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Monte-Carlo Integration

• Overview

1. Generating Psuedo-Random Numbers

2. Multidimensional Integration
a) Handling complex boundaries.

b) Handling complex integrands.
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Pseudo-Random Numbers

• Definition of random from Merriam-Webster:

• Main Entry: random
Function: adjective
Date: 1565
1 a : lacking a definite plan, purpose, or pattern b : made, done, or 
chosen at random <read random passages from the book>
2 a : relating to, having, or being elements or events with definite 
probability of occurrence <random processes> b : being or relating to 
a set or to an element of a set each of whose elements has equal 
probability of occurrence <a random sample>; also : characterized by 
procedures designed to obtain such sets or elements <random 
sampling>
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Random Computer Calculations?

• Compare this to the definition of an 

algorithm (dictionary.com):

– algorithm

• n : a precise rule (or set of rules) specifying how to 
solve some problem.
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Random Number

• What is random number ?  Is 3 ?

– There is no such thing as single random number

• Random number 

– A set of numbers that have nothing to do with the other 
numbers in the sequence

• In a uniform distribution of random numbers in 

the range [0,1] , every number has the same 

chance of turning up.

– 0.00001 is just as likely as 0.5000 
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Random v. Pseudo-random

• Random numbers have no defined sequence or 
formulation. Thus, for any n random numbers, 
each appears with equal probability.

• If we restrict ourselves to the set of 32-bit 
integers, then our numbers will start to repeat 
after some very large n. The numbers thus clump 
within this range and around these integers. 

• Due to this limitation, computer algorithms are 
restricted to generating what we call pseudo-
random numbers.



February 10, 2012 OSU/CIS 541 7

Monte-Carlo Methods

• 1953, Nicolaus Metropolis 

• Monte Carlo method refers to any method 

that makes use of random numbers

– Simulation of natural phenomena

– Simulation of experimental apparatus 

– Numerical analysis

February 10, 2012 OSU/CIS 541 8

How to generate random 

numbers ? 

• Use some chaotic system  (Balls in a barrel – 

Lotto) 

• Use a process that is inherently random 

– Radioactive decay

– Thermal noise

– Cosmic ray arrival 

• Tables of a few million random numbers 

• Hooking up a random machine to a computer. 
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Pseudo Random number 

generators 

• The closest random number generator that can be 
obtained by computer algorithm. 

• Usually a uniform distribution in the range [0,1] 

• Most pseudo random number generators have two 
things in common

– The use of large prime numbers 

– The use of modulo arithmetic

• Algorithm generates integers between 0 and M, map 
to zero and one. 
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An early example (John Von 

Neumann,1946)

• To generate 10 digits of integer

– Start with one of 10 digits integers 

– Square it and take middle 10 digits from answer

– Example:    57721566492 = 33317792380594909291

• The sequence appears to be random, but each number is determined 

from the previous ! not random.

• Serious problem : Small numbers (0 or 1) are lumped together, it can 

get itself to a short loop. For example:
• 61002 = 37210000

• 21002 = 04410000

• 41002 = 16810000

• 51002 = 65610000
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Linear Congruential Method

• Lehmer, 1948

• Most typical so-called random number generator

• Algorithm :

– a,c >=0 , m > I0,a,c 

• Advantage : 
– Very fast

• Problem : 
– Poor choice of the constants can lead to very poor sequence

– The relationship will repeat with a period no greater than m 
(around m/4)

• C complier RAND_MAX : m = 32767
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RANDU Generator

• 1960’s  IBM

• Algorithm

• This generator was later found to have a 

serious problem 
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1D and 2D Distribution of 

RANDU
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Random Number Algorithms

• The class of multiplicative congruential random-number 
generators has the form: . The choice of the coefficients is 
critical. Example in book:
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Use of Prime Numbers

• The number 231 – 1 is a prime number, so the 
remainder when a number is divided by a prime is 
rather, well random.

• Notes on the previous algorithm:
– The l’s can reach a maximum value of the prime 

number.

– Dividing by this number maps the integers into reals 
within the open interval (0,1.0).

• Why open interval?

– l0 is called the seed of the random process. We can use 
anything here.
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Other Algorithms

• Multiply by a large 
prime and take the 
lower-order bits. 

• Here, we use higher-
bit integers to 
generate 48-bit 
random numbers.

• Drand48()
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Other Algorithms

• Many more such algorithms. 

• Some do not use integers. Integers were just 

more efficient on old computers.

t is any large number

What is this operation?
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Other Algorithms 

• One way to improve the behavior of

 random number generator
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The RANMAR generator

• Available in the CERN Library 

– Requires 103 initial seed

– Period : about 1043

– This seems to be the ultimate random number 

generator 
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Properties of Pseudo-Random 

Numbers

• Three key properties that you should 

remember:

1. These algorithms generate periodic sequences 

(hence not random). To see this, consider 

what happens when a random number is 

generated that matches our initial seed.
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Properties of Pseudo-Random 

Numbers

1. The restriction to quantized numbers (a 

finite-set), leads to problems in high-

dimensional space. Many points end up to be 

co-planar. For ten-dimensions, and 32-bit 

random numbers, this leads to only 126 

hyper-planes in 10-dimensional space.
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3D Distribution from RANDU
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The Marsaglia effect

• 1968, Marsaglia 

• Randon numbers fall mainly in the planes

• The replacement of the multiplier from 

65539 to 69069 improves performance 

significantly
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Properties of Pseudo-Random 

Numbers

1. The individual digits in the random number 

may not be independent. There may be a 

higher probability that a 3 will follow a 5.
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Available functions

• Standard C Library
– Type in “man rand” on your CIS Unix environment.

• Rather poor pseudo-random number generator.

• Only results in 16-bit integers.

• Has a periodicity of 2**31 though.

– Type in “man random” on your CIS Unix environment.
• Slightly better pseudo-random number generator.

• Results in 32-bit integers.

• Used rand() to build an initial table.

• Has a periodicity of around 2**69.

– #include <stdlib.h>
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Available functions

• Drand48() – returns a pseudo-random 

number in the range from zero to one, using 

double precision.

– Pretty good routine.

– May not be as portable.
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Initializing with Seeds 

• Most of the algorithms have some state that 

can be initialized. Many times this is the 

last generated number (not thread safe).

• You can set this state using the routines 

initialization methods (srand, srandom or 

srand48).

– Why would you want to do this? 
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Initializing with Seeds

• Two reasons to initialize the seed:

1. The default state always generates the same 

sequence of random numbers. Not really 

random at all, particularly for a small set of 

calls. Solution: Call the seed method with the 

lower-order bits of the system clock.

2. You need a deterministic process that is 

repeatable.



February 10, 2012 OSU/CIS 541 29

Initializing with Seeds

• We do not want the mountain to change as 

the camera moves.
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Mapping random numbers

• Most computer library support for random 
numbers only provides random numbers 
over a fixed range.

• You need to map this to your desired range.

• Two common cases:
– Random integers from zero to some maximum.

– Random floating-point or double-precision 
numbers mapped to the range zero to one.
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Non-rectangular Areas

• In 2D, we may want points randomly 

distributed over some region.

– Square – independently determine x and y.

– Rectangle - ???

– Circle - ???

• Wrong way – independently determine r and !.
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Monte-Carlo Techniques

• Problem: What is the probability that 10 dice throws add 
up exactly to 32?

• Exact Way. Calculate this exactly by counting all possible 
ways of making 32 from 10 dice. 

• Approximate (Lazy) Way. Simulate throwing the dice 
(say 500 times), count the number of times the results add 
up to 32, and divide this by 500. 

• Lazy Way can get quite close to the correct answer 
quite quickly.
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Monte-Carlo Techniques

• Sample Applications
– Integration

– System simulation

– Computer graphics - Rendering.

– Physical phenomena - radiation transport 

– Simulation of Bingo game

– Communications - bit error rates 

– VLSI designs - tolerance analysis 
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P(x)

a b x

P(x)

a b

Simple Example:    .

• Method 1: Analytical Integration

• Method 2: Quadrature

• Method 3: MC -- random sampling the area enclosed by a<x<b and 

0<y<max (p(x))
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Simple Example:    .

• Intuitively:
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Shape of High Dimensional 

Region

• Higher dimensional shapes can be complex. 

• How to construct weighted points in a grid 

that covers the region R ? 
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Integration over simple shape ?
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• Integrate a function over a 
complicated domain

– D: complicated domain.

– D’: Simple domain, superset of D.

• Pick random points over D’:

• Counting: N: points over D

•             N’: points over D’ 

D

D’: rectangular

D

D’: circle

Monte-Carlo Integration
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• The probability of a random point 

lying inside the unit circle:

• If pick a random point N times and 

M of those times the point lies inside 

the unit circle:

• If N becomes very large,      P=P0 
"

N

M

(x,y)

Estimating # using Monte Carlo
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Estimating # using Monte Carlo

• Results:

– N =  10,000 Pi= 3.104385

– N =  100,000 Pi= 3.139545

– N =  1,000,000 Pi= 3.139668

– N =  10,000,000 Pi= 3.141774

– …
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Estimating # using Monte Carlo

 double x, y, pi;

 const long m_nMaxSamples = 100000000;

 long count=0;

 for (long k=0; k<m_nMaxSamples; k++) {
 x=2.0*drand48() – 1.0;  // Map to the range [-1,1]

 y=2.0*drand48() – 1.0;

 if (x*x+y*y<=1.0) count++;

}

pi=4.0 * (double)count / (double)m_nMaxSamples;
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Standard Quadrature

• We can find numerical value of a definite 

integral by the definition:

 where points xi are uniformly spaced.
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Error in Quadrature

• Consider integral in d dimensions:

• The error with N  sampling points is
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Monte Carlo Error

• From probability theory one can show that 
the Monte Carlo error decreases with 
sample size N as

 independent of dimension d.
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General Monte Carlo

• If the samples are not drawn uniformly but 

with some probability distribution P(X), we 

can compute by Monte Carlo:

Where P(X) is normalized, 


