
2/20/2012

1

Linear Systems
Gaussian Elimination

CSE 541

Roger Crawfis

Solving Linear Systems

 Transform Ax = b into an equivalent but
simpler system.

Multiply on the left by a nonsingular
matrix: MAx = Mb:

Mathematically equivalent, but may
change rounding errors

1 1 1 1()x MA Mb A M Mb A b     

2/20/2012

2

Gaussian Elimination

 Finding inverses of matrices is expensive

 Inverses are not necessary to solve a
linear system.

 Some system are much easier to solve:
 Diagonal matrices

 Triangular matrices

 Gaussian Elimination transforms the
problem into a triangular system

Gaussian Elimination

 Consists of 2 steps
1. Forward Elimination of Unknowns.

2. Back Substitution

7.000

56.18.40

1525


































112144

1864

1525

2/20/2012

3

Gaussian Elimination

 Systematically eliminate unknowns from the
equations until only a equation with only one
unknown is left.

 This is accomplished using three operations
applied to the linear system of equations:
 A given equation can be multiplied by a non-zero

constant and the result substituted for the original
equation,

 A given equation can be added to a second
equation, and the result substituted for the original
equation,

 Two equations can be transposed in order.

Gaussian Elimination

 Uses these elementary row operations
 Adding a multiple of one row to another

 Doesn’t change the equality of the equation
 Hence the solution does not change.

 The sub-diagonal elements are zeroed-
out through elementary row operations
 In a specific order (next slide)

2/20/2012

4

Order of Elimination

?

?

?

?

?653

??42

???1

????



Gaussian Elimination in 3D

 Using the first equation to eliminate x
from the next two equations

10732

8394

2242





zyx

zyx

zyx

2/20/2012

5

Gaussian Elimination in 3D

 Using the second equation to eliminate
y from the third equation

125

4

2242





zy

zy

zyx

Gaussian Elimination in 3D

 Using the second equation to eliminate
y from the third equation

84

4

2242





z

zy

zyx

2/20/2012

6

Solving Triangular Systems

We now have a triangular system which
is easily solved using a technique called
Backward-Substitution.

84

4

2242





z

zy

zyx

Solving Triangular Systems

 If A is upper triangular, we can solve
Ax = b by:

1

/

/ , 1, ,1

n n nn

n

i i ij j ii
j i

x b A

x b A x A i n
 



 
    
 

 

2/20/2012

7

Backward Substitution

 From the previous work, we have

 And substitute z in the first two equations

2

4

2242





z

zy

zyx

We can solve y

2

42

2442





z

y

yx

Backward Substitution

2/20/2012

8

 Substitute to the first equation

2

2

2442





z

y

yx

Backward Substitution

We can solve the first equation

2

2

2482





z

y

x

Backward Substitution

2/20/2012

9

2

2

1






z

y

x

Backward Substitution

Robustness of Solution

We can measure the precision or
accuracy of our solution by calculating
the residual:
 Calling our computed solution x*…
 Calculate the distance Ax* is from b

 |Ax* – b|

 Some matrices are ill-conditioned
 A tiny change in the input (the coefficients in

A) drastically changes the output (x*)

2/20/2012

10

C# Implementation

//convert to upper triangular form
for (int k=0; k<n-1; k++) {

try {
for (int i=k+1; i<n; i++) {

float s = a[i,k] / a[k,k];
for(int j=k+1; j<n; j++)

a[i,j] -= a[k,j] * s;
b[i]=b[i]-b[k] * s;

}
}
catch (DivideByZeroException e)
{

Console.WriteLine(e.Message);

}
}

// back substitution

b[n-1]=b[n-1] / a[n-1,n-1];

for (int i=n-2; i>=0; i--) {

sum = b[i];

for (int j=i+1; j<n; j++)

sum -= a[i,j] * x[j];

x[i] = sum / a[i,i];

}

 Forward Elimination
For i = 1 to n-1 { // for each equation

For j = i+1 to n { // for each target equation below the current

For k = i+1 to n { // for each element beyond pivot column

}
}

}

jk jk ji ikA A M A 

Computational Complexity

divisions
21

1

()
2

n

i

n
n i





 

multiply-add’s

1
2 3

1

2
()

3

n

i

n i n




 

, 0ji
ji ji

ii

A
M A

A
 

O(n3)

2/20/2012

11

Computational Complexity

 Backward Substitution
For i = n-1 to 1 { // for each equation

For j = n to i+1 { // for each known variable

sum = sum – Aij * xj

}

}
multiply-add’s

21

1

()
2

n

i

n
n i





 

O(n2)

