Accelerating GPU-based Machine Learning in Python using MPI Library: A Case Study with MVAPICH2-GDR

Nick Contini
12 November 2021
Outline

- Background
- MVAPICH2 GDR vs NCCL
- cuML Tech Stack
- cuML Algorithms
- Synthetic Benchmarks
- Results
Background

- Numerous machine learning libraries available
- Features vary between libs
 - Single vs multi node
 - Python interface availability
 - CPU vs GPU support
- Notable libs:
 - Scikit-Learn
 - Apache Spark’s Mllib
 - Apache Mahout
RAPIDS cuML

- RAPIDS
 - Suite of data science libraries built on top of CUDA
 - cuDF: dataframe library
 - cuML: machine learning algorithm library
 - cuGraph: graph algorithm library

- cuML
 - Analogous to Scikit-Learn
 - Multi Node Multi GPU (MNMG)
 - Utilizes NCCL and DASK for communication
Outline

- Background
- MVAPICH2 GDR vs NCCL
- cuML Tech Stack
- cuML Algorithms
- Synthetic Benchmarks
- Results
MVAPICH2-GDR vs NCCL

- MPI is the de facto standard for collective communication
- MVAPICH2-GDR has GPU support and years of R&D behind it
- Why not use MVAPICH2-GDR instead of NCCL?
MVAPICH2-GDR vs NCCL

Reduce

Bcast

Allreduce
<table>
<thead>
<tr>
<th>Libraries</th>
<th>GPU Support</th>
<th>MNMG Support</th>
<th>Python Support</th>
<th>High Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scikit-learn</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Spark’s ML lib</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Mahout</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>RAPIDS cuML</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>MPI</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>
Outline

- Background
- MVAPICH2 GDR vs NCCL
- cuML Tech Stack
- cuML Algorithms
- Synthetic Benchmarks
- Results
cuML Tech Stack

- Uses Dask (which uses UCX) for point-to-point communication
- NCCL for collective communication
Collective communication occurs in fit() which is where most communication overhead occurs.
cuML Tech Stack (proposed)

- MPI for collective communication
- Gives users access to MPI operations
cuML Tech Stack (proposed)
Outline

- Background
- MVAPICH2 GDR vs NCCL
- cuML Tech Stack
- cuML Algorithms
- Synthetic Benchmarks
- Results
cuML Algorithms

- **K-Means**
 - Separates n points into k clusters using sum of squared error
 - Bcast initial centroid information
 - Cluster cost and centroid selection with Allgather and Allreduce
 - Allreduce for centroid information each iteration

- **Random Forest**
 - Ensemble decision tree classifier
 - No collective communication

- **K-Nearest Neighbor**
 - Data point classification based on k neighboring data points
 - Bcast same subset of data to each worker

- **Linear-Regression**
 - Fit a set of data points into a linear combination of predictors
 - This paper uses SVD over Eigen for benchmarking
 - Bcast at beginning
 - Reduce at each step

- **Truncated SVD**
 - Less computationally intensive SVD
 - Bcast at beginning
 - Reduce and Allgather for matrix computation
Outline

- Background
- MVAPICH2 GDR vs NCCL
- cuML Tech Stack
- cuML Algorithms
- Synthetic Benchmarks
- Results
Synthetic Benchmarks

- Attempt to maximize training throughput with given GPU memory
- Utilize make_blobs, make_classification, and make_regression
- Simulate real datasets
 - Cluster: normally distributed clusters
 - Users may set center and standard deviation of each cluster
 - Classification: normally distributed classes with interdependence and random noise and input data containing independent and redundant features
 - Regression: random linear combination of features with noise
 - Users may set sparsity and correlation of features
- Train the Higgs Boson dataset to demonstrate cuML accuracy
 - Use K-Means and Random Forest
 - Use hyperband search to maximize accuracy
Outline

- Background
- MVAPICH2 GDR vs NCCL
- cuML Tech Stack
- cuML Algorithms
- Synthetic Benchmarks
- Results
Results

Truncated SVD

K-Means
Results

Linear Regression

Random Forest
Results

Nearest Neighbors
Results

![Graphs showing results for Allreduce, Reduce, and Bcast in K-Means and Nearest Neighbors.](image)
Results

K-Means

Random Forest
Questions?