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Linear Systems
Gaussian Elimination

CSE 541

Roger Crawfis

Solving Linear Systems

 Transform Ax = b into an equivalent but 
simpler system.

Multiply on the left by a nonsingular 
matrix: MAx = Mb:

Mathematically equivalent, but may 
change rounding errors

1 1 1 1( )x MA Mb A M Mb A b     
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Gaussian Elimination

 Finding inverses of matrices is expensive

 Inverses are not necessary to solve a 
linear system.

 Some system are much easier to solve:
 Diagonal matrices

 Triangular matrices

 Gaussian Elimination transforms the 
problem into a triangular system

Gaussian Elimination

 Consists of 2 steps
1. Forward Elimination of Unknowns.

2. Back Substitution
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Gaussian Elimination

 Systematically eliminate unknowns from the 
equations until only a equation with only one 
unknown is left. 

 This is accomplished using three operations 
applied to the linear system of equations:
 A given equation can be multiplied by a non-zero 

constant and the result substituted for the original 
equation,

 A given equation can be added to a second 
equation, and the result substituted for the original 
equation,

 Two equations can be transposed in order.

Gaussian Elimination

 Uses these elementary row operations
 Adding a multiple of one row to another

 Doesn’t change the equality of the equation
 Hence the solution does not change.

 The sub-diagonal elements are zeroed-
out through elementary row operations
 In a specific order (next slide)
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Order of Elimination
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Gaussian Elimination in 3D

 Using the first equation to eliminate x
from the next two equations
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Gaussian Elimination in 3D

 Using the second equation to eliminate 
y from the third equation
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Gaussian Elimination in 3D

 Using the second equation to eliminate 
y from the third equation
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Solving Triangular Systems

We now have a triangular system which 
is easily solved using a technique called 
Backward-Substitution.
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Solving Triangular Systems

 If A is upper triangular, we can solve 
Ax = b by:
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Backward Substitution

 From the previous work, we have

 And substitute z in the first two equations

2

4

2242





z

zy

zyx

We can solve y
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 Substitute to the first equation
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Backward Substitution

We can solve the first equation
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Backward Substitution

Robustness of Solution

We can measure the precision or 
accuracy of our solution by calculating 
the residual:
 Calling our computed solution x*…
 Calculate the distance Ax* is from b

 |Ax* – b|

 Some matrices are ill-conditioned
 A tiny change in the input (the coefficients in 

A) drastically changes the output (x*)
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C# Implementation

//convert to upper triangular form
for (int k=0; k<n-1; k++)  {

try {
for (int i=k+1; i<n; i++) { 

float s = a[i,k] / a[k,k]; 
for(int j=k+1; j<n; j++) 

a[i,j] -= a[k,j] * s; 
b[i]=b[i]-b[k] * s; 

} 
} 
catch (DivideByZeroException e) 
{ 

Console.WriteLine(e.Message); 

} 
} 

// back substitution

b[n-1]=b[n-1] / a[n-1,n-1]; 

for (int i=n-2; i>=0; i--) { 

sum = b[i]; 

for (int j=i+1; j<n; j++) 

sum -= a[i,j] * x[j]; 

x[i] = sum / a[i,i]; 

} 

 Forward Elimination
For i = 1 to n-1 {          //  for each equation

For j = i+1 to n  {      //  for each target equation below the current

For k = i+1 to n  { // for each element beyond pivot column

}
}

}

jk jk ji ikA A M A 

Computational Complexity
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Computational Complexity

 Backward Substitution
For i = n-1 to 1  {          //  for each equation

For j = n  to i+1  {      //  for each known variable

sum = sum – Aij * xj

}

}
multiply-add’s 
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