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Overview
1. Generating Psuedo-Random Numbers

2. Multidimensional Integration
a) Handling complex boundaries.
b) Handling complex integrands.
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Definition of random from Merriam-Webster:

Main Entry: random

Function: adjective

Date: 1565

1 a : lacking a definite plan, purpose, or pattern b : made, done, or
chosen at random <read random passages from the book>

2 a : relating to, having, or being elements or events with definite
probability of occurrence <random processes> b : being or relating to
a set or to an element of a set each of whose elements has equal
probability of occurrence <a random sample>; also : characterized by
procedures designed to obtain such sets or elements <random
sampling>
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Compare this to the definition of an
algorithm (dictionary.com):
algorithm

n : a precise rule (or set of rules) specifying how to
solve some problem.
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What is random number ? Is 3 ?
There is no such thing as single random number

Random number
A set of numbers that have nothing to do with the other
numbers in the sequence
In a uniform distribution of random numbers in
the range [0,1] , every number has the same
chance of turning up.
0.00001 is just as likely as 0.5000
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Random numbers have no defined sequence or
formulation. Thus, for any » random numbers,
each appears with equal probability.

If we restrict ourselves to the set of 32-bit
integers, then our numbers will start to repeat
after some very large n. The numbers thus clump
within this range and around these integers.

Due to this limitation, computer algorithms are
restricted to generating what we call pseudo-
random numbers.
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1953, Nicolaus Metropolis

Monte Carlo method refers to any method
that makes use of random numbers
Simulation of natural phenomena
Simulation of experimental apparatus
Numerical analysis
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Use some chaotic system (Balls in a barrel —
Lotto)

Use a process that is inherently random
Radioactive decay
Thermal noise
Cosmic ray arrival

Tables of a few million random numbers
Hooking up a random machine to a computer.
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The closest random number generator that can be
obtained by computer algorithm.

Usually a uniform distribution in the range [0,1]

Most pseudo random number generators have two
things in common

The use of large prime numbers

The use of modulo arithmetic
Algorithm generates integers between 0 and M, map
to zero and one.

X =1 /M

February 10, 2012 OSU/CIS 541 9

To generate 10 digits of integer
Start with one of 10 digits integers
Square it and take middle 10 digits from answer
Example: 57721566492 =33317792380594909291

The sequence appears to be random, but each number is determined
from the previous = not random.

Serious problem : Small numbers (0 or 1) are lumped together, it can
get itself to a short loop. For example:

61002 =37210000

21002 = 04410000

4100% = 16310000

51002 = 65610000
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Lehmer, 1948
Most typical so-called random number generator
Algorithm : 1,,, = (al, + ¢)mod(m)
a,c>=0,m>1Iac
Advantage :
Very fast

Problem :
Poor choice of the constants can lead to very poor sequence

The relationship will repeat with a period no greater than m
(around m/4)

C complier RAND MAX : m = 32767
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1960°s IBM
Algorithm

I, =(65539x1 )mod(2’")

This generator was later found to have a
serious problem
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Random mmber
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The class of multiplicative congruential random-number
generators has the form: . The choice of the coefficients is
critical. Example in book:

ln
X, = ﬁ
L, =(7°1, Jmod (2" -1)
I=1
L =7 = x =0.0000078263692594256108903445354152213e-6
1, =7 mod (23‘ —1)= 7 = x, =0.13153778814316624223402060672362
1, =7" mod (23‘ —1)= 1622650073 = x, = 0.7556053221950332271843372039424
l,= (75 *1622650073)m0d (23‘ —1)= 984943658 = x, = 0.45865013192344928715538665985474

x5 =0.53276723741216922058359217857178
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The number 2°' — 1 is a prime number, so the
remainder when a number is divided by a prime is

rather, well random.

Notes on the previous algorithm:
The I’s can reach a maximum value of the prime

number.

Dividin% by this number maps the integers into reals

within t
Why open interval?

e open interval (0,1.0).

¢, 1s called the seed of the random process. We can use

anything here.
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Multiply by a large
prime and take the
lower-order bits.

Here, we use higher-
bit integers to
generate 48-bit

x,., =(2736731631558x, +138) mod 2*
x, =1
x, = 2736731631696
x, =216915228954218
x, = 44664858844294
x, =123276424030766
x, = 162415264731678

29961701459390
random numbers. 51892741493630
Drand48() 251715685692926
37108576904446
163500647628542

February 10, 2012 OSU/CIS 541 16




Many more such algorithms.

U, = (8t -3 )Z/ln t is any large number

u

n

x, =—=
n 2q
Some do not use integers. Integers were just
more efficient on old computers.

What is this operation?

X .= (ﬂ: +X, )5 mod 1
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One way to improve the behavior of
random number generator

I =(axI _,+bxI ,)mod(m)

Has two initial seed and can have a period greater
than m
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Available in the CERN Library

Requires 103 initial seed
Period : about 1043

This seems to be the ultimate random number
generator
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Three key properties that you should
remember:

1. These algorithms generate periodic sequences
(hence not random). To see this, consider
what happens when a random number i1s
generated that matches our initial seed.
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1. The restriction to quantized numbers (a
finite-set), leads to problems in high-
dimensional space. Many points end up to be
co-planar. For ten-dimensions, and 32-bit
random numbers, this leads to only 126
hyper-planes in 10-dimensional space.
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Problems seen when
observed at the right
angle
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1968, Marsaglia
Randon numbers fall mainly in the planes

The replacement of the multiplier from
65539 to 69069 improves performance
significantly
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1. The individual digits in the random number
may not be independent. There may be a
higher probability that a 3 will follow a 5.
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Standard C Library

Type in “man rand” on your CIS Unix environment.
Rather poor pseudo-random number generator.
Only results in 16-bit integers.
Has a periodicity of 2**31 though.
Type in “man random” on your CIS Unix environment.
Slightly better pseudo-random number generator.
Results in 32-bit integers.
Used rand() to build an initial table.
Has a periodicity of around 2**69.

#include <stdlib.h>
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Drand48() — returns a pseudo-random
number in the range from zero to one, using
double precision.

Pretty good routine.

May not be as portable.
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Most of the algorithms have some state that
can be initialized. Many times this is the
last generated number (not thread safe).

You can set this state using the routines
initialization methods (srand, srandom or
srand48).

Why would you want to do this?
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Two reasons to initialize the seed:

1. The default state always generates the same
sequence of random numbers. Not really
random at all, particularly for a small set of
calls. Solution: Call the seed method with the
lower-order bits of the system clock.

2. You need a deterministic process that 1s
repeatable.
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Mapping random numbers

* Most computer library support for random
numbers only provides random numbers
over a fixed range.

* You need to map this to your desired range.

* Two common cases:
— Random integers from zero to some maximum.

— Random floating-point or double-precision
numbers mapped to the range zero to one.
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In 2D, we may want points randomly
distributed over some region.
Square — independently determine x and y.
Rectangle - 77?
Circle - 777
Wrong way — independently determine » and 0.
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Problem: What is the probability that 10 dice throws add
up exactly to 32?7

Exact Way. Calculate this exactly by counting all possible
ways of making 32 from 10 dice.

Approximate (Lazy) Way. Simulate throwing the dice
(say 500 times), count the number of times the results add
up to 32, and divide this by 500.

Lazy Way can get quite close to the correct answer
quite quickly.
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Sample Applications
Integration
System simulation
Computer graphics - Rendering.
Physical phenomena - radiation transport
Simulation of Bingo game
Communications - bit error rates
VLSI designs - tolerance analysis
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jj p(x)dx

Method 1: Analytical Integration
Method 2: Quadrature

Method 3: MC -- random sampling the area enclosed by a<x<b and
0<y<max (p(x))

#O
x)dx = max(p(x))(b-a T
[P GO Prewrs
P(x) P(x) 08
OO~ )
i
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Intuitively:

[ P = max(p(o)(6 - ———)

#O+#o}z

= Area, . * Probability {)7 </ (J_C )}
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Higher dimensional shapes can be complex.

How to construct weighted points in a grid
that covers the region R ?

0.4 Problem :
mean—sqguare distance from the origin
0.2+

o e [+ y")dxdy

E
T
0.2] %M\é ffdxdy

-0.44
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Grid must be fine enough !
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Integrate a function over a
complicated domain

D: complicated domain.

D’: Simple domain, superset of D.

Pick random points over D’:
Counting: N: points over D
N’: points over D’

Volume, N

P~

Volume, N'
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{1 inside R o

0.2

0.4
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D’: circle
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The probability of a random point
lying inside the unit circle:

P(z?+y’ <) =

Acireie _r

fl‘: quare 4

If pick a random point /N times and N
M of those times the point lies inside

the unit circle:

P°(£2+y2<1):

M

SN

If N becomes very large, P=P?
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Results:
N= 10,000
N= 100,000

N= 1,000,000
N =10,000,000
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Pi= 3.104385
Pi= 3.139545
Pi= 3.139668
Pi=3.141774

OSU/CIS 541

A
~

v
{
k1
4M
TN

B Caloulate P

39

B[=|

R ERTARE
e IS
A e

ety

40



OHIO

LINIYVERSITY

double x, y, pi;

const long m_nMaxSamples = 100000000;

long count=0;

for (long k=0; k<m_nMaxSamples; k++) {
x=2.0*drand48() — 1.0; // Map to the range [-1,1]
y=2.0*drand48() — 1.0;
if (x*x+y*y<=1.0) count++;

}
pi=4.0 * (double)count / (double)m nMaxSamples;
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We can find numerical value of a definite

integral by the definition:
N

}f(x)dx = lim ) f(x, )Ax

A)(—>ool

where points x; are uniformly spaced.
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Consider integral in d dimensions:

[f(X)dxdx,---dx, = 2 f(X. )Ax®

The error with N sampling points i1s

| [FOOX = 3 FOX)ax? o N
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From probability theory one can show that
the Monte Carlo error decreases with
sample size N as

1

€ X —

N

independent of dimension d.
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If the samples are not drawn uniformly but
with some probability distribution P(X), we
can compute by Monte Carlo:

JFOOPOOX = 1S ()

Where P(X) is normalized, [P(X)dX =1
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