

Gaussian Elimination

- We are going to look at the algorithm for Gaussian Elimination as a sequence of matrix operations (multiplies).
- Not really how you want to implement it, but gives a better framework for the theory, and our next topic:
- LU-factorization.

Permutations

- A permutation matrix P is a re-ordering of the identity matrix I. It can be used to:
- Interchange the order of the equations
- Interchange the rows of A and b
- Interchange the order of the variables
- This technique changes the order of the solution variables.
- Hence a reordering is required after the solution is found.

Permutation Matrix

- Properties of a Permutation matrix:
- $|\mathrm{P}|=1$ => non-singular
- $\mathrm{P}^{-1}=\mathrm{P} \quad \mathrm{P}^{\top}=\mathrm{P} \quad P=\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ Switches equations 1 and 3.
$P A=\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right]=\left[\begin{array}{cccc}a_{31} & a_{32} & a_{33} & a_{34} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right]$

Permutation Matrix

OHIOESTATE

- Order is important!

Switches variables 1 and 3.
$A P=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right]\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{llll}a_{13} & a_{12} & a_{11} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{33} & a_{32} & a_{31} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right]$

Permutation Matrix

- Apply a permutation to a linear system:

$$
(P A) x=P b
$$

- Changes the order of the equations (need to include \boldsymbol{b}), whereas:

$$
(A P) x^{\prime}=b \text {, where } x=P x^{\prime}
$$

- Permutes the order of the variables (b's stay the same).

Adding Two Equations

OHIUSSTATE

- What matrix operation allows us to add two rows together?
- Consider MA, where:

$$
M=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \text { Leaves this equation alone } \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array} \text { Adds equations equation alone } 2 \text { and } 3\right.
$$

Undoing the Operation

- Note that the inverse of this operation is to simply subtract the unchanged equation 2 from the new equation 3.

$$
M^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Gaussian Elimination

- The first set of multiply and add operations in Gaussian Elimination can thus be represented as:

$$
M_{1} A x=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-\frac{a_{21}}{a_{11}} & 1 & 0 & 0 \\
-\frac{a_{31}}{a_{11}} & 0 & 1 & 0 \\
-\frac{a_{41}}{a_{11}} & 0 & 0 & 1
\end{array}\right] A x=M_{1} b
$$

Gaussian Elimination

- Note, the scale factors in the second step use the new set of equations (${ }^{`}$)!

$$
M_{2} M_{1} A x=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -\frac{a_{32}^{\prime}}{a_{22}^{\prime}} & 1 & 0 \\
0 & -\frac{a_{42}^{\prime}}{a_{22}^{\prime}} & 0 & 1
\end{array}\right] M_{1} A x=M_{2} M_{1} b
$$

Gaussian Elimination

OHOUSTATE

- The composite of all of these matrices reduce A to a triangular form:
$M A x=\underbrace{M_{n-1} \cdots M_{1} A}_{\text {upper triangular }} x=M_{n-1} \cdots M_{1} b=M b$
Can rewrite this:
- $U x=y$ where $U=M A$
- $M b=y$ or $M^{-1} y=b$

Gaussian Elimination

- What is M^{-1} ?
- Just add the scaled row back in!

$$
M_{1}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{a_{21}}{a_{11}} & 1 & 0 & 0 \\
\frac{a_{31}}{a_{11}} & 0 & 1 & 0 \\
\frac{a_{41}}{a_{11}} & 0 & 0 & 1
\end{array}\right] \quad M_{2}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \frac{a_{32}^{\prime}}{a_{22}^{\prime}} & 1 & 0 \\
0 & \frac{a_{42}^{\prime}}{a_{22}^{\prime}} & 0 & 1
\end{array}\right]
$$

Gaussian Elimination

- These are all lower triangular matrices.
- The product of lower triangular matrices is another lower triangular matrix.
- These are even simpler!

Just keep track of the scale factors!!!

$$
\begin{aligned}
& \text { mpler! } \\
& M_{1}^{-1} M_{2}^{-1} \\
& \text { the }
\end{aligned}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{a_{21}}{a_{11}} & 1 & 0 & 0 \\
\frac{a_{31}}{a_{11}} & \frac{a_{32}^{\prime}}{a_{22}^{\prime}} & 1 & 0 \\
\frac{a_{41}}{a_{11}} & \frac{a_{42}^{\prime}}{a_{22}^{\prime}} & 0 & 1
\end{array}\right]
$$

LU Factorization

- Let $L=M^{-1}$ and $U=M A$
- L is a lower triangular matrix with 1 's on the diagonal.
- U is an upper triangular matrix:
- Given these, we can trivially solve (in $\boldsymbol{O}\left(n^{2}\right)$ time):
- $L y=b-$ forward substitution
- Ux = y - backward substitution

LU Factorization

- Note, L and U are only dependent on A. - $\mathrm{A}=\mathrm{LU}$ - a factorization of A
- Hence, $A x=b$ implies
- $L U x=b$ or
- $L y=b$ where $U x=y$
- Find y and then we can solve for x.
- Both operations in $\mathbf{O}\left(n^{2}\right)$ time.

LU Factorization

- Problem: How do we compute the LU factorization?
- Answer: Gaussian Elimination
- Which is $\boldsymbol{O}\left(n^{3}\right)$ time, so no free lunch!

LU Factorization

- In many cases, the matrix A defines the structure of the problem, while the vector b defines the current state or initial conditions.
- The structure remains fixed!
- Hence, we need to solve a set or sequence of problems:

$$
\begin{aligned}
& A x_{k}=b_{k} \quad \text { or } \\
& A x\left(t_{k}\right)=b\left(t_{k}\right)
\end{aligned}
$$

LU Factorization

- LU Factorization works great for these problems:

$$
\begin{aligned}
& L y_{k}=b_{k} \\
& U x_{k}=y_{k}
\end{aligned}
$$

- If we have M problems or time steps, we have $\mathbf{O}\left(n^{3}+M n^{2}\right)$ versus $\mathbf{O}\left(M n^{3}\right)$ time complexity.
- In many situations, $M>n$

C\# Implementation

OHIOSSTATE

```
// Factor A into LU in-place A->LU
```

for (int k=0; k<n-1; k++) \{
try \{
for (int $i=k+1 ; i<n ; i++$) \{

This used to be a local $a[i, k] \leftrightarrows a[i, k] / a[k, k] ;$ for(int $j=k+1 ; j<n ; j++$) variable s, for scale factor Now we transform A into $a[i, j]-=a[k, j]$ *a[i,k];
\}
\}
catch (DivideByZeroException e)
\{
Console.WriteLine(e.Message);
\}
\}

