Monte-Carlo Techniques

Roger Crawfis

Monte-Carlo Integration

- Overview

1. Generating Psuedo-Random Numbers
2. Multidimensional Integration
a) Handling complex boundaries.
b) Handling complex integrands.

Pseudo-Random Numbers

- Definition of random from Merriam-Webster:
- Main Entry: random

Function: adjective
Date: 1565
$1 \mathbf{a}$: lacking a definite plan, purpose, or pattern $\mathbf{b}:$ made, done, or chosen at random <read random passages from the book>
$\mathbf{2} \mathbf{a}$: relating to, having, or being elements or events with definite probability of occurrence <random processes> \mathbf{b} : being or relating to a set or to an element of a set each of whose elements has equal probability of occurrence <a random sample>; also : characterized by procedures designed to obtain such sets or elements <random sampling>

- Compare this to the definition of an algorithm (dictionary.com):
- algorithm
- n : a precise rule (or set of rules) specifying how to solve some problem.

Random Number

- What is random number? Is 3 ?
- There is no such thing as single random number
- Random number
- A set of numbers that have nothing to do with the other numbers in the sequence
- In a uniform distribution of random numbers in the range [0,1] , every number has the same chance of turning up.
0.00001 is just as likely as 0.5000

Random v. Pseudo-random

- Random numbers have no defined sequence or formulation. Thus, for any n random numbers, each appears with equal probability.
- If we restrict ourselves to the set of 32-bit integers, then our numbers will start to repeat after some very large n. The numbers thus clump within this range and around these integers.
- Due to this limitation, computer algorithms are restricted to generating what we call pseudorandom numbers.

Monte-Carlo Methods

- 1953, Nicolaus Metropolis
- Monte Carlo method refers to any method that makes use of random numbers
- Simulation of natural phenomena
- Simulation of experimental apparatus
- Numerical analysis

How to generate random

numbers?

- Use some chaotic system (Balls in a barrel Lotto)
- Use a process that is inherently random
- Radioactive decay
- Thermal noise
- Cosmic ray arrival
- Tables of a few million random numbers
- Hooking up a random machine to a computer.

Pseudo Random number

generators

- The closest random number generator that can be obtained by computer algorithm.
- Usually a uniform distribution in the range $[0,1]$
- Most pseudo random number generators have two things in common
- The use of large prime numbers

The use of modulo arithmetic

- Algorithm generates integers between 0 and M, map to zero and one.

$$
X_{n}=I_{n} / M
$$

An early example (John Von Neumann,1946)

- To generate 10 digits of integer
- Start with one of 10 digits integers
- Square it and take middle 10 digits from answer
- Example: $5772156649^{2}=33317792380594909291$
- The sequence appears to be random, but each number is determined from the previous \rightarrow not random.
- Serious problem : Small numbers (0 or 1) are lumped together, it can get itself to a short loop. For example:
- $6100^{2}=37 \underline{210000}$
- $2100^{2}=04 \underline{410000}$
- $4100^{2}=16810000$
- $5100^{2}=65610000$
- Lehmer, 1948
- Most typical so-called random number generator
- Algorithm : $I_{n+1}=\left(a I_{n}+c\right) \bmod (m)$

$$
a, c>=0, m>I_{0}, a, c
$$

- Advantage:

Very fast

- Problem:

Poor choice of the constants can lead to very poor sequence

- The relationship will repeat with a period no greater than m (around m/4)
- C complier RAND_MAX : $m=32767$

RANDU Generator

- 1960's IBM
- Algorithm

$$
I_{n+1}=\left(65539 \times I_{n}\right) \bmod \left(2^{31}\right)
$$

- This generator was later found to have a serious problem

OHio Random Number Algorithms

- The class of multiplicative congruential random-number generators has the form: . The choice of the coefficients is critical. Example in book:

$$
\begin{aligned}
& x_{n}=\frac{l_{n}}{2^{31}-1} \\
& l_{n+1}=\left(7^{5} l_{n}\right) \bmod \left(2^{31}-1\right) \\
& l_{0}=1 \\
& l_{1}=7^{5} \Rightarrow x_{1}=0.0000078263692594256108903445354152213 \mathrm{e}-6 \\
& l_{2}=7^{10} \bmod \left(2^{31}-1\right)=7^{10} \quad \Rightarrow x_{2}=0.13153778814316624223402060672362 \\
& l_{3}=7^{15} \bmod \left(2^{31}-1\right)=1622650073 \quad \Rightarrow x_{3}=0.7556053221950332271843372039424 \\
& l_{4}=\left(7^{5} * 1622650073\right) \bmod \left(2^{31}-1\right)=984943658 \quad \Rightarrow x_{4}=0.45865013192344928715538665985474 \\
& x_{5}=0.53276723741216922058359217857178
\end{aligned}
$$

Use of Prime Numbers

- The number $2^{31}-1$ is a prime number, so the remainder when a number is divided by a prime is rather, well random.
- Notes on the previous algorithm:

The l 's can reach a maximum value of the prime number.

- Dividing by this number maps the integers into reals within the open interval $(0,1.0)$.
- Why open interval?
$-\ell_{0}$ is called the seed of the random process. We can use anything here.

Other Algorithms

- Multiply by a large prime and take the lower-order bits.
- Here, we use higherbit integers to generate 48-bit random numbers.
- Drand48()
$x_{n+1}=\left(2736731631558 x_{n}+138\right) \bmod 2^{48}$
$x_{0}=1$
$x_{1}=2736731631696$
$x_{2}=216915228954218$
$x_{3}=44664858844294$
$x_{4}=123276424030766$
$x_{5}=162415264731678$
29961701459390
51892741493630
251715685692926
37108576904446
163500647628542

Other Algorithms

- Many more such algorithms.

$$
\begin{array}{rr}
u_{n+1}=(8 t-3) u_{n} \\
x_{n}=\frac{u_{n}}{2^{q}}
\end{array} \quad \begin{gathered}
t \text { is any large number } \\
\end{gathered} \quad \text { What is this operation? }
$$

- Some do not use integers. Integers were just more efficient on old computers.

$$
x_{n+1}=\left(\pi+x_{n}\right)^{5} \bmod 1
$$

Other Algorithms

- One way to improve the behavior of random number generator

$$
I_{n}=\left(a \times I_{n-1}+b \times I_{n-2}\right) \bmod (m)
$$

\qquad Has two initial seed and can have a period greater than m

- Available in the CERN Library
- Requires 103 initial seed
- Period : about 10^{43}
- This seems to be the ultimate random number generator

Properties of Pseudo-Random

Numbers

- Three key properties that you should remember:

1. These algorithms generate periodic sequences (hence not random). To see this, consider what happens when a random number is generated that matches our initial seed.

Properties of Pseudo-Random

Numbers

1. The restriction to quantized numbers (a finite-set), leads to problems in highdimensional space. Many points end up to be co-planar. For ten-dimensions, and 32-bit random numbers, this leads to only 126 hyper-planes in 10-dimensional space.

The Marsaglia effect

- 1968, Marsaglia
- Randon numbers fall mainly in the planes
- The replacement of the multiplier from 65539 to 69069 improves performance significantly

Properties of Pseudo-Random

Numbers

1. The individual digits in the random number may not be independent. There may be a higher probability that a 3 will follow a 5 .

- Standard C Library
- Type in "man rand" on your CIS Unix environment.
- Rather poor pseudo-random number generator.
- Only results in 16-bit integers.
- Has a periodicity of $2 * * 31$ though.
- Type in "man random" on your CIS Unix environment.
- Slightly better pseudo-random number generator.
- Results in 32-bit integers.
- Used rand() to build an initial table.
- Has a periodicity of around $2 * * 69$.
- \#include < stdlib.h>
- Drand48() - returns a pseudo-random number in the range from zero to one, using double precision.
- Pretty good routine.
- May not be as portable.

Initializing with Seeds

- Most of the algorithms have some state that can be initialized. Many times this is the last generated number (not thread safe).
- You can set this state using the routines initialization methods (srand, srandom or srand48).
- Why would you want to do this?

Initializing with Seeds

- Two reasons to initialize the seed:

1. The default state always generates the same sequence of random numbers. Not really random at all, particularly for a small set of calls. Solution: Call the seed method with the lower-order bits of the system clock.
2. You need a deterministic process that is repeatable.

Mapping random numbers

- Most computer library support for random numbers only provides random numbers over a fixed range.
- You need to map this to your desired range.
- Two common cases:
- Random integers from zero to some maximum.
- Random floating-point or double-precision numbers mapped to the range zero to one.
- In 2D, we may want points randomly distributed over some region.
- Square - independently determine x and y.
- Rectangle - ???
- Circle - ???
- Wrong way - independently determine r and θ.

Monte-Carlo Techniques

- Problem: What is the probability that 10 dice throws add up exactly to 32 ?
- Exact Way. Calculate this exactly by counting all possible ways of making 32 from 10 dice.
- Approximate (Lazy) Way. Simulate throwing the dice (say 500 times), count the number of times the results add up to 32 , and divide this by 500 .
- Lazy Way can get quite close to the correct answer quite quickly.

Monte-Carlo Techniques

- Sample Applications
- Integration
- System simulation
- Computer graphics - Rendering.
- Physical phenomena - radiation transport
- Simulation of Bingo game
- Communications - bit error rates
- VLSI designs - tolerance analysis

- Intuitively:

$$
\begin{aligned}
& \int_{a}^{b} p(x) d x \approx \max (p(x))(b-a)\left(\frac{\# \bigcirc}{\# O+\# \bigcirc} \frac{1}{\dot{j}}\right. \\
& \Rightarrow \text { Area }_{B o x} \bullet \operatorname{Probability}\{\bar{y} \leq f(\bar{x})\}
\end{aligned}
$$

Shape of High Dimensional

 Region- Higher dimensional shapes can be complex.
- How to construct weighted points in a grid that covers the region R ?

Integration over simple shape?

\longrightarrow Grid must be fine enough!

Monte-Carlo Integration

- Integrate a function over a complicated domain

D: complicated domain.
D': Simple domain, superset of D.

- Pick random points over D':
- Counting: N: points over D
- N^{\prime} : points over D^{\prime}

$$
\frac{\text { Volume }_{D}}{\text { Volume }_{D^{\prime}}} \approx \frac{N}{N^{\prime}}
$$

ohiolestimating π using Monte Carlo

- The probability of a random point lying inside the unit circle:

$$
\mathbf{P}\left(x^{2}+y^{2}<1\right)=\frac{A_{\text {circle }}}{A_{\text {square }}}=\frac{\pi}{4}
$$

- If pick a random point N times and M of those times the point lies inside
 the unit circle:

$$
\mathbf{P}^{\circ}\left(x^{2}+y^{2}<1\right) \underset{\rightarrow}{=} \frac{M}{N}
$$

- If N becomes very large, $\quad \mathrm{P}=\mathrm{P}^{0}$

$$
\pi=\frac{4 \cdot M}{N}
$$

- Results:
$-\mathbf{N}=10,000$
$\mathrm{Pi}=3.104385$
$-\mathbf{N}=100,000$
$\mathbf{P i}=3.139545$
$-\mathbf{N}=1,000,000$
$\mathrm{Pi}=3.139668$
$-\mathbf{N}=10,000,000$
$\mathbf{P i}=\mathbf{3 . 1 4 1 7 7 4}$

-...
double $x, y, p i ;$
const long m_nMaxSamples $=100000000$;
long count $=0$;
for (long $\mathbf{k}=\mathbf{0} ; \mathbf{k}<\mathbf{m}$ _nMaxSamples; $\mathbf{k}++$) \{
$\mathbf{x}=\mathbf{2 . 0 *}$ drand48() - $\mathbf{1 . 0}$; // Map to the range $[-1,1]$
$\mathrm{y}=2.0$ *drand48() - 1.0;
if ($\mathbf{x} * \mathrm{x}+\mathrm{y} * \mathrm{y}<=1.0$) count++;
\}
pi=4.0 * (double)count / (double)m_nMaxSamples;

Standard Quadrature

- We can find numerical value of a definite integral by the definition:
$\int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow \infty} \sum_{i=1}^{N} f\left(x_{i}\right) \Delta x$
where points x_{i} are uniformly spaced.

Error in Quadrature

- Consider integral in d dimensions:

$$
\int_{\Omega} f(X) d x_{1} d x_{2} \cdots d x_{d} \approx \sum f\left(X_{i}\right) \Delta x^{d}
$$

- The error with N sampling points is

$$
\left|\int f(X) d X-\sum f(X) \Delta x^{d}\right| \propto N^{-1 / d}
$$

Monte Carlo Error

- From probability theory one can show that the Monte Carlo error decreases with sample size N as
$\varepsilon \propto \frac{1}{\sqrt{\mathrm{~N}}}$
independent of dimension d.

General Monte Carlo

- If the samples are not drawn uniformly but with some probability distribution $\mathrm{P}(X)$, we can compute by Monte Carlo:

$$
\int f(X) P(X) d X=\frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)
$$

Where $P(X)$ is normalized, $\int P(X) d X=1$

