2/20/2012

Linear Systems
Gaussian Elimination

CSE 541
Roger Crawfis

Solving Linear Systems

e Transform Ax = b into an equivalent but
simpler system.

e Multiply on the left by a nonsingular
matrix: MAx = Mb:

Xx=(MA)*Mb=A"'M"*Mb=A"

e Mathematically equivalent, but may
change rounding errors

Gaussian Elimination

e Finding inverses of matrices is expensive
e Inverses are not necessary to solve a
linear system.
e Some system are much easier to solve:
e Diagonal matrices
e Triangular matrices

e Gaussian Elimination transforms the
problem into a triangular system

Gaussian Elimination

e Consists of 2 steps
1. Forward Elimination of Unknowns.

25 5 1 25 5 1

64 8 1>/ 0 -48 -1.56
144 12 1 0 0 0.7

2. Back Substitution

2/20/2012

Gaussian Elimination

e Systematically eliminate unknowns from the
equations until only a equation with only one
unknown is left.

e This is accomplished using three operations
applied to the linear system of equations:

e A given equation can be multiplied by a non-zero

constant and the result substituted for the original
equation,

e A given equation can be added to a second
equation, and the result substituted for the original
equation,

e Two equations can be transposed in order.

Gaussian Elimination

e Uses these elementary row operations
e Adding a multiple of one row to another
e Doesn’'t change the equality of the equation
e Hence the solution does not change.
e The sub-diagonal elements are zeroed-
out through elementary row operations
e In a specific order (next slide)

2/20/2012

Order of Elimination

2 7
1 ?
2 4
3 5

Gaussian Elimination in 3D 7%,

@+4y—22:2

"4x 1+ 9y — 3z = 8

Il
o

—2X, — 3y + 7z

e Using the first equation to eliminate x
from the next two equations

2/20/2012

Gaussian Elimination in 3D

'y + 95z = 12

e Using the second equation to eliminate
y from the third equation

Gaussian Elimination in 3D

I
N
I

(@0)

e Using the second equation to eliminate
y from the third equation

2/20/2012

Solving Triangular Systems

e We now have a triangular system which
is easily solved using a technique called
Backward-Substitution.

2X + 4y — 2z = 2
y + z =4
47 = 8

Solving Triangular Systems %,

e If A is upper triangular, we can solve
AX = b by:

Xn:bn/Am

X. :[bi— Zn: ijjj/A“, i=n-1....1

j=i+l

2/20/2012

Backward Substitution

e From the previous work, we have
2X + 4y — 2z = 2

y + z =4
z = 2

e And substitute z in the first two equations

Backward Substitution

2X + 4y — 4 = 2
y + 2 =4
Z = 2

e We can solve y

2/20/2012

Backward Substitution

e Substitute to the first equation

Backward Substitution

7 = 2

e We can solve the first equation

2/20/2012

2/20/2012

Backward Substitution

Robustness of Solution

e \We can measure the precision or
accuracy of our solution by calculating
the residual:

e Calling our computed solution x*...
e Calculate the distance Ax*is from b
o |AX* — b|
e Some matrices are ill-conditioned

e A tiny change in the input (the coefficients in
A) drastically changes the output (x*)

2/20/2012

C# Implementation

/lconvert to upper triangular form // back substitution
for (int k=0; k<n-1; k++) { b[n-1]=b[n-1] / an-1,n-1];
try { T
for (int i=k+1; i<n; i++) { for (inti=n-2; ">‘O' i) {
float s = a[i,k] / a[k,k]; sum = b[i];
for(int j=k+1; j<n; j++) for (int j=i+1; j<n; j++)
_alij]-=alkj]*s; sum -= a[i,j] * x[il;
b[il=b[i]-blk] * s; x[i] = sum / ali,i
} }

catch (DivideByZeroException €)

Console.WriteLine(e.Message);

}
}

Computational Complexity

e Forward Elimination

Fori=1ton-1{ /I for each equation
Forj=i+lton { // for each target equation below the current

A; =T L
M; = A =0 Z(n—l)=? divisions
i=1

N

i
Fork =i+1ton {// for each element beyond pivot column

A <« A —M. n-1
jk jk ji A Zﬂ:(n_i)z z§n3

} i
) ! O (n 3) multiply-add’s

10

2/20/2012

Computational Complexity

e Backward Substitution

Fori=n-1to1 { /I for each equation
Forj=n toi+l { // for each known variable
sum = sum — Ay * X;
}

} S (n-i) -~ multiply-add's

i=1

11

