

Introduction to Biological Networks

Kun Huang Department of Biomedical Informatics The Ohio State University

Wexner Medical Center

Outline

- Introduction to biological networks
 - Different kind of networks

How to build networks

- Experimental methods
- Computing methods
 - Example 1 Gene co-expression
- Informatics methods
 - Example 2 STRING
- Databases and resources
- Analyzing and mining the networks

Wexner Medical Center

Taniguchi et al. Nature Reviews Molecular Cell Biology 7, 85–96 (February 2006) | doi:10.1038/nrm1837

	Α	В	С	D	E	F	G	н	I	J	К	L
1	Bio	ochen	nical H	Pathwa	ays	Contraction of the second seco			ATE MALONATE, OXALO- ACETATE SUCCIMATE SUCCI	COA-SH SUCCINY PPI. A	TP GLYCYL- GLYCYL- GLYCYL- GLYCINE SPNA	TYL-Con -s c o c H, PyrP
2								C00 +-c- -C- -C-00	H DENTOROCENASE CH. FADH, E FAD-E COC ACCEPTOR ACC-H, (UBIQUI- NOLE) NOL	GTP(ITP) COA-SH SUCCINYLCOA- LIGASES		CINE SYNTHASE OOH -NH3 S-AMINO- LEVULINATE SYNTHASE OF O HEME hv (in plants and photo- bacteria)
3								2H+ FORM DE- G (CY	NADH + H+ ATE IYDRO- BRASE TOCHROME) DEHYDRO- MOLYBOO- PTERIN 2 Cytu-Fe ⁺⁺			FAD NADH -E +H S-AC -E +H S-ALLY -E LIPO- -E LIPO- -E LIPO- -E ALLY ALY
4								yoxy- ate ycle	COA HYDRO- COA HYDRO- COA HYDRO- COA HYDRO- COA-SH H- H- DECARBOXY- LASE CO, OXALYL-COA	RMATE CO, COH ST H DOXIN CCO, CO, CO, CO, CO, CO, CO, CO, CO, CO	C Deficient in hyper- oxalura I PYRUVATE	$\begin{array}{c} H_{2} \\ OOH \\ H_{E} \ Lip \displaystyle \bigvee_{E}^{S} \\ T_{h} PP \cdot E \\ H_{-} C - OH \\ CH_{2} \\ H_{-} \\ H_{-} \\ CH_{2} \\ \hline \end{array} \qquad \begin{array}{c} ACTH \\ OH \\ ACTH \\ CH_{2} \\ \hline \end{array} \qquad \begin{array}{c} ACTH \\ OH \\ ACTH \\ CH_{2} \\ \hline \end{array} \qquad \begin{array}{c} ACTH \\ OH \\ ACTH \\ CH_{2} \\ \hline \end{array} \qquad \begin{array}{c} ACTH \\ OH \\ $
5	F										G GLYOXYLATE TRANS- AMINASE	
6												
7												
8					<u>I</u>							
9												
10												
4												

Gene Regulatory Network

Protein-Protein Interaction Network

в

Nature Biotechnology 18, 1257 -1261 (2000) doi:10.1038/82360 A network of protein-protein interactions in yeast Benno Schwikowski, Peter Uetz & Stanley Fields

enter

Nature Biotechnology 18, 1257 - 1261 (2000) doi:10.1038/82360 A network of protein-protein interactions in yeast Benno Schwikowski, Peter Uetz & Stanley Fields

Midexider Späters Skillage 3, Article number 124, doi:30.1038/msb4300163 Clarine Midexide Tysleve Biology 3.124 © 2007 UMD and Falue Robing Grasp. All rights seared 1746-4252/07 vans. rithonizing-terminal-sign com-PERSPECTIVE

Human disease classification in the postgenomic era: A complex systems approach to human pathobiology

Joseph Loscalzo^{1,2,*}, Isaac Kohane^{8,3} and Albert-Laszlo Barabasi⁴ Vet, this classic diagnostic strategy has widely recognized shortcomings that reflect both a lack of sensitivity in identifying preclinical disease and a lack of specificity in

Article Network

Outline

Introduction to biological networks
Different kind of networks

How to build networks

- Experimental methods (e.g., Y2H)
- Computing methods
 - Example 1 Gene co-expression
- Informatics methods
 - Example 2 STRING
- Databases and resources
- Analyzing and mining the networks

Gene Co-Expression

Q: What could be the mechanisms and implications for coexpression?

Wexner Medical Center

Gene Co-Expression Network

Y. Xiang, D. Fuhry, K. Kaya, R. Jin, U. Catalyurek, K. Huang *Network Modeling Analysis in Health Informatics and Bioinformatics*, 2012, Volume 1, Number 3, Pages 103-116.

Wexner Medical Center

Gene Co-Expression Network to Infer Disease Gene

ARTICLES

genetics

HMMR siRNA

Wexner Medical Center

Network modeling links breast cancer susceptibility and centrosome dysfunction

Miguel Angel Pujana^{1,2,16,17}, Jing-Dong J Han^{1,2,16,17}, Lea M Starita^{3,16,17}, Kristen N Stevens^{4,17}, Muneesh Tewari^{1,2,16}, Jin Sook Ahn^{1,2}, Gad Rennert⁵, Víctor Moreno^{6,7}, Tomas Kirchhoff⁸, Bert Gold⁹, Volker Assmann¹⁰, Wael M ElShamy², Jean-François Rual^{1,2}, Douglas Levine⁸, Laura S Rozek⁶, Rebecca S Gelman¹¹, Kristin C Gunsalus¹², Roger A Greenberg², Bijan Sobhian², Nicolas Bertin^{1,2}, Kavitha Venkatesan^{1,2}, Nono Ayivi-Guedehoussou^{1,2,16}, Xavier Solé⁷, Pilar Hernández¹³, Conxi Lázaro¹³, Katherine L Nathanson¹⁴, Barbara L Weber¹⁴, Michael E Cusick^{1,2}, David E Hill^{1,2}, Kenneth Offit⁸, David M Livingston², Stephen B Gruber^{4,6,15}, Jeffrey D Parvin^{3,16} & Marc Vidal^{1,2}

Predict New Gene Functions

siRNA: KIAA0101

siRNA: KIF23

siRNA: KIF14

Predict Survival Outcome

Protein-Protein Interaction Network

Protein-Protein Interaction Network - STRING

This is the evidence view. Different line colors represent the types of evidence for the association.

Fusion

<u>_</u>	A	~	4
confidence	evidence	actions	intera

Your Input:

hyaluronan-mediated motility receptor (RHAMM); Involved HMMR HMMR, the phosphorylation of a number of proteins, includ be involved in cellular transformation and metastasis form kinase (ERK) activity (725 aa)

Databases and Resources

- KEGG, BioCarta
- MIMI integrated many different PPI and molecular interaction databases
- STRING multiple evidence based integration
- Ingenuity Pathway Analysis (commercial)
- MetaCore (commercial)
- Many others http://www.pathguide.org

Outline

- Introduction to biological networks
 - Different kind of networks
- How to build networks
 - Experimental methods
 - Computing methods
 - Example 1 Gene co-expression
 - Informatics methods
 - Example 2 STRING
- Databases and resources
- Analyzing and mining the networks

KEGG PATHWAY Database - Microso	oft Internet Explorer	🛯 🕬 English (United States) 🛛 🖉 Microphone 🖌 Ha	andwriting 🛛 🗧 📑 🛐
ile Edit View Favorites Tools Help			
🕽 Back 🔹 📀 🔹 🖻 😭 🔎 Search 🤺 Fav	orites 🔗 🍃 💺 🔯 🔹 📙 🛃 🖧 🥰		
ddress 🕘 http://www.kegg.com/kegg/pathway.html			✓ O Links
oogle 💽 🗸 🔍 🔽 🐨 🔂 🗸 😭 Bookma	arks+ 🗟 4905 blocked 🛛 🍄 Check + 🔦 AutoLink +	🖹 AutoFill 🔒 Send to+ 🥒	🔘 Settings+ 🌍
KEGG PATHWAY Da Wiring diagrams of molecula	atabase		
KEGG2 KID PATHWAY BRITE GENES	SSDB LIGAND DRUG DBGET		
Pathway Maps			
 KEGG PATHWAY is a collection of manually drawn patthe molecular interaction and reaction networks for: Metabolism Carbohydrate Energy Lipid Nucleotide A Glycan PK/NRP Cofactor/vitamin Seconda Genetic Information Processing Environmental Information Processing Cellular Processes Human Diseases and also on the structure relationships (KEGG drug st 6. Drug Development Search PATHWAY for bfind mode bget mode 	athway maps representing our knowledge on amino acid Other amino acid ry metabolite Xenobiotics aructure maps) in: Go Clear		
1. Metabolism			
1.1 Carbohydrate Metabolism Glycolysis / Gluconeogenesis Citrate cycle (TCA cycle) Pentose phosphate pathway Pentose and glucuronate interconversions Fructose and mannose metabolism Galactose metabolism Ascorbate and aldarate metabolism Astorbate and aldarate metabolism Aminosugars metabolism Nucleotide sugars metabolism Glyoxylate and dicarboxylate metabolism Butanoate metabolism C5-Branched dibasic acid metabolism Inositol phosphate metabolism Inositol phosphate metabolism Oxidative phosphorylation Revised! Photosynthesis Revised!	KEGG Orthology (KO) KEGG pathway modules Overview of biosynthetic pathways Enzymes (+diseases) Compounds with biological roles		
Photosynthesis <i>Revised!</i> Photosynthesis - antenna proteins <i>New!</i>	Photosynthesis proteins		
			🥑 Internet

25

Ingenuity Pathway Analysis (IPA) Network 1: SeanL_RM/estimates_Results - 2008-07-14 08:24 AM: SeanL_RMAestimates_Results x/s

Pathway – What's out there?

Address 🙆 http://www.pathguide.org/

Google G-

🗸 Go 🖟 🌮 🗲 🔂 🗸 🛛 🔂 Bookmarks 🗸 🔊 4905 blocked

🦈 Check

News

Find i

Many

are a∖

Get t

Detaile statist

Home

Pathguide» the pathway resource list

Navigation

Protein-Protein Interactions Metabolic Pathways Signaling Pathways Pathway Diagrams Transcription Factors / Gene Regulatory Networks

Protein-Compound Interactions

Genetic Interaction Networks

Protein Sequence Focused

Other

All

Organisms

Protein-Protein Interactions

)atabase Name (Order: alphabetically by web popularity 🛛)	Full R
3DID - 3D interacting domains	Det
ABCdb - Archaea and Bacteria ABC transporter database	Det
MCS - Alliance for Cellular Signaling Molecule Pages Database	Det
AllFuse - Functional Associations of Proteins in Complete Genomes	Det
ASEdb - Alanine Scanning Energetics Database	Det

Outline

- Introduction to biological networks
 - Different kind of networks
- How to build networks
 - Experimental methods
 - Computing methods
 - Example 1 Gene co-expression
 - Informatics methods
 - Example 2 STRING
- Databases and resources
- Analyzing and mining the networks

What can we learn from networks?

- Relationships
- Community information
- Logical or dynamic information
- (Sometimes) 1 + 1 > 2 in networks
- Need new theories from physics, mathematics, statistics, …

Power Law Small World Rich Get Richer (preferential attachment) Self-similarity

Metabolic network

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)

Organisms from all three domains of life are scale-free networks!

Implications: Hubs and Robustness

Complex systems maintain their basic functions even under errors and failures

(cell \rightarrow mutations; Internet \rightarrow router breakdowns)

Coherent Feed Forward Loop (FFL)

Nature Genetics **31**, 64 - 68 (2002)

Network motifs in the transcriptional regulation network of *Escherichia coli* Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan & Uri Alon

Noise (low-pass) filter lical Center

Graph Pattern Mining - Clique Enumeration and Merging

- NetMerge guarantees subnetwork densities.
- NetMerge runs very fast.

CC: extracellular matrix BP: immune system process BP: cell cycle process BP: translational termination CC: cytosolic ribosome

Y. Xiang, D. Fuhry, K. Kaya, R. Jin, U. Catalyurek, K. Huang, "Merging Network Patterns: A General Framework to Summarize Biomedical Network Data", *Network Modeling Analysis in Health Informatics and Bioinformatics*, 2012, Volume 1, Number 3, Pages 103-116.

Wexner Medical Center

Bipartite Graphs

 Disease Gene Prioritization (Using Graph Pattern Mining Approaches)

 $\mathcal{F}(i,j) = \max_{T \times I \in S(i,j)} (|T| - 1) * (|I| - 1)$

Y. Xiang, P.R.O. Payne, K. Huang, "Transactional Database Transformation and Its Application in Prioritizing Human Disease Genes", IEEE-ACM Transactions on Computational Biology and Bioinformatics (TCBB). 2012, Vol 9, Issue 1, pp 294-304.

Wexner Medical Center

Bipartite Graphs

Can you think of any biomedical applications that can be formulated using bi-partite (or multi-partite) graphs?

Graph Indexing for Unified Medical Language System (UMLS): Conceptual Knowledge Construct

Graph Indexing: UMLS

kDLS vs BFS or DFS

Y. Xiang, K. Lu, S. L. James, T. B. Borlawsky, K. Huang, P.R.O. Payne, *Journal of Biomedical Informatics.* 2012, Vol 45, Issue 2, pp 323-336.

Network-based Ranking

rank	CUI	Gene Concept	R value	percentile	PubMed ID
1 *	C1537734	MIR29B2	2.15541	0.003409%	
$2 \star$	C1835840	MIR29B1	2.13243	0.006818%	
4	C1537910	MIRLET7A1	1.83769	0.013637%	19246618
4	C1537912	MIRLET7A3	1.83769	0.013637%	17989717
5*	C0812286	NFKB2	1.7738	0.017046%	
6 *	C1537797	MIR143	1.72205	0.020455%	
7 *	C1537764	MIR106B	1.69907	0.023864%	
8√	C1537713	MIR17	1.69729	0.027273%	15284443
9√	C1334913	NUP98	1.68912	0.030682%	10929031
10 🗸	C0694889	RB1	1.68422	0.034091%	8378351
11 🗸	C1537811	MIR155	1.68362	0.0375%	21296997
$12 \star$	C1537709	MIR15A	1.63211	0.04091%	
$13 \star$	C1537799	MIR145	1.6283	0.044319%	
14 *	C1537712	MIR16-2	1.61734	0.047728%	
$15 \star$	C1333221	DLEU1	1.61367	0.051137%	
16	C0919524	ATM	1.60915	0.054546%	9892178
18 *	C1537813	MIR181B1	1.60896	0.061364%	
18 *	C1537814	MIR181B2	1.60896	0.061364%	
$19 \star$	C1333223	DLEU2	1.60747	0.064773%	
$20 \star$	C0812238	BCL3	1.59458	0.068183%	
21 *	C1366526	BTG2	1.58792	0.071592%	
22	C1367449	BCL10	1.58539	0.075001%	10583229
23	C1334894	NPM1	1.58168	0.07841%	18487510
24 *	C1413172	CCND1	1.56103	0.081819%	
25	C1825998	MIR20A	1.53931	0.085228%	18348159
26	C1537914	MIRLET7C	1.51688	0.088637%	
27	C1412097	ABL1	1.51654	0.092047%	16885384
$28 \star$	C1537710	MIR15B	1.51344	0.095456%	
29	C1537711	MIR16-1	1.49373	0.098865%	18448218
30 *	C1366587	MCL1	1.49361	0.102274%	

rank	CUI	Gene Concept	R value	percentile	PubMed ID
$2 \star$	C1537910	MIRLET7A1	1.04687	0.006818%	
$2 \star$	C1537912	MIRLET7A3	1.04687	0.006818%	
3 *	C0079419	TP53	1.04684	0.010227%	
$4 \star$	C0919524	ATM	1.03027	0.013637%	
5	C0376571	BRCA1	1.00283	0.017046%	8807330
6*	C1333544	FGFR4	0.966285	0.020455%	
7√	C0242957	ERBB2	0.961433	0.023864%	9797688
8√	C0694884	MEN1	0.939749	0.027273%	15168774
9√	C0162832	APC	0.93778	0.030682%	11448917
10 🗸	C0694872	CDH1	0.934644	0.034091%	11597316
11 *	C1537713	MIR17	0.933832	0.037500%	
12	C1332802	CTLA4	0.914895	0.040910%	16527605
$13 \star$	C1336686	TSSC4	0.91024	0.044319%	
14 🗸	C1537734	MIR29B2	0.899002	0.047728%	19639033
$15 \star$	C1537859	MIR221	0.898388	0.051137%	
16	C0812241	BRAF	0.896812	0.054546%	12068308
$17 \star$	C1825998	MIR20A	0.896133	0.057955%	
18 *	C1337001	WNT3	0.893316	0.061364%	
$19 \star$	C1537773	MIR126	0.884353	0.064773%	
20	C0812265	ERBB3	0.88357	0.068183%	1333787
21	C1332416	BIRC5	0.882932	0.071592%	16873289
$22 \star$	C0694883	STK11	0.882428	0.075001%	
23	C0812267	ERBB4	0.874504	0.078410%	15735025
$24 \star$	C1836306	MIR124-1	0.871343	0.081819%	
25	C1333206	DDR1	0.871328	0.085228%	10923103
26	C1537715	MIR19A	0.869182	0.088637%	21059650
27	C1537699	MIR1-1	0.868504	0.092047%	
$28 \star$	C1335274	PTK6	0.867511	0.095456%	
29	C1835840	MIR29B1	0.86677	0.098865%	21359530
30	C0694889	RB1	0.860263	0.102274%	11108660

Chronic Lymphocytic Leukemia (CLL)

Breast Carcinoma

Y. Xiang, K. Lu, S. L. James, T. B. Borlawsky, K. Huang, P.R.O. Payne, Journal of Biomedical Informatics. 2012, Vol 45, Issue 2, pp 323-336.

Wexner Medical Center

Summary

- Network modeling is an effective way of studying biomedical systems.
- Many existing resources for biomedical networks.
- Network may exhibit complicated behavior and requires new theory and algorithms.

