 The product of lower triangular matrices 

is another lower triangular matrix.
 These are even simpler!

 Just keep track of the
scale factors!!! 
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LU Factorization

 Let L = M-1 and U = MA
 L is a lower triangular matrix with 1’s on the 

diagonal.

 U is an upper triangular matrix:

 Given these, we can trivially solve (in 
O(n2) time):
 Ly = b – forward substitution

 Ux = y – backward substitution
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LU Factorization

 Note, L and U are only dependent on A.
 A = LU – a factorization of A

 Hence, Ax=b implies
 LUx = b or

 Ly = b where Ux = y

 Find y and then we can solve for x.

 Both operations in O(n2) time.

LU Factorization

 Problem: How do we compute the LU 
factorization?

 Answer: Gaussian Elimination
 Which is O(n3) time, so no free lunch!
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LU Factorization

 In many cases, the matrix A defines the 
structure of the problem, while the vector b 
defines the current state or initial conditions.
 The structure remains fixed!

 Hence, we need to solve a set or sequence of 
problems:

   kk

kk

tbtAx

orbAx




LU Factorization

 LU Factorization works great for these 
problems:

 If we have M problems or time steps, we have 
O(n3+Mn2) versus O(Mn3) time complexity.
 In many situations, M > n
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bLy
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C# Implementation

//  Factor A into LU in-place A->LU
for (int k=0; k<n-1; k++)  {

try {
for (int i=k+1; i<n; i++) { 

a[i,k] = a[i,k] / a[k,k]; 
for(int j=k+1; j<n; j++) 

a[i,j] -= a[k,j] * a[i,k]; 
} 

} 
catch (DivideByZeroException e) 
{ 

Console.WriteLine(e.Message); 
} 

} 

This used to be a local 
variable s, for scale factor
Now we transform A into 
U, but store the lower 
triangular L in the bottom 
part of A. We do not store 
the diagonal of L.


