CSE 541 - Numerical Methods

Linear Systems

Example

- Suppose we have three masses all connected by springs.
- Each spring has the same constant k.
- Simple force balance gives us accelerations in terms of displacements.

Simple Force Equation

- Recall from elementary physics, that $\boldsymbol{F}=\boldsymbol{m a}$, or $\boldsymbol{m a}=\boldsymbol{F}$).

$$
\begin{aligned}
& m_{1} \frac{d^{2}}{d t^{2}} x_{1}=2 k\left(x_{2}-x_{1}\right)+m_{1} g-k x_{1} \\
& m_{2} \frac{d^{2}}{d t^{2}} x_{2}=k\left(x_{3}-x_{2}\right)+m_{2} g-2 k\left(x_{2}-x_{1}\right) \\
& m_{3} \frac{d^{2}}{d t^{2}} x_{3}=m_{3} g-k\left(x_{3}-x_{2}\right)
\end{aligned}
$$

Sili Simple Force Equation

- If we attach the masses and then let go, physically we know that it will oscillate
- Crucial question is what is the steady state

$$
\begin{aligned}
& \text { i.e., no acceleration } \\
& \qquad \begin{array}{r}
3 k x_{1}-2 k x_{2}+0=m_{1} g \\
-2 k x_{1}+3 k x_{2}-k x_{3}=m_{2} g \\
0-k x_{2}+k x_{3}=m_{3} g
\end{array}
\end{aligned}
$$

- How do we solve such a linear system of equations?
- Occurs in many circumstances: mass balances, circuit design, stress-strain, weather forecasting, light propagation, etc.

Systems of Equations

- This simple example produces 3 equations in three unknowns:

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \tag{1}\\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \tag{2}\\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3} \tag{3}
\end{align*}
$$

- Geometrically this represents 3 planes in space.

Systems of Equations

- Three different things can happen:
- Planes intersect at a single point.
- A unique solution to the system of equations.

Systems of Equations

- Planes do not intersect at all: (At least two are parallel).

parallel planes

Systems of Equations

- Planes intersect at an infinite number of points (plane or line).

Systems of Equations

- How do we know whether a unique solution exists?
- How do we find such a solution?
- In general, we may have n equations in n unknowns.
- Can we find a solution?
- Can we program an algorithm to efficiently find a solution?
- Is it well behaved? Accuracy? Convergence? Stability?

What is a Matrix?

- A matrix is a set of elements, organized into rows and columns

Matrix Definitions

- $n \times m$ Array of Scalars (n Rows and m Columns)
- n : row dimension of a matrix, m : column dimension
$-m=n \rightarrow$ square matrix of dimension n
- Element $\left\{a_{i j}\right\}, i=1, \ldots, n, j=1, \ldots, m$
$\mathbf{A}=\left[a_{i j}\right]$

Matrix Definitions

- Column Matrices and Row Matrices

Column matrix ($n \times 1$ matrix):

$$
\mathbf{b}=\left[b_{i}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Row matrix (1 x n matrix):

$$
\mathbf{a}=\left[a_{i}\right]=\left[\begin{array}{lll}
a_{1} & a_{2} & \ldots \\
a_{n}
\end{array}\right]
$$

Basic Matrix Operations

- Addition (just add each element)

Each matrix must be the same size!

$$
\begin{aligned}
& \mathbf{C}=\mathbf{A}+\mathbf{B}=\left[\begin{array}{l}
a_{i j} \\
b_{i j}
\end{array}\right] \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right]}
\end{aligned}
$$

- Properties of Matrix-Matrix Addition
- Commutative: $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
- Associative: $\quad \mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$

Basic Matrix Operations

- Subtraction

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a-e & b-f \\
c-g & d-h
\end{array}\right]
$$

Basic Matrix Operations

- Scalar-Matrix Multiplication

$$
\alpha \mathbf{A}=\left[\alpha a_{i j}\right]
$$

- Properties of Scalar-Matrix Multiplication

$$
\begin{aligned}
\alpha(\beta \mathbf{A}) & =(\alpha \beta) \mathbf{A} \\
\alpha \beta \mathbf{A} & =\beta \alpha \mathbf{A}
\end{aligned}
$$

Basic Matrix Operations

- Matrix-Matrix Multiplication
$-\mathbf{A}: n \times l$ matrix, $\mathbf{B}: l \mathrm{x} m \rightarrow \mathbf{C}: n \times m$ matrix
$\mathbf{C}=\mathbf{A B}=\left[c_{i j}\right]$
$c_{i j}=\sum_{k=1}^{l} a_{i k} b_{k j}$
- example
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right]$

Matrix Multiplication

Matrices A and B have these dimensions:

[nx m] and [px q]

Matrix Multiplication

Matrices A and B can be multiplied if:

$\mathrm{m}=\mathrm{p}$

Matrix Multiplication

The resulting matrix will have the dimensions:

Computation: $A \times B=C$

$$
\begin{gathered}
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad[2 \times 2] \\
B=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right] \quad[2 \times 3] \\
C=\left[\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} & a_{11} b_{13}+a_{12} b_{23} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22} & a_{21} b_{13}+a_{22} b_{23}
\end{array}\right] \\
{[2 \times 3]}
\end{gathered}
$$

Computation: $A \times B=C$

$$
\left.\begin{array}{c}
\mathrm{A}=\left[\left.\begin{array}{ll}
2 & 3 \\
1 & 1 \\
1 & 0
\end{array} \right\rvert\, \text { and } \mathrm{B}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 2
\end{array}\right]\right. \\
{\left[\begin{array}{ll}
3 & 2
\end{array}\right]} \\
4^{\text {Aand }} \text { B an be multipied }
\end{array}\right]
$$

[3 x 3]

Computation: $A \times B=C$

$$
\begin{aligned}
& A=\left\lfloor\begin{array}{ll}
2 & 3 \\
1 & 1 \\
1 & 0
\end{array}\right] \text { and } \quad B=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 2
\end{array}\right] \\
& \text { [3. }{ }^{2]} \\
& \text { Result is } 3 \times 3 \quad\left[\begin{array}{lll}
2 \times 3
\end{array}\right] \\
& C=\left[\begin{array}{lll}
2 * 1+3 * 1=5 & 2 * 1+3 * 0=2 & 2 * 1+3 * 2=8 \\
1 * 1+1 * 1=2 & 1 * 1+1 * 0=1 & 1 * 1+1 * 2=3 \\
1 * 1+0 * 1=1 & 1 * 1+0 * 0=1 & 1 * 1+0 * 2=1
\end{array}\right]=\left[\begin{array}{l}
528 \\
213 \\
111
\end{array}\right]
\end{aligned}
$$

[3x3]

Matrix Multiplication

- Is $\mathrm{AB}=\mathrm{BA}$? Maybe, but maybe not!

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{cc}
a e+b g & \ldots \\
\ldots & \ldots .
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
e a+f c & \ldots \\
\ldots & \ldots
\end{array}\right]
$$

- Heads up: multiplication is NOT commutative!

Matrix Multiplication

- Properties of Matrix-Matrix Multiplication

$$
\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}
$$

$\mathbf{A B} \neq \mathbf{B A}$

The Identity Matrix

- Identity Matrix, \mathbf{I}, is a Square Matrix:

$$
\mathbf{I}=\left[a_{i j}\right] \quad a_{i j}=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { otherwise }
\end{array} \quad I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right.
$$

- Properties of the Identity matrix:
$-\mathbf{A I}=\mathbf{A} \quad \mathbf{I A}=\mathbf{A}$
- Multiplying a matrix with the Identity matrix does not change the initial matrix.

Vector Operations

- Vector: $1 \times \mathrm{N}$ matrix
- Interpretation: a line in N dimensional space
- Dot Product, Cross

Product, and Magnitude defined on vectors only

$$
\vec{v}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

Matrix Transpose

- Transpose: interchanging the rows and columns of a matrix.

$$
\mathbf{A}^{T}=\left[a_{j i}\right]
$$

- Properties of the Transpose
- $\left(\mathbf{A}^{T}\right)^{T}=\mathbf{A}$
- $(\mathbf{A}+\mathbf{B})^{T}=\mathbf{A}^{T}+\mathbf{B}^{T}$
- $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$

Inverse of a Matrix

- Some matrices have an inverse, such that:
$\mathbf{A A}^{-1}=\mathbf{I}$, and $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$
- By definition:
$\mathbf{I}^{-\mathbf{1}}=\mathbf{I}$, since $\mathbf{I}^{-1} \mathbf{I}=\mathbf{I}^{\mathbf{- 1}}$
- Inversion is tricky:
$(\mathbf{A B C})^{-1}=\mathbf{C}^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}$
Derived from non-commutativity property

Determinant of a Matrix

- Used for inversion
- If $\operatorname{det}(\mathrm{A})=0$, then A has

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$ no inverse

$$
\operatorname{det}(A)=a d-b c
$$

- Can be found using factorials, pivots, and cofactors.

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Complexity of Matrix Ops

- Consider a square matrix of $n \times n$ with N elements
- Matrix Addition

N additions, so either $O(N)$ or $O\left(n^{2}\right)$

- Scalar-Matrix multiplication

N additions, so either $O(N)$ or $O\left(n^{2}\right)$

- Matrix-Matrix multiplication
- Each element has a row-column dot product.
- Each element $=>n$ multiplications and $n-1$ additions
- Total is n^{3} multiplications and $n^{3}-n^{2}$ additions, $O\left(n^{3}\right)$

System of Linear Equations

- If our system of equations is linear, then we can write the system as a matrix times a vector of the unknowns equal to the constant terms.

$$
\text { System } 1
$$

$x=3$
$y=7$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 7\end{array}\right]$
System 2
$2 x+3 y=2$
$5 x-2 y=24$
$\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}2 \\ 24\end{array}\right]$

System of Linear Equations

- Examples in three-dimensions

$$
\left.\begin{array}{ll}
\begin{array}{l}
\text { System } 3 \\
4 x-2 y+z=11 \\
8 x+5 y-4 z=14 \\
-3 x+y+5 z=10
\end{array} & \begin{array}{l}
\text { System } 4 \\
4 x_{1}-2 x_{2}+x_{3}=11 \\
\\
-3
\end{array} \\
8 x_{1}+5 x_{2}-4 x_{3}=14 \\
12 x_{1}+3 x_{2}-3 x_{3}=25
\end{array}\right]\left[\begin{array}{ccc}
4 & -2 & 1 \\
8 & 5 & -4 \\
-3 \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
14 \\
10
\end{array}\right] \quad\left[\begin{array}{ccc}
4 & -2 & 1 \\
8 & 5 & -4 \\
12 & 3 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
11 \\
14 \\
25
\end{array}\right], ~ \$
$$

- Each of these examples can be expressed in a simple matrix form:

$$
A x=b
$$

- Where \mathbf{A} is a $n x n$ matrix, \boldsymbol{x} and \boldsymbol{b} are $n x 1$ column matrices (or vectors).

Special Matrices

- Some matrices have special powers or properties:
- Symmetric matrix
- Diagonal matrix
- Lower Triangular matrix
- Upper Triangular matrix
- Banded matrix

Symmetric Matrices

- Symmetric matrix - elements are symmetric about the diagonal.
$\left\{\mathrm{a}_{\mathrm{ij}}\right\}=\left\{\mathrm{a}_{\mathrm{j} i}\right\}$ for all i, j $\mathrm{a}_{12}=\mathrm{a}_{21}, \mathrm{a}_{33}=\mathrm{a}_{33}$, etc.
- Implies A is equal to its transpose.
$\mathbf{A}=\mathbf{A}^{\mathrm{T}}$

Diagonal Matrices

- A diagonal matrix has zero's everywhere except possibly along the diagonal.

$$
\left\{\mathrm{a}_{\mathrm{ij}}\right\}=0 \text { for all } i \neq j
$$

$$
D=\left[\begin{array}{ccc}
d_{11} & 0 & 0 \\
0 & d_{22} & 0 \\
0 & 0 & d_{33}
\end{array}\right]
$$

- Addition, scalar-matrix multiplication and matrixmatrix multiplication among diagonal matrices preserves diagonal matrices.

$$
\mathbf{C}=\mathbf{A B} \quad\left\{\mathrm{c}_{\mathrm{ij}}\right\}=0 \mathrm{i} \neq \mathrm{j} ;\left\{\mathrm{c}_{\mathrm{ij}}\right\}=\left\{\mathrm{a}_{\mathrm{ij}} \mathrm{~b}_{\mathrm{ij}}\right\}
$$

- All operations are only $\mathrm{O}(n)$.

Lower Triangular Matrix

- A lower-triangular matrix has a value of zero for all elements above the diagonal.

$$
\begin{aligned}
& \left\{1_{\mathrm{ij}}\right\}=0 \mathrm{i}<\mathrm{j} . \\
& L=\left[\begin{array}{cccc}
l_{11} & 0 & \cdots & 0 \\
l_{21} & l_{22} & & \vdots \\
\vdots & & \ddots & 0 \\
l_{n 1} & \cdots & l_{n n-1} & l_{n n}
\end{array}\right]
\end{aligned}
$$

- Can you solve the first equation?

Upper-Triangular Matrix

- A upper-triangular matrix has a value of zero for all elements below the diagonal.

$$
\begin{gathered}
\left\{\mathrm{u}_{\mathrm{ij}}\right\}=0 \mathrm{i}>\mathrm{j} . \\
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
0 & u_{22} & & \vdots \\
\vdots & & \ddots & u_{n-1 n} \\
0 & \cdots & 0 & u_{n n}
\end{array}\right]
\end{gathered}
$$

- Can you solve the last equation?

Banded Matrices

- A banded matrix has zeros as we move away from the diagonal.

$$
\left.\begin{array}{rl}
\left\{\mathrm{b}_{\mathrm{ij}}\right\} & =0 \mathrm{i}>\mathrm{j}+\mathrm{b} \text { and } \mathrm{i}<\mathrm{j}-\mathrm{b} . \\
B & =\left[\begin{array}{ccccccc}
b_{11} & b_{12} & \cdots & b_{1 b} & 0 & \cdots & 0 \\
b_{21} & b_{22} & \ddots & & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & & \ddots & 0 \\
b_{b 1} & & \ddots & \ddots & \ddots & & b_{b n} \\
0 & \ddots & & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & & \ddots & \ddots & b_{n-1 n} \\
0 & \cdots & 0 & b_{n b} & \cdots & b_{n n-1} & b_{n n}
\end{array}\right]
\end{array}\right] \quad \text { band-width } b
$$

