Linear Systems

Gaussian Elimination

CSE 541
Roger Crawfis

Solving Linear Systems

- Transform $A x=b$ into an equivalent but simpler system.
- Multiply on the left by a nonsingular matrix: $M A x=M b$:

$$
x=(M A)^{-1} M b=A^{-1} M^{-1} M b=A^{-1} b
$$

- Mathematically equivalent, but may change rounding errors

Gaussian Elimination

- Finding inverses of matrices is expensive
- Inverses are not necessary to solve a linear system.
- Some system are much easier to solve:
- Diagonal matrices
- Triangular matrices
- Gaussian Elimination transforms the problem into a triangular system

Gaussian Elimination

- Consists of 2 steps

1. Forward Elimination of Unknowns.
$\left[\begin{array}{ccc}25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1\end{array}\right] \rightarrow\left[\begin{array}{ccc}25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7\end{array}\right]$
2. Back Substitution

Gaussian Elimination

OHIOSSTATE

- Systematically eliminate unknowns from the equations until only a equation with only one unknown is left.
- This is accomplished using three operations applied to the linear system of equations:
- A given equation can be multiplied by a non-zero constant and the result substituted for the original equation,
- A given equation can be added to a second equation, and the result substituted for the original equation,
- Two equations can be transposed in order.

Gaussian Elimination

- Uses these elementary row operations
- Adding a multiple of one row to another
- Doesn't change the equality of the equation - Hence the solution does not change.
- The sub-diagonal elements are zeroedout through elementary row operations
- In a specific order (next slide)

Order of Elimination

OHIUSSATE

? ? ? ? ?

356 ?

Gaussian Elimination in 3D

$$
\begin{array}{r}
2 x+4 y-2 z=2 \\
-4 x+9 y-3 z=8 \\
-2 x-3 y+7 z=10
\end{array}
$$

- Using the first equation to eliminate x from the next two equations

Gaussian Elimination in 3D

- Using the second equation to eliminate y from the third equation

Gaussian Elimination in 3D

$$
\begin{aligned}
2 x+4 y-2 z & =2 \\
y+z & =4 \\
4 z & =8
\end{aligned}
$$

- Using the second equation to eliminate y from the third equation

Solving Triangular Systems

OHOSSTATE

- We now have a triangular system which is easily solved using a technique called Backward-Substitution.

$$
\begin{array}{r}
2 x+4 y-2 z=2 \\
y+z=4 \\
4 z=8
\end{array}
$$

Solving Triangular Systems

- If A is upper triangular, we can solve $A x=b$ by:

$$
\begin{aligned}
& x_{n}=b_{n} / A_{n n} \\
& x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} A_{i j} x_{j}\right) / A_{i i}, \quad i=n-1, \ldots, 1
\end{aligned}
$$

Backward Substitution

OHIOSSTATE

- From the previous work, we have

$$
\begin{array}{r}
2 x+4 y-2 z=2 \\
y+z=4 \\
z=2
\end{array}
$$

- And substitute z in the first two equations

Backward Substitution

$$
\begin{array}{r}
2 x+4 y-4=2 \\
y+2=4 \\
z=2
\end{array}
$$

- We can solve y

Backward Substitution

$$
\begin{aligned}
2 x+4 y-4 & =2 \\
y & =2 \\
z & =2
\end{aligned}
$$

- Substitute to the first equation

Backward Substitution

$$
\begin{aligned}
2 x+8-4 & =2 \\
y & =2 \\
z & =2
\end{aligned}
$$

- We can solve the first equation

Backward Substitution

$$
\begin{aligned}
x & =-1 \\
y & =2 \\
z & =2
\end{aligned}
$$

Robustness of Solution

- We can measure the precision or accuracy of our solution by calculating the residual:
- Calling our computed solution x^{*}...
- Calculate the distance $A x^{*}$ is from b
- $\mid A x^{*}$ - b|
- Some matrices are ill-conditioned
- A tiny change in the input (the coefficients in
A) drastically changes the output (x^{\star})

C\# Implementation

OHIOSSTATE

//convert to upper triangular form for (int k=0; k<n-1; k++) \{ try \{
for (int $\mathrm{i}=\mathrm{k}+1$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}++$) $\{$ float $\mathrm{s}=\mathrm{a}[\mathrm{i}, \mathrm{k}] / \mathrm{a}[\mathrm{k}, \mathrm{k}]$; for(int j=k+1; j<n; j++) $a[i, j]-=a[k, j]$ * s; $b[i]=b[i]-b[k]$ * $s ;$
\}
\}
catch (DivideByZeroException e)
\{
Console.WriteLine(e.Message);
\}
\}
// back substitution
$b[n-1]=b[n-1] / a[n-1, n-1] ;$
for (int $i=n-2 ; i>=0 ; i--)\{$
sum $=b[i]$;
for (int j=i+1; j<n; j++) sum -= $a[i, j]$ * $x[j] ;$
$x[i]=$ sum $/ a[i, i]$;
\}

Computational Complexity

- Forward Elimination

$$
\begin{aligned}
& \text { For } \mathrm{i}=1 \text { to } \mathrm{n}-1 \text { \{ } \quad \text { I/ for each equation } \\
& \text { For } \mathrm{j}=\mathrm{i}+1 \text { to } \mathrm{n}\{\quad / / \text { for each target equation below the current } \\
& \qquad M_{j i}=\frac{A_{j i}}{A_{i i}}, A_{j i}=0 \quad \sum_{i=1}^{n-1}(n-i)=\frac{n^{2}}{2} \quad \text { divisions }
\end{aligned}
$$

For $\mathrm{k}=\mathrm{i}+1$ to n \{ // for each element beyond pivot column

$$
A_{j k} \leftarrow A_{j k}-M_{j i} A_{i k}
$$

 \}
 \}
 \}

$$
\begin{aligned}
& \sum_{i=1}^{n-1}(n-i)^{2} \approx \frac{2}{3} n^{3} \\
& \text { multiply-add's }
\end{aligned}
$$

Computational Complexity

- Backward Substitution

```
Fori=n-1 to 1 { // for each equation
    For j= n to i+1 { // for each known variable
        sum = sum - A A * * }\mp@subsup{\textrm{X}}{\textrm{j}}{
    }
}
\[
\sum_{i=1}^{n-1}(n-i)=\frac{n^{2}}{2} \text { multiply-add's }
\]
```

