Numerical Integration

Roger Crawfis

Quadrature

- We talk in terms of Quadrature Rules
- 1. The process of making something square. 2.

Mathematics The process of constructing a square equal in area to a given surface. 3. Astronomy A configuration in which the position of one celestial body is 90° from another celestial body, as measured from a third.

- The American Heritage ${ }^{\circledR}$ Dictionary: Fourth Edition. 2000

Outline

- Definite Integrals
- Lower and Upper Sums
- Reimann Integration or Reimann Sums
- Uniformly-spaced samples
- Trapezoid Rules
- Romberg Integration
- Simpson's Rules
- Adaptive Simpson’s Scheme
- Non-uniformly spaced samples
- Gaussian Quadrature Formulas

Motivation

What does an integral represent?

$$
\int_{a}^{b} f(x) d x=\text { area } \quad \int_{c}^{d} \int_{a}^{b} f(x) d x d y=\text { volume }
$$

Basic definition of an integral:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x
$$

where

$$
\Delta x=\frac{b-a}{n}
$$

sum of height \times width

Motivation

- Evaluate the integral, $I=\int_{a}^{b} f(x) d x$ without doing the calculation analytically.
- Necessary when either:
- Integrand is too complicated to integrate analytically

$$
\int_{0}^{2} \frac{2+\cos (1+\sqrt{x})}{\sqrt{1+0.5 x}} e^{0.5 x} d x
$$

- Integrand is not precisely defined by an equation, i.e., we are given a set of data $\left(x_{i}, y_{i}\right), i=1,2,3, \ldots, n$

Reimann Integral Theorem

- Integration is a summing process. Thus virtually all numerical approximations can be represented by

$$
I=\int_{a}^{b} f(x) d x=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)+E_{t}
$$

in which w_{i} are the weights, x_{i} are the sampling points, and E_{t} is the truncation error

- Valid for any function that is continuous on the closed and bounded interval of integration.

OHHO SHIE SHE
 Partitioning the Integral

- The most common numerical integration formula is based on equally spaced data points.

$$
\int_{x_{0}}^{x_{n}} f(x) d x
$$

- Divide $\left[x_{0}, x_{n}\right]$ into n intervals $(n \geq 1)$

$$
\int_{x_{0}}^{x_{n}} f(x) d x=\int_{x_{0}}^{x_{1}} f(x)+\int_{x_{1}}^{x_{2}} f(x)+\cdots+\int_{x_{n-1}}^{x_{n}} f(x)
$$

Upper Sums

- Assume that $f(x)>0$ everywhere.
- If within each interval, we could determine the maximum value of the function, then we have:

$$
\int_{x_{0}}^{x_{i}} f(x) \leq \sum_{i=0}^{n-1} M_{i}\left(x_{i+1}-x_{i}\right)
$$

- where

$$
M_{i}=\sup \left\{f(x): x_{i} \leq x \leq x_{i+1}\right\}
$$

Upper Sums

- Graphically:

Lower Sums

- Likewise, still assuming that $f(x)>0$ everywhere.
- If within each interval, we could determine the minimum value of the function, then we have:

$$
\int_{x_{0}}^{x_{n}} f(x) \geq \sum_{i=0}^{n-1} m_{i}\left(x_{i+1}-x_{i}\right)
$$

- where

$$
m_{i}=\inf \left\{f(x): x_{i} \leq x \leq x_{i+1}\right\}
$$

Finer Partitions

- We now have a bound on the integral of the function for some partition ($x_{0}, . ., x_{n}$):

$$
\sum_{i=0}^{n-1} m_{i}\left(x_{i+1}-x_{i}\right) \leq \int_{x_{0}}^{x_{0}} f(x) \leq \sum_{i=0}^{n-1} M_{i}\left(x_{i+1}-x_{i}\right)
$$

- As $n \rightarrow \infty$, one would assume that the sum of the upper bounds and the sum of the lower bounds approach each other.
- This is the case for most functions, and we call these Riemann-integrable functions.

OHHO SHIE SHE
 Bounding the Integral

- Graphically

앵

- Halving each interval (much like Lab1):

Bounding the Integral

- One more time:

Monotonic Functions

- Note that if a function is monotonically increasing (or decreasing), then the lower sum corresponds to the left partition values, and the upper sum corresponds to the right partition values.

Lab1 and Integration

- Thinking back to lab1, what were the limits or the integration?
- Is the sin function monotonic on this interval?
- Should the Reiman sum be an upper or lower sum?

Polynomial Approximation

- Rather than search for the maximum or minimum, we replace $f(x)$ with a known and simple function.
- Within each interval we approximate $f(x)$ by an $m^{\text {th }}$ order polynomial.

$$
p_{m}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} x^{m}
$$

Newton-Cotes Formulas

- The m's (order of the polynomials) may be the same or different.

$$
\int_{x_{0}}^{x_{n}} f(x) d x=\int_{x_{0}}^{x_{0+m}} p_{m_{1}}(x) d x+\int_{x_{0}+m_{m}}^{x_{x+m+m}} p_{m_{2}}(x) d x+\ldots+\int_{x_{n-m}+m_{n}}^{x_{n}} p_{m_{n}}(x) d x
$$

- Different choices for m 's lead to different formulas:

m	Polynomial	Formula	Error
1	linear	Trapezoid	$O\left(h^{2}\right)$
2	quadratic	Simpson's $1 / 3$	$O\left(h^{4}\right)$
3	cubic	Simpson's 3/8	$O\left(h^{4}\right)$

Trapezoid Rule

- Simplest way to approximate the area under a curve - using first order polynomial (a straight line)
- Using Newton's form of the interpolating polynomial: $p_{1}(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$
- Now, solve for the integral:

$$
I=\int_{a}^{b} f(x) d x \approx \int_{a}^{b} p_{1}(x) d x
$$

Trapezoid Rule

$$
I \approx \int_{a}^{b}\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right] d x
$$

$\overbrace{I \approx \frac{(b-a)}{2}[f(a)+f(b)]}^{\text {Trapezoid Rule }}$
$I \approx$ width \times average height

Trapezoid Rule

- Improvement?

Trapezoid Rule Error

- The integration error is:

$$
E_{t}=-\frac{1}{12} f^{\prime \prime}(\xi) h^{3}=-\frac{(b-a)}{12} f^{\prime \prime}(\xi) h^{2} \quad O\left(h^{3}\right)
$$

- Where $h=b-a$ and ξ is an unknown point where $a<\xi<b$ (intermediate value theorem)
- You get exact integration if the function, f, is linear ($f^{\prime \prime}=0$)

Example

Integrate from $f(x)=e^{-x^{2}} \quad a=0$ to $b=2$
Use trapezoidal rule:

$$
\begin{aligned}
I & =\int_{0}^{2} e^{-x^{2}} d x \\
& \approx \frac{(b-a)}{2}[f(a)+f(b)]=\frac{(2-0)}{2}[f(2)+f(0)] \\
& =1 \times\left(e^{-4}+e^{0}\right)=1.0183
\end{aligned}
$$

Example

Estimate error: $E_{t}=-\frac{1}{12} f^{\prime \prime}(\xi) h^{3}$
Where $h=b-a$ and $a<\xi<b$
Don't know ξ - use average value

$$
\begin{array}{cl}
f^{\prime \prime}(x)=\left(-2+4 x^{2}\right) e^{-x^{2}} & f^{\prime \prime}(0)=-2 \\
h=2-0=2 & f^{\prime \prime}(2)=0.2564 \\
E_{t} \approx E_{a}=-\frac{2^{3}}{12} \frac{\left[f^{\prime \prime}(0)+f^{\prime \prime}(2)\right]}{2}=0.58 \\
\text { OSU/CSE 541 }
\end{array}
$$

Composite Trapezoid Rule

- If we do multiple intervals, we can avoid duplicate function evaluations and operations:
- Use $n+1$ equally spaced points.
- Each interval has: $h=\frac{b-a}{n}$
- Break up the limits of integration and expand.

$$
I=\int_{a}^{a+h} f(x) d x+\int_{a+h}^{a+2 h} f(x) d x+\ldots+\int_{b-h}^{b} f(x) d x
$$

OHiO Composite Trapezoid Rule

- Substituting the trapezoid rule for each integral.

$$
\begin{aligned}
I & =\int_{a}^{a+h} f(x) d x+\quad \int_{a+h}^{a+2 h} f(x) d x+\ldots+\int_{b-h}^{b} f(x) d x \\
& =\frac{(a+h-a)}{2}[f(a)+f(a+h)]+\frac{(a+2 h-a-h)}{2}[f(a+h)+f(a+2 h)] \\
& +\ldots+\frac{(b-b+h)}{2}[f(b-h)+f(b)]
\end{aligned}
$$

- Results in the Composite Trapezoid Formula:

$$
I=\frac{h}{2}\left[f(a)+2 \sum_{i=1}^{n-1} f(a+i h)+f(b)\right]
$$

Composite Trapezoid Rule

- Think of this as the width times the average height.

$$
\begin{aligned}
& I=\frac{h}{2}\left[f(a)+2 \sum_{i=1}^{n-1} f(a+i h)+f(b)\right] \\
& =\underbrace{(b-a)}_{\text {width }} \underbrace{f(a)+2 \sum_{i=1}^{n-1} f(a+i h)+f(b)}_{\text {Average height }}
\end{aligned}
$$

Error

- The error can be estimated as:

$$
E_{a}=\frac{(b-a) h^{2}}{12} \bar{f}^{\prime \prime}=\frac{(b-a)^{3}}{12 n^{2}} \overline{f^{\prime \prime}} O\left(h^{2}\right)
$$

- Where, $\bar{f}^{\prime \prime}$ is the average second derivative.
- If n is doubled, $h \rightarrow h / 2$ and $E_{a} \rightarrow E_{a} / 4$
- Note, that the error is dependent upon the width of the area being integrated.

Example

- Integrate: $f(x)=0.3+20 x-140 x^{2}+730 x^{3}-810 x^{4}+200 x^{5}$
- from $a=0.2$ to $b=0.8$

Example

- A single application of the Trapezoid rule.

$$
\begin{aligned}
& I=(b-a) \frac{f(a)+f(b)}{2} \\
& =(0.8-0.2) \frac{34.22+3.81}{2} \\
& =11.26
\end{aligned}
$$

- Error:

$$
E_{t}=-\frac{1}{12} f^{\prime \prime}(\xi)(b-a)^{3}
$$

Example

- We don't know ξ so approximate with average $f^{\prime \prime}$

$$
\begin{aligned}
& f^{\prime}(x)=20-280 x+2190 x^{2}-3240 x^{3}+1000 x^{4} \\
& f^{\prime \prime}(x)=-280+4380 x-9720 x^{2}+4000 x^{3}
\end{aligned}
$$

$$
\bar{f}^{\prime \prime}(x)=\frac{\int_{0.2}^{0.8} f^{\prime \prime} d x}{0.8-0.2}
$$

$$
=\frac{f^{\prime}(0.8)-f^{\prime}(0.2)}{0.8-0.2}=-131.6
$$

Example

- The error can thus be estimated as:

$$
\begin{aligned}
E_{t} & =\frac{(b-a) h^{2}}{12} \bar{f}^{\prime \prime}=\frac{(b-a)^{3}}{12 n^{2}} \bar{f}^{\prime \prime} \\
& =-\frac{1}{12}(-131.6)(0.8-0.2)^{3}=2.37
\end{aligned}
$$

True value of integral is 12.82 . Trapezoid
rule is 11.26 - within approx error $-E_{t}$ is 12%

Using Three Intervals

- Use intervals (0.2,0.4),(0.4,0.6),(0.6,0.8): $-(n=3, h=0.2)$

$$
\begin{aligned}
I & =(b-a) \frac{f(a)+2 \sum_{i=1}^{n-1} f(a+i h)+f(b)}{2 n} \\
& =(0.8-0.2) \frac{f(0.2)+2[f(0.4)+f(0.6)]+f(0.8)}{(2)(3)} \\
& =0.6 \frac{3.31+2(13.93+30.16)+34.22}{6} \\
& =12.57
\end{aligned}
$$

True value of integral is 12.82

Using Six Intervals

- Use intervals (0.2,0.3),(0.3,0,4), etc.
$-(n=6, h=0.1)$

$$
\begin{aligned}
I & =(0.8-0.2) \frac{f(0.2)+2[f(0.3)+f(0.4)+f(0.5)+f(0.6)+f(0.7)]+f(0.8)}{(2)(6)} \\
& =0.6 \frac{3.31+2(7.34+13.93+22.18+30.16+35.22)+34.22}{12} \\
& =12.76
\end{aligned}
$$

E_{t} is now 0.5%

Sitil Multi-dimensional Integration

- Consider a two-dimensional case.

$$
\begin{aligned}
& \qquad \begin{aligned}
& \int_{0}^{1} \int_{0}^{1} f(x, y) d x d y \approx \int_{0}^{1} \sum_{i=0}^{n} A_{i} f\left(\frac{i}{n}, y\right) d y \\
&=\sum_{i=0}^{n} A_{i} \int_{0}^{1} f\left(\frac{i}{n}, y\right) d y \\
& \approx \sum_{i=0}^{n} A_{i} \sum_{j=0}^{n} A_{j} f\left(\frac{i}{n}, \frac{j}{n}\right) \\
&=\sum_{i=0}^{n} \sum_{j=0}^{n} A_{i} A_{j} f\left(\frac{i}{n}, \frac{j}{n}\right) \\
& \text { February } 7,2012
\end{aligned}
\end{aligned}
$$

- For the Trapezoid Rule, this leads to weights in the following pattern:

1	1	2	2	2	2	2	1	$A_{i j}=\frac{1}{4 n^{2}}$	
2	2	4	4	4	4	4	2		$\left\{\begin{array}{lll} 1 & i \in\{0, n\} & j \in\{0, n\} \\ 2 & i \in[1, \ldots, n-2] & j \in\{1, n-1\} \\ 2 & i \in\{1, n-1\} & j \in[1, \ldots, n-1] \\ 4 & i \in[1, \ldots, n-2] & j \in[1, \ldots, n-2] \end{array}\right.$
2	2	4	4	4	4	4	2		
2	2	4	4	4	4	4	2		
2	2	4	4	4	4	4	2		
2	2	4	4	4	4	4	2		
1	1	2	2	2	2	2	1		
	1	2	2	2	2	2	1		

Multi-dimensional Integration

- If we use the weights from the Trapezoid rule, the error is still $O\left(h^{2}\right)$.
- However, there are now n^{2} function evaluations.
- Equally-spaced samples on a square region.
- In general, given k dimensions, we have $N=n^{k}$ function evaluations:

$$
O\left(h^{2}\right)=O\left(n^{-2}\right)=O\left(\left(n^{k}\right)^{-\frac{2}{k}}\right)=O\left(N^{-\frac{2}{k}}\right)
$$

- If the dimension is high, this leads to a significant amount of additional work in going from $h \rightarrow h / 2$.
- Remember this for Monte-Carlo Integration.

Reducing the Error

- To improve the estimate of the integral, we can either:
- Add more intervals
- Use a higher order polynomial
- Use Richardson Extrapolation to examine the limit as $\mathrm{h} \rightarrow 0$.
- Called Romberg Integration

Adding More Intervals

- If we have an estimate for one value of h, do we need to recompute everything for a value of $h / 2$?

$$
I_{h}=\frac{h}{2}\left[f(a)+2 \sum_{i=1}^{n-1} f(a+i h)+f(b)\right]
$$

Adding More Intervals

- This is called the Recursive Trapezoid Rule in the book.
- We have $n \rightarrow 2 n$ and $h \rightarrow h / 2$.

$$
\begin{aligned}
& \begin{aligned}
& I_{\frac{h}{2}}=\frac{h}{4}\left[f(a)+2 \sum_{i=1}^{2 n-1} f\left(a+i \frac{h}{2}\right)+f(b)\right] \\
&=\frac{h}{4}\left[f(a)+2 \sum_{i=1}^{n-1} f(a+i h)+2 \sum_{i=0}^{n-1} f\left(a+i h+\frac{h}{2}\right)+f(b)\right] \\
&=\frac{I_{h}}{2}+\frac{h}{4}\left[2 \sum_{i=0}^{n-1} f\left(a+i h+\frac{h}{2}\right)\right] \\
& \text { February 7, 2012 }
\end{aligned}=\begin{array}{l}
\text { OSU/CSE 541 }
\end{array}
\end{aligned}
$$

OHill Recall Richardson Extrapolation

- Given two numerical estimates obtained using different h 's, compute higher-order estimate
- Starting with a step size h_{1}, the exact value is

$$
A=A\left(h_{1}\right)+O\left(h_{1}^{n}\right)
$$

- Suppose we reduce step size to h_{2}

$$
A=A\left(h_{2}\right)+O\left(h_{2}{ }^{n}\right)
$$

Richardson Extrapolation

- Multiplying the 2 nd eqn by $\left(h_{1} / h_{2}\right)^{n}$ and subtracting from the $1^{\text {st }}$ eqn:

$$
A=\frac{\left(\frac{h_{1}}{h_{2}}\right)^{n} A\left(h_{2}\right)-A\left(h_{1}\right)}{\left(\frac{h_{1}}{h_{2}}\right)^{n}-1}
$$

- The new error term is generally $O\left(h_{1}{ }^{n+1}\right)$ or $O\left(h_{1}{ }^{n+2}\right)$.

Richardson Extrapolation

- The true integral value can be written

$$
I=I(h)+E(h)
$$

- This is true for any iteration

$$
I=I\left(h_{1}\right)+E\left(h_{1}\right)=I\left(h_{2}\right)+E\left(h_{2}\right)
$$

Richardson Extrapolation

- For example: Using $(n=2)$

$$
\begin{aligned}
& E \approx c h^{2} \bar{f}^{\prime \prime} \\
& \text { ere } c \text { is a cor } \\
& \text { erefore: } \\
& \frac{E\left(h_{1}\right)}{E\left(h_{2}\right)} \approx \frac{h_{1}{ }^{2}}{h_{2}{ }^{2}}
\end{aligned}
$$

- This leads to:

$$
E\left(h_{1}\right) \approx E\left(h_{2}\right) \frac{h_{1}^{2}}{h_{2}{ }^{2}}
$$

- For integration, we have:

$$
I\left(h_{1}\right)+E\left(h_{2}\right) \frac{h_{1}^{2}}{h_{2}{ }^{2}} \approx I\left(h_{2}\right)+E\left(h_{2}\right)
$$

Richardson Extrapolation

- Solving for $E\left(h_{2}\right)$:

$$
E\left(h_{2}\right) \approx \frac{I\left(h_{1}\right)-I\left(h_{2}\right)}{1-\frac{h_{1}^{2}}{h_{2}^{2}}}
$$

- And plugging back into the estimated integral.

$$
I=I\left(h_{2}\right)+E\left(h_{2}\right)
$$

Richardson Extrapolation

- Leads to:

$$
I \approx I\left(h_{2}\right)+\frac{1}{\left(h_{1} / h_{2}\right)^{2}-1}\left[I\left(h_{2}\right)-I\left(h_{1}\right)\right]
$$

- Letting $h_{2}=h_{1} / 2$

$$
\begin{aligned}
& I \approx I\left(h_{2}\right)+\frac{1}{2^{2}-1}\left[I\left(h_{2}\right)-I\left(h_{1}\right)\right] \\
& I \approx \frac{4}{3} I\left(h_{2}\right)-\frac{1}{3} I\left(h_{1}\right)
\end{aligned}
$$

Romberg Integration

- We combined two $O\left(h^{2}\right)$ estimates to get an $O\left(h^{4}\right)$ estimate.
- Can also combine two $O\left(h^{4}\right)$ estimates to get an $O\left(h^{6}\right)$ estimate.

$$
I \approx \frac{16}{15} I\left(h_{m}\right)-\frac{1}{15} I\left(h_{l}\right)
$$

Romberg Integration

- Greater weight is placed on the more accurate estimate.
- Weighting coefficients sum to unity
- i.e, (16-1)/15=1
- Can continue, by combining two $O\left(h^{6}\right)$ estimates to get an $O\left(h^{8}\right)$ estimate.

$$
I \approx \frac{64}{63} I\left(h_{m}\right)-\frac{1}{63} I\left(h_{l}\right)
$$

Romberg Integration

- General pattern is called Romberg Integration

$$
I_{j, k+1} \approx \frac{4^{k} I_{j, k}-I_{j-1, k}}{4^{k}-1}=I_{j, k}+\frac{1}{4^{k}-1}\left(I_{j, k}-I_{j-1, k}\right)
$$

$-j$: level of subdivision, $j+1$ has more intervals.
$-k$: level of integration, $k=1$ is original trapezoid estimate $\left[O\left(h^{2}\right)\right], k=2$ is improved $\left[O\left(h^{4}\right)\right]$, etc.

Romberg Integration

- For example, $j=1, k=1$ leads to

$$
I_{1,1}=\frac{4 I_{1,0}-I_{0,0}}{3} \approx \frac{4}{3} I\left(\frac{h_{1}}{2}\right)-\frac{1}{3} I\left(h_{1}\right)
$$

Example

- Consider the function:

$$
f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}
$$

- Integrate from $a=0$ to $b=0.8$
- Using the trapezoidal rule yields the following results:

Example

- Trapezoid Rules:

Exact integral is 1.64053334

Example

- Better and better results can be obtained by continuing this

Romberg Integration

- Is this that significant?
- Consider the cost of computing the Trapezoid Rule for 1000 data points.
- Refinement would lead to 2000 data points.
- Implies an additional 1003 operations using the Recursive Trapezoid Rule.
- Not to mention the 1000 (expensive) function evals.
- Romberg Integration cost:
- Three additional operations - no function evals!!!

Higher-Order Polynomials

- Recall:

m	Polynomial	Formula	Error
1	linear	Trapezoid	$O\left(h^{2}\right)$
2	quadratic	Simpsons1/3	$O\left(h^{4}\right)$
3	cubic	Simpsons 3/8	$O\left(h^{4}\right)$

Simpson's 1/3 Rule

- If we use a 2nd order polynomial (need 3 points or 2 intervals):
- Lagrange form. ($\left.x_{1}=\frac{x_{0}+x_{2}}{2}\right)$

$$
\begin{aligned}
I & =\int_{x_{0}}^{x_{2}}\left[\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)\right. \\
& \left.+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)\right] d x
\end{aligned}
$$

Simpson's 1/3 Rule

- Requiring equally-spaced intervals:

$$
\begin{aligned}
I & =\int_{x_{0}}^{x_{2}}\left[\frac{\left(x-x_{0}-h\right)\left(x-x_{0}-2 h\right)}{-h(-2 h)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{0}-2 h\right)}{(h)(-h)} f\left(x_{1}\right)\right. \\
& \left.+\frac{\left(x-x_{0}\right)\left(x-x_{0}-h\right)}{(2 h)(h)} f\left(x_{2}\right)\right] d x
\end{aligned}
$$

Simpson's 1/3 Rule

- Integrate and simplify:

Simpson's 1/3 Rule

- If we use $a=x_{0}$ and $b=x_{2}$, and $x_{1}=(b+a) / 2$
$I \approx \underbrace{(b-a)}_{\text {width }} \underbrace{\frac{f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)}{6}}_{\text {average height }}$

Simpson's 1/3 Rule

- Error for Simpson’s 1/3 rule

$$
\begin{gathered}
E_{t}=-\frac{h^{5}}{90} f^{(4)}(\xi)=-\frac{(b-a)^{5}}{2880} f^{(4)}(\xi) \quad O\left(h^{5}\right) \\
h=\frac{b-a}{2}
\end{gathered}
$$

\Rightarrow Integrates a cubic exactly: $f^{(4)}(\xi)=0$

- As with Trapezoidal rule, can use multiple applications of Simpson's $1 / 3$ rule.
- Need even number of intervals
- An odd number of points are required.
- Example: 9 points, 4 intervals

OHiol Composite Simpson's 1/3 Rule

- As in composite trapezoid, break integral up into $n / 2$ sub-integrals:

$$
I=\int_{x_{0}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{4}} f(x) d x+\ldots+\int_{x_{n-2}}^{x_{n}} f(x) d x
$$

- Substitute Simpson's $1 / 3$ rule for each integral and collect terms.

$$
I=(b-a) \frac{f\left(x_{0}\right)+4 \sum_{i=1,3,5}^{n-1} f\left(x_{i}\right)+2 \sum_{j=2,4,6}^{n-2} f\left(x_{j}\right)+f\left(x_{n}\right)}{3 n}
$$

OHiol Composite Simpson's 1/3 Rule

- Odd coefficients receive a weight of 4, even receive a weight of 2.
- Doesn't seem very fair, does it?

Error Estimate

- The error can be estimated by:

$$
E_{a}=\frac{n h^{5}}{180} \bar{f}^{(4)}=\frac{(b-a) h^{4}}{180} \bar{f}^{(4)} \quad O\left(h^{4}\right)
$$

- If n is doubled, $h \rightarrow h / 2$ and $E_{a} \rightarrow E_{a} / 16$
$\bar{f}^{(4)}$ is the average 4th derivative

Example

- Integrate $f(x)=e^{-x^{2}}$ from $a=0$ to $b=2$.
- Use Simpson's 1/3 rule:

$$
\begin{aligned}
& h=\frac{b-a}{2}=1 \quad x_{0}=a=0 \quad x_{1}=\frac{a+b}{2}=1 \quad x_{2}=b=2 \\
& I=\int_{0}^{2} e^{-x^{2}} d x \approx \frac{1}{3} h\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \\
& \quad=\frac{1}{3}[f(0)+4 f(1)+f(2)] \\
& \quad=\frac{1}{3}\left(e^{0}+4 e^{-1}+e^{-4}\right)=0.82994
\end{aligned}
$$

Example

- Error estimate: ${ }_{E_{t}}=-\frac{h^{5}}{90} f^{(4)}(\xi)$
- Where $h=b$ - a and $a<\xi<b$
- Don’t know ξ
- use average value

$$
E_{t} \approx E_{a}=-\frac{1^{5}}{90} \bar{f}^{(4)}=-\frac{1^{5}}{90} \frac{\left[f^{(4)}\left(x_{0}\right)+f^{(4)}\left(x_{1}\right)+f^{(4)}\left(x_{2}\right)\right]}{3}
$$

Another Example

- Let's look at the polynomial again:

$$
f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}
$$

- From $a=0$ to $b=0.8$

$$
\begin{aligned}
& h=\frac{b-a}{2}=0.4 \quad x_{0}=a=0 \quad x_{1}=\frac{a+b}{2}=0.4 \quad x_{2}=b=0.8 \\
& I
\end{aligned}=\int_{0}^{2} f(x) d x \approx \frac{1}{3} h\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad \text { (0.4)}[f(0)+4 f(0.4)+f(0.8)] \quad \text { (1.36746667 }
$$

Error

- Actual Error: (using the known exact value) $E=1.64053334-1.36746667=0.2730666616 \%$
- Estimate error: (if the exact value is not available)

$$
E_{t}=-\frac{h^{5}}{90} f^{(4)}(\xi)
$$

- Where $a<\xi<b$.

Error

- Compute the fourth-derivative

$$
f^{(4)}(x)=-21600+48000 \quad x
$$

$E_{t} \approx E_{a}=-\frac{0.4^{5}}{90} f^{(4)}\left(x_{1}\right)=-\frac{0.4^{5}}{90} f^{(4)}(0.4)=0.27306667$
middle point

- Matches actual error pretty well.

\section*{| OHIO |
| :--- |
| SHAE |
| SNiVESIN |
 Example Continued}

- If we use 4 segments instead of 1: $\quad h=\frac{b-a}{n}=0.2$
$\quad-\quad \mathbf{x}=\left[\begin{array}{lllll}0.0 & 0.2 & 0.4 & 0.6 & 0.8\end{array}\right]$

$$
\left.\begin{array}{cccc}
\mathbf{x}=\left[\begin{array}{llll}
0.0 & 0.2 & 0.4 & 0.6
\end{array} 0.8\right.
\end{array}\right] \quad n \quad \begin{array}{lll}
f(0)=0.2 & f(0.2)=1.288 & f(0.4)=2.456 \\
f(0.6)=3.464 & f(0.8)=0.232 &
\end{array}
$$

$I=(b-a) \frac{f\left(x_{0}\right)+4 \sum_{i=1,3,5}^{n-1} f\left(x_{i}\right)+2 \sum_{j=2,4,6}^{n-2} f\left(x_{j}\right)+f\left(x_{n}\right)}{3 n}$
$=(0.8-0) \frac{f(0)+4 f(0.2)+2 f(0.4)+4 f(0.6)+f(0.8)}{(3)(4)}$
$=0.8 \frac{0.2+4(1.288+3.464)+2(2.456)+0.232}{12}$
$=1.6234667$
Exact integral is 1.64053334

Error

- Actual Error: (using the known exact value)

$$
E=1.64053334-1.6234667=0.01706667 \quad 1 \%
$$

- Estimate error: (if the exact value is not available)

$$
E_{t} \approx E_{a}=-\frac{0.2^{5}}{90} f^{(4)}\left(x_{2}\right)=-\frac{0.2^{5}}{90} f^{(4)}(0.4)=-0.0085
$$

middle point

Error

- Actual is twice the estimated, why?
- Recall:

$$
f^{(4)}(x)=-21600+48000 x
$$

$\max _{x \in[0,0,8]}\left\{\left|f^{(4)}(x)\right|\right\}=\left|f^{(4)}(0)\right|=-21600$
$\left|f^{(4)}(0.4)\right|=2400$

Error

- Rather than estimate, we can bound the absolute value of the error:

$$
\left|E_{a}\right|=\left|-\frac{0.2^{5}}{90} f^{(4)}(\xi)\right| \leq \frac{0.2^{5}}{90}\left|f^{(4)}(0)\right|=0.0768
$$

- Five times the actual, but provides a safer error metric.

Simpon's 1/3 Rule

- Simpson's $1 / 3$ rule uses a 2 nd order polynomial
- need 3 points or 2 intervals
- This implies we need an even number of intervals.
- What if you don't have an even number of intervals? Two choices:

1. Use Simpson's $1 / 3$ on all the segments except the last (or first) one, and use trapezoidal rule on the one left.

Pitfall - larger error on the segment using trapezoid
2. Use Simpson's 3/8 rule.

Simpson's 3/8 Rule

- Simpson’s 3/8 rule uses a third order polynomial
- need 3 intervals (4 data points)

$$
\begin{aligned}
& f(x) \approx p_{3}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \\
& I=\int_{x_{0}}^{x_{3}} f(x) d x \approx \int_{x_{0}}^{x_{3}} p_{3}(x) d x
\end{aligned}
$$

Simpson's 3/8 Rule

- Determine a 's with Lagrange polynomial
- For evenly spaced points

$$
\begin{aligned}
& I=\frac{3}{8} h\left[f\left(x_{0}\right)+3\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right] \\
& h=\frac{b-a}{3}
\end{aligned}
$$

Error

- Same order as 1/3 Rule.
- More function evaluations.
- Interval width, h, is smaller.

$$
E_{t}=-\frac{3}{80} h^{5} f^{(4)}(\xi) \quad O\left(h^{4}\right)
$$

- Integrates a cubic exactly:

$$
\Rightarrow \quad f^{(4)}(\xi)=0
$$

Comparison

- Simpson's $1 / 3$ rule and Simpson's 3/8 rule have the same order of error
$-O\left(h^{4}\right)$
- trapezoidal rule has an error of $O\left(h^{2}\right)$
- Simpson's $1 / 3$ rule requires even number of segments.
- Simpson's $3 / 8$ rule requires multiples of three segments.
- Both Simpson's methods require evenly spaced data points

Mixing Techniques

- $n=10$ points $\Rightarrow 9$ intervals
- First 6 intervals - Simpson’s 1/3
- Last 3 intervals - Simpson’s 3/8

Newton-Cotes Formulas

- We can examine even higher-order polynomials.
- Simpson’s 1/3-2nd order Lagrange (3 pts)
- Simpson’s 3/8 - 3rd order Lagrange (4 pts)
- Usually do not go higher.
- Use multiple segments.
- But only where needed.

Adaptive Simpson's Scheme

- Recall Simpson’s 1/3 Rule:

$$
I \approx \frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]
$$

- Where initially, we have $a=x_{0}$ and $b=x_{2}$.
- Subdividing the integral into two:

$$
I \approx \frac{h}{6}\left[f(a)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+f(b)\right]
$$

Adaptive Simpson's Scheme

- We want to keep subdividing, until we reach a desired error tolerance, ε.
- Mathematically:

$$
\begin{aligned}
& \left|\int_{a}^{b} f(x) d x-\left[\frac{h}{3}\left[f(a)+4 f\left(x_{1}\right)+f(b)\right]\right]\right| \leq \varepsilon \\
& \left|\int_{a}^{b} f(x) d x-\left[\frac{h}{6}\left[f(a)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+f(b)\right]\right]\right| \leq \varepsilon
\end{aligned}
$$

Fili Adaptive Simpson's Scheme

- This will be satisfied if:

$$
\begin{aligned}
& \left|\int_{a}^{c} f(x) d x-\left[\frac{h}{6}\left[f(a)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]\right]\right| \leq \frac{\varepsilon}{2}, \text { and } \\
& \left|\int_{c}^{b} f(x) d x-\left[\frac{h}{6}\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f(b)\right]\right]\right| \leq \frac{\varepsilon}{2} \text {, where } \\
& c=x_{2}=\frac{a+b}{2}
\end{aligned}
$$

- The left and the right are within one-half of the error.

Adaptive Simpson's Scheme

- Okay, now we have two separate intervals to integrate.
- What if one can be solved accurately with an $h=10^{-3}$, but the other requires many, many more intervals, $h=10^{-6}$?

Adaptive Simpson's Scheme

- Adaptive Simpson's method provides a divide and conquer scheme until the appropriate error is satisfied everywhere.
- Very popular method in practice.
- Problem:
- We do not know the exact value, and hence do not know the error.

Adaptive Simpson's Scheme

- How do we know whether to continue to subdivide or terminate?

$$
\begin{aligned}
& I \equiv \int_{a}^{b} f(x) d x=S(a, b)+E(a, b), \text { where } \\
& S(a, b)=\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right], \text { and } \\
& E(a, b)=-\frac{1}{90}\left(\frac{b-a}{2}\right)^{5} f^{(4)}
\end{aligned}
$$

SHill Adaptive Simpson's Scheme

- The first iteration can then be defined as:

$$
\begin{aligned}
& I=S^{(1)}+E^{(1)}, \text { where } \\
& S^{(1)}=S(a, b), E^{(1)}=E(a, b)
\end{aligned}
$$

- Subsequent subdivision can be defined as:

$$
S^{(2)}=S(a, c)+S(c, b)
$$

Adaptive Simpson's Scheme

- Now, since

$$
E^{(2)}=E(a, c)+E(c, b)
$$

- We can solve for $E^{(2)}$ in terms of $E^{(1)}$.

$$
\begin{aligned}
E^{(2)} & =-\frac{1}{90}\left(\frac{h / 2}{2}\right)^{5} f^{(4)}-\frac{1}{90}\left(\frac{h / 2}{2}\right)^{5} f^{(4)} \\
& =\left(\frac{1}{2^{4}}\right)-\frac{1}{90}\left(\frac{h}{2}\right)^{5} f^{(4)}=\frac{1}{16} E^{(1)}
\end{aligned}
$$

Filio Adaptive Simpson's Scheme

- Finally, using the identity:

$$
I=S^{(1)}+E^{(1)}=S^{(2)}+E^{(2)}
$$

- We have:

$$
S^{(2)}-S^{(1)}=E^{(1)}-E^{(2)}=15 E^{(2)}
$$

- Plugging into our definition:

$$
I=S^{(2)}+E^{(2)}=S^{(2)}+\frac{1}{15}\left(S^{(2)}-S^{(1)}\right)
$$

Shlil Adaptive Simpson's Scheme

- Our error criteria is thus:

$$
\left|I-S^{(2)}\right|=\left|\frac{1}{15}\left(S^{(2)}-S^{(1)}\right)\right| \leq \varepsilon
$$

- Simplifying leads to the termination formula:

$$
\left|\left(S^{(2)}-S^{(1)}\right)\right| \leq 15 \varepsilon
$$

- What happens graphically:

$\left|S_{2}-S_{1}\right| \leq 15 \frac{\varepsilon}{4} \rightarrow$ done

February 7, 2012
OSU/CSE 541

OHHO
 SIAEIE

OHHO STAIE
 UNivisin

February 7, 2012

- We gradually capture the difficult spots.

Adaptive Simpson's Code

- Simple Recursive Program

static const int m nMaximum_Divisions $=1000$
Real IntegrationSimpson(const Real (*f) (Real x), const Real start, const Real end, const Real error_tolerance, int \&level)
\{ level += 1
Real $\mathrm{h}=$ (end - start);
Real midpoint = (start + end $) / 2.0$;
Real f start $=\mathrm{f}($ start $)$;
Real fend = f(end);
Real f_mid $=f($ midpoint $)$;
oneLevel $=h *(f$ start $+4.0 * f$ mid +f end $) / 6.0$;
Real leftMidpoint $=($ start + midpoint $)$ T2.0;
Real rightMidpoint $=($ end + midpoint $) / 2.0$
Real f midLeft $=f($ leftMidpoint $)$;
Real f_midRight $=f$ (rightMidpoint $)$
twoLevel $=h^{*}\left(f _s t a r t ~+4.0^{*}\right.$ f_midLeft + 2.0* f mid + 4.0* f_midRight + f_end) / 12.0;
if(level >= m_nMax_Divisions) // Terminate the process, converging toō slow return $\overline{\text { whoLevel }}$

Guassian Quadrature

- Idea is that if we evaluate the function at certain points, and sum with certain weights, we will get a more accurate integral
- Evaluation points and weights are pre-computed and tabulated
- Basic form: $I=\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} c_{i} f\left(x_{i}\right)$
c_{i} : weighting factors
x_{i} : sampling points selected optimally Newlk

Guassian Quadrature

- Note that the interval is between -1 and 1
- For other intervals, a change of variables is used to transfer the problem so that it utilizes the interval [-1, 1]
- This is a linear transform, such that for $t \in[\mathrm{a}, \mathrm{b}]$:

$$
\int_{a}^{b} f(t) d t
$$

- We have for $x \in[-1,1]$:

$$
t=\frac{(b-a) x+b+a}{2} \quad x=\frac{2 t-b-a}{b-a}
$$

Guassian Quadrature

- As $t=a \Rightarrow x=-1$
- As $t=b \Rightarrow x=1$

$$
\begin{aligned}
& d t=\frac{(b-a)}{2} d x \\
& f(t)=f\left(\frac{(b-a) x+b+a}{2}\right) \\
& \int_{a}^{b} f(t) d t=\frac{(b-a)}{2} \int_{-1}^{1} f\left(\frac{(b-a) x+b+a}{2}\right) d x
\end{aligned}
$$

Guassian Quadrature

- Basic form of Gaussian quadrature:

$$
I=\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} c_{i} f\left(x_{i}\right)
$$

- For $n=2$, we have:
$I \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)$
- This leads to 4 unknowns: c_{1}, c_{2}, x_{1}, and x_{2}
- two unknown weights (c_{1}, c_{2})
- two unknown sampling points (x_{1}, x_{2})

Guassian Quadrature

- What we need now, are four known values for the equation.
- If we had these, we could then attempt to solve for the four unknowns.
- Let's make it work for polynomials!!!

Guassian Quadrature

- In particular, let's look at these simple polynomials:
- Constant
- $f(x)=1$
- Linear
- $f(x)=x$
- Quadratic
- $f(x)=x^{2}$
- Cubic
- $f(x)=x^{3}$

Guassian Quadrature

- Recalling the formula: $I \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)$
$\begin{array}{r}- \\ \text { Constant } \\ f(x)=1\end{array} \int_{-1}^{1} 1 d x=2=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)=c_{1}+c_{2}$

$-\quad$ Quadratic $f(x)=x^{2} \int_{-1}^{1} x^{2} d x=\frac{2}{3}=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)=c_{1} x_{1}{ }^{2}+c_{2} x_{2}{ }^{2}$
$-\operatorname{Cubic} \int_{-1}^{1} x^{3} d x=0=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)=c_{1} x_{1}^{3}+c_{2} x_{2}{ }^{3}$

Guassian Quadrature

- We can now solve for our unknowns:
- Note, this is not an easy problem and will not be covered in this class.

$$
\begin{aligned}
& c_{1}=c_{2}=1 \\
& x_{1}=-\frac{1}{\sqrt{3}}=-0.577 \\
& x_{2}=\frac{1}{\sqrt{3}}=0.577
\end{aligned}
$$

Guassian Quadrature

- This yields the two point Gauss-Legendre formula

$$
I \approx f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)
$$

Guassian Quadrature

- This is exact for all polynomials up to and including degree 3 (cubics).

$$
\begin{aligned}
& \int_{-1}^{1}\left(a x^{3}+b x^{2}+c x+d\right) d x=a \int_{-1}^{1} x^{3} d x+b \int_{-1}^{1} x^{2} d x+c \int_{-1}^{1} x d x+d \int_{-1}^{1} d x \\
& =a\left(\left(\frac{-1}{\sqrt{3}}\right)^{3}+\left(\frac{1}{\sqrt{3}}\right)^{3}\right)+b\left(\left(\frac{-1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}\right)+c\left(\left(\frac{-1}{\sqrt{3}}\right)+\left(\frac{1}{\sqrt{3}}\right)\right)+d(1+1) \\
& =\left.\left(a x^{3}+b x^{2}+c x+d\right)\right|_{\frac{-1}{\sqrt{3}}} ^{\frac{1}{\sqrt{3}}}
\end{aligned}
$$

$$
\int_{-1}^{1} f(x) d x \approx f(-0.577)+f(0.577)
$$

Example

- Integrate $f(x)$ from $a=0$ to $b=0.8$

$$
f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}
$$

- Transform from $[0,0.8]$ to $[-1,1]$

$$
\begin{aligned}
& \int_{a}^{b} f(t) d t=\frac{(b-a)}{2} \int_{-1}^{1} f\left(\frac{(b-a) x+b+a}{2}\right) d x \\
& I=\int_{0}^{0.8} f(x) d x=\frac{(0.8-0)}{2} \int_{-1}^{1} f\left(\frac{(0.8-0) t+0.8+0}{2}\right) d t \\
& =0.4 \int_{-1}^{1} f(0.4 t+0.4) d t \\
& \text { ary } 7,2012 \quad \text { OSU/CSE } 541
\end{aligned}
$$

Example

- Solving

$$
\begin{aligned}
& I=0.4 \int_{-1}^{1} f(0.4 t+0.4) d t \\
& =0.4 \int_{-1}^{1}\left[\begin{array}{l}
0.2+25(0.4 t-0.4)-200(0.4 t-0.4)^{2} \\
+675(0.4 t-0.4)^{3}-900(0.4 t-0.4)^{4}+400(0.4 t-0.4)^{5}
\end{array}\right] d t
\end{aligned}
$$

- And substituting for the 2-point formula:

$$
I=0.4 \int_{-1}^{1} f(t) d t \quad t= \pm 1 / \sqrt{3}
$$

$I \approx 0.51674055+1.30583723=1.82257778$
Exact integral is $\mathbf{1 . 6 4 0 5 3 3 3 4}$

- Recall the basic form:

$$
I=\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} c_{i} f\left(x_{i}\right)
$$

- Let's look at $n=3$.

$$
I \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+c_{3} f\left(x_{3}\right)
$$

- We now have 6 unknowns: $c_{1}, c_{2}, c_{3}, x_{1}, x_{2}$, and x_{3}
- three unknown weights (c_{1}, c_{2}, c_{3})
- three unknown sampling points $\left(x_{1}, x_{2}, x_{3}\right)$

Use 6 equations - constant, linear, quadratic, cubic, $4^{\text {th }}$ order and $5^{\text {th }}$ order to find those unknowns

$$
\begin{aligned}
& \int_{-1}^{1} 1 d x=2=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+c_{3} f\left(x_{3}\right)=c_{1}+c_{2}+c_{3} \\
& \int_{-1}^{1} x d x=0=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+c_{3} f\left(x_{3}\right)=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} \\
& \int_{-1}^{1} x^{2} d x=\frac{2}{3}=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+c_{3} f\left(x_{3}\right)=c_{1} x_{1}^{2}+c_{2} x_{2}{ }^{2}+c_{3} x_{3}{ }^{2} \\
& \int_{-1}^{1} x^{3} d x=0=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+c_{3} f\left(x_{3}\right)=c_{1} x_{1}^{3}+c_{2} x_{2}^{3}+c_{3} x_{3}^{3} \\
& \int_{-1}^{1} x^{4} d x=\frac{2}{5}=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+c_{3} f\left(x_{3}\right)=c_{1} x_{1}^{4}+c_{2} x_{2}^{4}+c_{3} x_{3}^{4} \\
& \int_{-1}^{1} x^{5} d x=0=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+c_{3} f\left(x_{3}\right)=c_{1} x_{1}^{5}+c_{2} x_{2}^{5}+c_{3} x_{3}^{5}
\end{aligned}
$$

Higher-order Gaussian Quadrature

- Can solve these equations (or have some one smarter than us, like Guass solve them).
$c_{1}=5 / 9$
$c_{2}=8 / 9$
$c_{3}=5 / 9$
$x_{1}=-\sqrt{3 / 5}=-0.77459669 \quad x_{2}=0$
$x_{2}=\sqrt{3 / 5}=0.77459669$
- Produces the three point Gauss-Legendre formula

$$
I \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+c_{3} f\left(x_{3}\right)
$$

- Exact for polynomials up to and including degree 5 (because using $5^{\text {th }}$ degree polynomial)

Ohill

$\int_{-1}^{1} f(x) d x \approx \frac{5}{9} f(-0.775)+\frac{8}{9} f(0.0)+\frac{5}{9} f(0.775)$

Example

$$
f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}
$$

Integrate from $a=0$ to $b=0.8$
Transform from $[0,0.8]$ to $[-1,1]$

$$
\begin{aligned}
& I=\int_{0}^{0.8} f(x) d x \\
& =\int_{-1}^{1}\left[\begin{array}{l}
0.2+25(0.4 t-0.4)-200(0.4 t-0.4)^{2} \\
+675(0.4 t-0.4)^{3}-900(0.4 t-0.4)^{4}+400(0.4 t-0.4)^{5}
\end{array}\right] d t
\end{aligned}
$$

Example

- Using the 3-point Gauss-Legendre formula:

$$
I \approx \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)
$$

Substitute into the transform equation and get

$$
\begin{aligned}
I & \approx 0.281301290+0.873244444+0.485987599 \\
& =1.64053334
\end{aligned}
$$

Gaussian Quadrature

Can develop higher order Gauss-Legendre forms using

$$
I \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+\ldots+c_{n} f\left(x_{n}\right)
$$

Values for c 's and x 's are tabulated
Use the same transformation to map interval onto [-1, 1]

Gaussian Quadrature

- Requires function evaluations at nonuniformly spaced points within the integration interval
- not appropriate for cases where the function is unknown
- not suited for dealing with tabulated data that appear in many engineering problems
- If the function is known, its efficiency can be a decided advantage

Gaussian Quadrature

- Problems:
- If we add more data points, like doubling the number of sample points.

