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Quadrature

• We talk in terms of Quadrature Rules
– 1. The process of making something square. 2.

Mathematics The process of constructing a square equal 
in area to a given surface. 3. Astronomy A configuration 
in which the position of one celestial body is 90° from 
another celestial body, as measured from a third.

– The American Heritage® Dictionary: Fourth Edition. 2000
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Outline

• Definite Integrals
• Lower and Upper Sums

– Reimann Integration or Reimann Sums

• Uniformly-spaced samples
– Trapezoid Rules
– Romberg Integration
– Simpson’s Rules
– Adaptive Simpson’s Scheme

• Non-uniformly spaced samples
– Gaussian Quadrature Formulas
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What does an integral represent?

Basic definition of an integral:

Motivation
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• Evaluate the integral,                  without doing the 
calculation analytically.

• Necessary when either:

– Integrand is too complicated to integrate analytically

– Integrand is not precisely defined by an equation, i.e., 
we are given a set of data (xi, yi), i = 1, 2, 3, …,n

Motivation
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• Integration is a summing process.  Thus virtually 
all numerical approximations can be represented 
by

in which wi are the weights, xi are the sampling 
points, and Et is the truncation error

• Valid for any function that is continuous on the 
closed and bounded interval of integration.
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• The most common numerical integration formula 
is based on equally spaced data points.

• Divide [x0 , xn] into n intervals (n1)
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Upper Sums

• Assume that f(x)>0 everywhere.

• If within each interval, we could determine 
the maximum value of the function, then we 
have:

• where
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Upper Sums

• Graphically:

x0 x1 x2 x4x3
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Lower Sums

• Likewise, still assuming that f(x)>0 
everywhere.

• If within each interval, we could determine 
the minimum value of the function, then we 
have:

• where
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Lower Sums

• Graphically

x0 x1 x2 x4x3
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Finer Partitions

• We now have a bound on the integral of the 
function for some partition (x0,..,xn):

• As n, one would assume that the sum of the 
upper bounds and the sum of the lower bounds 
approach each other.

• This is the case for most functions, and we call 
these Riemann-integrable functions.
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Bounding the Integral

• Graphically

x0 x1 x2 x4x3
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Bounding the Integral

• Halving each interval (much like Lab1):

x0 x3 x5 x9x7
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Bounding the Integral

• One more time:

x0 x5 x7 x11x9
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Monotonic Functions

• Note that if a function is monotonically 
increasing (or decreasing), then the lower 
sum corresponds to the left partition values, 
and the upper sum corresponds to the right 
partition values. 

x0 x3 x5 x9x7
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Lab1 and Integration

• Thinking back to lab1, what were the limits 
or the integration?

• Is the sin function monotonic on this 
interval?

• Should the Reiman sum be an upper or 
lower sum?
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Polynomial Approximation

• Rather than search for the maximum or minimum, 
we replace f(x) with a known and simple function. 

• Within each interval we approximate f(x) by an mth

order polynomial.

m
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• The m’s (order of the polynomials) may be the 
same or different.

• Different choices for m’s lead to different 
formulas:
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• Simplest way to approximate the area under a 
curve – using first order polynomial (a straight 
line)

• Using Newton’s form of the interpolating 
polynomial:

• Now, solve for the integral:
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Trapezoid Rule
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Trapezoid Rule
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Trapezoid Rule

• Improvement?

x0 x1 x2 x4x3
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• The integration error is:

• Where h = b - a and  is an unknown point where 
a <  < b (intermediate value theorem)

• You get exact integration if the function, f, is 
linear (f = 0)
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Estimate error:   3

12

1
hfEt 

Where h = b - a and a <  < b

Don’t know  - use average value
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More intervals, better result [error  O(h2)]
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• If we do multiple intervals, we can avoid duplicate 
function evaluations and operations:

• Use n+1 equally spaced points. 

• Each interval has:

• Break up the limits of integration and expand.
n
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• Substituting the trapezoid rule for each integral.

• Results in the Composite Trapezoid Formula:
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• Think of this as the width times the average 
height.
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• The error can be estimated as:

• Where,      is the average second derivative.

• If n is doubled, h  h/2 and Ea  Ea/4 

• Note, that the error is dependent upon the 
width of the area being integrated.
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Example

• Integrate:
• from 

a=0.2 
to 
b=0.8

  5432 200810730140203.0 xxxxxxf 
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Example

• We don’t know  so approximate with 
average f
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• The error can thus be estimated as:
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True value of integral is 12.82.  Trapezoid 
rule is 11.26 - within approx error - Et is 12%
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• Use intervals (0.2,0.4),(0.4,0.6),(0.6,0.8):
– (n = 3, h = 0.2)
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Et is now 2%
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Using Six Intervals

• Use intervals (0.2,0.3),(0.3,0,4), etc. 
– (n = 6, h = 0.1)

True value of integral is 12.82
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Multi-dimensional Integration

• Consider a two-dimensional case.
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Multi-dimensional Integration

• For the Trapezoid Rule, this leads to 
weights in the following pattern:

1 2 2 2 2 2 1

2 4 4 4 4 4 2
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Multi-dimensional Integration

• If we use the weights from the Trapezoid 
rule, the error is still O(h2).

• However, there are now n2 function 
evaluations.
– Equally-spaced samples on a square region.
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Multi-dimensional Integration

• In general, given k dimensions, we have 
N= nk function evaluations:

• If the dimension is high, this leads to a 
significant amount of additional work in 
going from hh/2.
– Remember this for Monte-Carlo Integration.
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Reducing the Error

• To improve the estimate of the integral, we 
can either:
– Add more intervals

– Use a higher order polynomial

– Use Richardson Extrapolation to examine the 
limit as h0.

• Called Romberg Integration
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Adding More Intervals

• If we have an estimate for one value of h, 
do we need to recompute everything for a 
value of h/2? 
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Adding More Intervals

• This is called the Recursive Trapezoid 
Rule in the book.

• We have n 2n and hh/2.
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• Given two numerical estimates obtained 
using different h’s, compute higher-order 
estimate

• Starting with a step size h1, the exact value is

• Suppose we reduce step size to h2

)()( 11
nhOhAA 

)()( 22
nhOhAA 

Recall Richardson Extrapolation
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• Multiplying the 2nd eqn by (h1/h2)
n and 

subtracting from the 1st eqn:

• The new error term is generally O(h1
n+1) or 

O(h1
n+2).

1

)()(

2

1

12
2

1



















 n

n

h
h

hAhA
h
h

A

Richardson Extrapolation
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• The true integral value can be written

• This is true for any iteration

Richardson Extrapolation

   hEhII 

       2211 hEhIhEhII 
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Richardson Extrapolation

• For example: Using (n = 2) 

• where c is a constant

• Therefore:
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order of error in 
trapezoidal rule
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• This leads to:

• For integration, we have:
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Richardson Extrapolation

• Solving for E(h2):

• And plugging back into the estimated 
integral.
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• Leads to:

• Letting h2 = h1 /2

Richardson Extrapolation

 
 

    122
21

2
1/

1
hIhI

hh
hII 




      

   12

1222

3

1

3

4
12

1

hIhII

hIhIhII








February 7, 2012 OSU/CSE 541 54

• We combined two O(h2) estimates to get an 
O(h4) estimate.

• Can also combine two O(h4) estimates to 
get an O(h6) estimate.

   lm hIhII
15

1

15

16


Romberg Integration
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Romberg Integration

• Greater weight is placed on the more 
accurate estimate.

• Weighting coefficients sum to unity
– i.e, (16-1)/15=1

• Can continue, by combining two O(h6) 
estimates to get an O(h8) estimate.
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1
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• General pattern is called Romberg Integration

– j : level of subdivision, j+1 has more intervals.

– k : level of integration, k = 1 is original trapezoid 
estimate [O(h2)], k = 2 is improved [O(h4)], etc.
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Romberg Integration
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Romberg Integration

• For example, j = 1, k = 1 leads to

 1,0 0,0 1
1,1 1

4 4 1

3 3 2 3

I I h
I I I h
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• Consider the function:

• Integrate from a = 0 to b = 0.8

• Using the trapezoidal rule yields the 
following results:

5432 400900675200252.0)( xxxxxxf 

Example



30

February 7, 2012 OSU/CSE 541 59

intervals                 Integral

       1           0.8          0.1728

       2          0.4          1.0688

       4          0.2          1.4848    

h

Example

• Trapezoid Rules:

Exact integral is 1.64053334

3674667.1)1728.0(
3

1
)0688.1(

3

4
I (j=1, k=1)

k

j

k = 0 k = 1

j = 0

j = 1

j = 2
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2 4segments                  ( )               ( )

       1           0.8          0.1728          

       2          0.4          1.0688         1.3674667

       4          0.2          1.4848     

h O h O h
k

j

62346667.1)0688.1(
3

1
)4848.1(

3

4
I (j=2, k=1)

k = 1k = 0

Exact integral is 1.64053334

Example
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Example

2 4segments                  ( )               ( )

       1           0.8          0.1728

       2          0.4          1.0688         1.3674667

       4          0.2          1.4848 1.62346667

h O h O h
k

j

(j=2, k=2)

k = 2k = 1

Exact integral is 1.64053334
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15
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2 4 6segments                  ( )                ( )               ( )

       1           0.8          0.1728

       2          0.4          1.0688          1.3674667

       4          0.2          1.

h O h O h O h

4848          1.62346667         1.64053334

k

j
k = 3k = 2k = 1

Example
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2 4 6 8segments                  ( )               ( )               ( )             ( )  

       1           0.8          0.1728

       2          0.4          1.0688          1.3674667

       4     

h O h O h O h O h

     0.2          1.4848          1.62346667         1.64053334

       8          0.1              ??                    ??                         ??                 ??

??)64053334.1(
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1
(??)

63

64
I (j=3, k=3)

k

j

k = 3

Example

• Better and better results can be obtained by 
continuing this

February 7, 2012 OSU/CSE 541 64

Romberg Integration

• Is this that significant?
• Consider the cost of computing the 

Trapezoid Rule for 1000 data points.
– Refinement would lead to 2000 data points.

• Implies an additional 1003 operations using the 
Recursive Trapezoid Rule.

• Not to mention the 1000 (expensive) function evals.

– Romberg Integration cost:
• Three additional operations – no function evals!!!
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Higher-Order Polynomials

• Recall:
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• If we use a 2nd order polynomial (need 3 
points or 2 intervals):
– Lagrange form.
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Simpson’s 1/3 Rule

• Requiring equally-spaced intervals:
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• Integrate and simplify:

0

2

4

6

8

10

12

3 5 7 9 11 13 15

      210 4
3

xfxfxf
h

I 
2

ab
h




Simpson’s 1/3 Rule

Quadratic
Polynomial
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• If we use a = x0 and b = x2, and 
x1 = (b+a)/2

Simpson’s 1/3 Rule

       
6

4 210 xfxfxf
abI




width
average height

February 7, 2012 OSU/CSE 541 70

• Error for Simpson’s 1/3 rule

Integrates a cubic exactly:    04 f
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4
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288090
f
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Simpson’s 1/3 Rule
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Composite Simpson’s 1/3 Rule

• As with Trapezoidal rule, can use multiple 
applications of Simpson’s 1/3 rule.

• Need even number of intervals
– An odd number of points are required.
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Composite Simpson’s 1/3 Rule

• Example: 9 points, 4 intervals
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• As in composite trapezoid, break integral up 
into n/2 sub-integrals:

• Substitute Simpson’s 1/3 rule for each 
integral and collect terms.

Composite Simpson’s 1/3 Rule
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n+1 data points, an odd number
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• Odd coefficients receive a weight of 4, even 
receive a weight of 2.

• Doesn’t seem very fair, does it?

coefficients on 
numerator

1
4 1

1 4
1

1
4 1

i = 0

i = n

Composite Simpson’s 1/3 Rule
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• The error can be estimated by:

• If n is doubled, h  h/2 and Ea  Ea/16 

  )4(
4

)4(
5

180180
f

hab
f

nh
Ea




)4(f is the average 4th derivative

)( 4hO

Error Estimate
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• Integrate                    from a = 0 to b = 2.

• Use Simpson’s 1/3 rule:
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• Error estimate:

• Where h = b - a and a <  < b

• Don’t know 
– use average value

  4
5

90
f

h
Et 

 
           4 4 4

5 5
0 1 241 1

90 90 3t a

f x f x f x
E E f

       

Example
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• Let’s look at the polynomial again:

– From a = 0 to b = 0.8

5432 400900675200252.0)( xxxxxxf 

8.0        4.0
2

         0          4.0
2 210 





 bx
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xax

ab
h

    

    

36746667.1   

8.0)4.0(40
3

)4.0(
    

)(4
3

1
 )( 210

2

0





 

fff

xfxfxfhdxxfI

Exact integral is 1.64053334

Another Example
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• Actual Error: (using the known exact value)

• Estimate error: (if the exact value is not 
available)

• Where a <  < b.

  4
5

90
f

h
Et 

27306666.036746667.1-1.64053334 E 16%

Error
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• Compute the fourth-derivative

• Matches actual error pretty well.

Error

xxf 4800021600)()4( 

      27306667.04.0
90

4.0

90

4.0 4
5

1
4

5

 fxfEE at

middle point
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• If we use 4 segments instead of 1:
– x = [0.0  0.2  0.4  0.6  0.8]

0.2
b a

h
n


 

232.0)8.0(               464.3)6.0(

456.2)4.0(             288.1)2.0(                      2.0)0(




ff

fff

 
       

 

6234667.1   
12

232.0)456.2(2)464.3288.1(42.0
8.0   

)4)(3(

)8.0()6.0(4)4.0(2)2.0(4)0(
08.0   

3

24
1

5,3,1

2

6,4,2
0












 








fffff
n

xfxfxfxf

abI
n

n

i

n

j
ji

Exact integral is 1.64053334

Example Continued
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• Actual Error: (using the known exact value)

• Estimate error: (if the exact value is not 
available)

01706667.06234667.1-1.64053334 E 1%

      0085.04.0
90

2.0

90

2.0 4
5

2
4

5

 fxfEE at

middle point

Error
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Error

• Actual is twice the estimated, why?

• Recall:
xxf 4800021600)()4( 

  ( 4 ) ( 4 )

0 , 0 . 8

( 4 )

m a x ( ) ( 0 ) 2 1 6 0 0

( 0 . 4 ) 2 4 0 0

x
f x f

f
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Error

• Rather than estimate, we can bound the 
absolute value of the error:

• Five times the actual, but provides a safer 
error metric.

       
5 5

4 40.2 0.2
0 0.0768

90 90aE f f   
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Simpon’s 1/3 Rule

• Simpson’s 1/3 rule uses a 2nd order polynomial
– need 3 points or 2 intervals

– This implies we need an even number of intervals.

• What if you don’t have an even number of 
intervals? Two choices:
1. Use Simpson’s 1/3 on all the segments except the last 

(or first) one, and use trapezoidal rule on the one left.
– Pitfall - larger error on the segment using trapezoid

2. Use Simpson’s 3/8 rule.
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• Simpson’s 3/8 rule uses a third order polynomial
– need 3 intervals (4 data points) 

3
3

2
2103 )()( xaxaxaaxpxf 
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3

x

x

x

x
dxxpdxxfI

Simpson’s 3/8 Rule
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Simpson’s 3/8 Rule

• Determine a’s with Lagrange polynomial

• For evenly spaced points

3

ab
h




        3210 33
8

3
xfxfxxfhI 
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• Same order as 1/3 Rule.
– More function evaluations.

– Interval width, h, is smaller.

• Integrates a cubic exactly:

    04 f

   453

80tE h f   )( 4hO

Error
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Comparison

• Simpson’s 1/3 rule and Simpson’s 3/8 rule have 
the same order of error
– O(h4)
– trapezoidal rule has an error of O(h2)

• Simpson’s 1/3 rule requires even number of 
segments.

• Simpson’s 3/8 rule requires multiples of three 
segments.

• Both Simpson’s methods require evenly spaced
data points
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• n = 10 points  9 intervals
– First 6 intervals - Simpson’s 1/3

– Last 3 intervals - Simpson’s 3/8

Simpson’s 1/3

Simpson’s 3/8

Mixing Techniques
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• We can examine even higher-order 
polynomials.
– Simpson’s 1/3 - 2nd order Lagrange (3 pts)

– Simpson’s 3/8 - 3rd order Lagrange (4 pts)

• Usually do not go higher. 

• Use multiple segments.
– But only where needed.

Newton-Cotes Formulas
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Adaptive Simpson’s Scheme

• Recall Simpson’s 1/3 Rule:

• Where initially, we have a=x0 and b=x2.

• Subdividing the integral into two:

      210 4
3

xfxfxf
h

I 

         1 2 34 2 4
6

h
I f a f x f x f x f b      
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Adaptive Simpson’s Scheme

• We want to keep subdividing, until we 
reach a desired error tolerance, .

• Mathematically:
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Adaptive Simpson’s Scheme

• This will be satisfied if:

• The left and the right are within one-half of the 
error.

       

       

1 2

2 3

2

4 ,
6 2

4 ,
6 2

2

c

a

b

c

h
f x dx f a f x f x and

h
f x dx f x f x f b where

a b
c x





        

        


 







48

February 7, 2012 OSU/CSE 541 95

Adaptive Simpson’s Scheme

• Okay, now we have two separate intervals 
to integrate.

• What if one can be solved accurately with 
an h=10-3, but the other requires many, 
many more intervals, h=10-6?
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Adaptive Simpson’s Scheme

• Adaptive Simpson’s method provides a 
divide and conquer scheme until the 
appropriate error is satisfied everywhere.

• Very popular method in practice.

• Problem:
– We do not know the exact value, and hence do 

not know the error.
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Adaptive Simpson’s Scheme

• How do we know whether to continue to 
subdivide or terminate?
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Adaptive Simpson’s Scheme

• The first iteration can then be defined as:

• Subsequent subdivision can be defined as:
     2 , ,S S a c S c b 

   

       

1 1
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Adaptive Simpson’s Scheme

• Now, since

• We can solve for E(2) in terms of E(1).

     

   

5 5
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Adaptive Simpson’s Scheme

• Finally, using the identity:

• We have:

• Plugging into our definition:

       1 1 2 2I S E S E   

         2 1 1 2 215S S E E E   

          2 2 2 2 11

15
I S E S S S    



51

February 7, 2012 OSU/CSE 541 101

Adaptive Simpson’s Scheme

• Our error criteria is thus:

• Simplifying leads to the termination 
formula:

      2 2 11

15
I S S S    

    2 1 15S S  
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Adaptive Simpson’s Scheme

• What happens graphically:
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12 15S subd vS i ide  
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12 15
2
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12 15
4

subdivideSS
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 2 12

1

15
SI S S  
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I=Ileft + Iright

Iright =Ileft + Iright
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Adaptive Simpson’s Scheme

• We gradually capture the difficult spots.
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Adaptive Simpson’s Code

• Simple Recursive Program
static const int m_nMaximum_Divisions = 1000;
Real IntegrationSimpson( const Real (*f) (Real x), const Real start, const Real end, const Real 

error_tolerance, int &level )
{

level += 1;
Real h = (end – start);
Real midpoint = (start + end) / 2.0;
Real f_start = f(start);
Real f_end = f(end);
Real f_mid = f(midpoint );
oneLevel = h*( f_start + 4.0*f_mid + f_end) / 6.0;
Real leftMidpoint = (start+ midpoint ) / 2.0;
Real rightMidpoint = (end+ midpoint ) / 2.0
Real f_midLeft = f(leftMidpoint );
Real f_midRight = f(rightMidpoint );
twoLevel = h*(f_start + 4.0* f_midLeft + 2.0* f_mid + 4.0* f_midRight + f_end) / 12.0;
if( level >= m_nMax_Divisions ) // Terminate the process, converging too slow

return twoLevel;
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Adaptive Simpson’s Code

if( absf( twoLevel – oneLevel) < 15.0*error_tolerance) // Desired solution reached
return twoLevel + (twoLevel-oneLevel) / 15.0;

//
// Otherwise, split the interval in two and recursively evaluate each half.
//
leftIntegral = IntegrationSimpson( f, start, midpoint , error_tolerance/2.0, level );
rightIntegral = IntegrationSimpson( f, midpoint , end, error_tolerance/2.0, level );
return leftIntegral + rightIntegral;

}
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• Idea is that if we evaluate the function at certain 
points, and sum with certain weights, we will get a 
more accurate integral

• Evaluation points and weights are pre-computed 
and tabulated

• Basic form:  



1

1
1

)()(
n

i
ii xfcdxxfI

ci : weighting factors
xi : sampling points selected optimally

Guassian Quadrature

New!!
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• Note that the interval is between –1 and 1

• For other intervals, a change of variables is used to 
transfer the problem so that it utilizes the interval 
[-1, 1]

• This is a linear transform, such that for t[a,b]:

• We have for x[-1,1]:
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t
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Guassian Quadrature

February 7, 2012 OSU/CSE 541 118

• As t = a  x = -1

• As t = b  x = 1

dx
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Guassian Quadrature
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• Basic form of Gaussian quadrature:

• For n=2, we have:

• This leads to 4 unknowns: c1, c2, x1, and x2

– two unknown weights (c1, c2)
– two unknown sampling points (x1, x2)
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n
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   2211 xfcxfcI 

Guassian Quadrature
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Guassian Quadrature

• What we need now, are four known values 
for the equation.

• If we had these, we could then attempt to 
solve for the four unknowns.

• Let’s make it work for polynomials!!!
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• In particular, let’s look at these simple 
polynomials: 
– Constant

• f(x)=1

– Linear
• f(x)=x

– Quadratic
• f(x)=x2

– Cubic
• f(x)=x3

Guassian Quadrature
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Guassian Quadrature

• Recalling the formula: 
– Constant

• f(x)=1

– Linear
• f(x)=x

– Quadratic
• f(x)=x2

– Cubic
• f(x)=x3
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• We can now solve for our unknowns:
– Note, this is not an easy problem and will not be 

covered in this class.
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Guassian Quadrature
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Guassian Quadrature

• This yields the two point Gauss-Legendre
formula
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Guassian Quadrature

• This is exact for all polynomials up to and 
including degree 3 (cubics).
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x

f(x)

-1 1

f(0.577)
f(-0.577)

-0.577 0.577
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1
)577.0()577.0()( ffdxxf

Guassian Quadrature
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Example

5432 400900675200252.0)( xxxxxxf 
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• Integrate f(x) from a = 0 to b = 0.8

• Transform from [0, 0.8] to [-1, 1]
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• Solving

• And substituting for the 2-point formula:

Exact integral is 1.64053334
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• Recall the basic form:

• Let’s look at n=3.

• We now have 6 unknowns: c1, c2, c3,x1, x2, and x3
– three unknown weights (c1, c2 , c3)
– three unknown sampling points (x1, x2 , x3)
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Higher-order Gaussian Quadrature
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Use 6 equations - constant, linear, quadratic, cubic, 
4th order and 5th order to find those unknowns
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• Can solve these equations (or have some one 
smarter than us, like Guass solve them).

• Produces the three point Gauss-Legendre formula

– Exact for polynomials up to and including degree 5
(because using 5th degree polynomial)
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Higher-order Gaussian Quadrature
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Higher-order Gaussian Quadrature
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5432 400900675200252.0)( xxxxxxf 

Integrate from a = 0 to b = 0.8

Transform from [0, 0.8] to [-1, 1]
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Example

replace -0.4 with +0.4
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64053334.1   

485987599.0873244444.0281301290.0


I

Substitute into the transform equation and get

Exact integral is 1.64053334

Example

• Using the 3-point Gauss-Legendre formula:
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Can develop higher order Gauss-Legendre forms 
using

     nn xfcxfcxfcI  ...2211

Values for c’s and x’s are tabulated

Use the same transformation to map interval onto 
[-1, 1]

Gaussian Quadrature
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Gaussian Quadrature

• Requires function evaluations at non-
uniformly spaced points within the 
integration interval
– not appropriate for cases where the function is 

unknown
– not suited for dealing with tabulated data that 

appear in many engineering problems

• If the function is known, its efficiency can 
be a decided advantage
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Gaussian Quadrature

• Problems:
– If we add more data points, like doubling the 

number of sample points.


