
FirmXRay: Detecting Bluetooth Link Layer Vulnerabilities From
Bare-Metal Firmware

Haohuang Wen
wen.423@osu.edu

The Ohio State University

Zhiqiang Lin
zlin@cse.ohio-state.edu
The Ohio State University

Yinqian Zhang
yinqian@cse.ohio-state.edu
The Ohio State University

ABSTRACT
Today, Bluetooth 4.0, also known as Bluetooth Low Energy (BLE),
has been widely used in many IoT devices (e.g., smart locks, smart
sensors, and wearables). However, BLE devices could contain a
number of vulnerabilities at the BLE link layer during broadcasting,
pairing, and message transmission. To detect these vulnerabilities
directly from the bare-metal firmware, we present FirmXRay, the
first static binary analysis tool with a set of enabling techniques
including a novel base address identification algorithm for robust
firmware disassembling, precise data structure recognition, and
configuration value resolution. As a proof-of-concept, we focus on
the BLE firmware from two leading SoC vendors (i.e., Nordic and
Texas Instruments), and implement a prototype of FirmXRay atop
Ghidra. We have evaluated FirmXRay with 793 unique firmware
(corresponding to 538 unique devices) collected using a mobile app
based approach, and our experiment results show that 98.1% of
the devices have configured random static MAC addresses, 71.5%
Just Works pairing, and 98.5% insecure key exchanges. With these
vulnerabilities, we demonstrate identity tracking, spoofing, and
eavesdropping attacks on real-world BLE devices.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering; Em-
bedded systems security; Mobile and wireless security.

KEYWORDS
Firmware analysis, Bluetooth Low Energy, Embedded system secu-
rity, Vulnerability discovery
ACM Reference Format:
Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. 2020. FirmXRay: De-
tecting Bluetooth Link Layer Vulnerabilities From Bare-Metal Firmware. In
2020 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’20), November 9–13, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3372297.3423344

1 INTRODUCTION
Over the past several years, we have witnessed a rapid growth of
the Internet-of-Things (IoT), thanks to a variety of enabling tech-
nologies from sensors, micro-controllers, actuators, to mobile and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3423344

cloud computing. Among the deployed IoTs, the BLE-enabled ones
are ubiquitous and have been widely used in many applications (e.g.,
health care, retail, asset tracking [19], and recently contact trac-
ing [59]). The key reason for its success is its low technical barrier
from both hardware and software. Today, there are many System
on Chip (SoC) vendors such as Nordic [11] and Texas Instruments
(TI) [15], which provide both hardware chips and software devel-
opment kits (SDKs) for IoT developers. There are also numerous
software platforms (e.g., Android), frameworks (e.g., Google Home),
and clouds (e.g., AWS) that enable application programmers to easily
assemble hardware gadgets with software components. Therefore,
such a low technical barrier has attracted a huge number of devel-
opers, and together they have produced billions of BLE-IoT devices.

However, a secure BLE device needs proper hardware capability
(e.g., I/O), and also correct configuration for its broadcasting, pair-
ing, and message encryption. Otherwise, it could lead to a number
of vulnerabilities at the BLE link layer. For instance, a BLE device
can be vulnerable to identity tracking [27] and device fingerprint-
ing [63] [20] if developers configure MAC addresses and universally
unique identifiers (UUIDs) statically for broadcasting. Meanwhile, a
BLE device can be vulnerable to active man-in-the-middle (MITM)
attacks (e.g., spoofing) if it is configured to only support Just Works
pairing [41] [49]. In addition, passive MITM attacks (e.g., eavesdrop-
ping) are also possible if it fails to enforce the Low Energy Secure
Connections pairing [36] to secure the key exchange [44] [32].

While it is important for a BLE device to be secure against these
attacks, it is in fact hard to do so for several reasons. First, the
configurations are complicated. For instance, to use secure pairing
methods (e.g., passkey entry and OOB [16]) instead of Just Works,
developers have to clearly specify theMITMprotection requirement
and also the device I/O capability in the pairing feature packets.
Second, many security features also rely on capabilities provided by
device hardware. For example, to configure passkey entry pairing,
the device must have a keyboard or a touchable screen to let users
manually enter a passkey to authenticate the pairing device. Third,
some extra implementations are required. For example, to configure
periodically randomized MAC addresses, developers also need to
implement the exchange of Identity Resolving Key (IRK) [16].

Therefore, it is imperative to identify the aforementioned vulner-
abilities in BLE devices. There could be multiple approaches to do
so, such as packet analysis with real devices, or using companion
mobile apps. However, these approaches are either not scalable or
have only limited view. Fortunately, we notice that these vulnerabil-
ities can be directly identified from the low-level configurations in
the corresponding bare-metal firmware (i.e., firmware without OS
support, which is particularly popular for BLE due to its extremely
low energy requirement). While there is a large body of research
in firmware analysis for vulnerability discovery such as firmware

https://doi.org/10.1145/3372297.3423344
https://doi.org/10.1145/3372297.3423344

emulation [56] [23], fuzzing [47] [25] [60], rehosting [26] [31], and
static analysis [35] [33], nearly all of them focus on non-bare-metal
�rmware (e.g., devices such as IoT routers and cameras [25] with
Linux kernels). Additionally, none of them systematically investi-
gates the vulnerabilities in bare-metal BLE-IoT devices.

To advance the state-of-the-art, we presentFirmXRay, the �rst
static analysis tool to detect BLE link layer vulnerabilities from
con�gurations in the bare-metal �rmware at scale. Speci�cally, we
have developed three techniques inFirmXRay. The �rst is Robust
Firmware Disassembling, which uses absolute pointers to model
base address constraints and infers the base address to disassem-
ble the �rmware. The second isPrecise Data Structure Recognition,
which leverages the static SDK function signatures to identify the
con�gurations from function parameters. The third isCon�guration
Value Resolutionto extract the con�guration generation path and
resolve the con�guration values. We have implementedFirmXRay
atopGhidra [8], and target the �rmware built with the SDKs from
Nordic or TI, the two leading global BLE SoC vendors [46].

To evaluateFirmXRay, we have to collect bare-metal �rmware
at scale, which is challenging since IoT vendors seldom release the
device �rmware publicly, and also there is no centralized platform
to collect them. Interestingly, we notice that bare-metal �rmware
typically do not directly connect to the Internet through cellular
network or Wi-Fi, and thus they must rely on relays (e.g., mobile
apps) to transfer update packets wirelessly. Therefore, we design
a scalable mobile app based approach to collect the bare-metal
�rmware. With this approach, we successfully downloaded793
unique �rmware corresponding to538unique devices.

Among these devices,FirmXRaydiscovered that71:5%of them
adoptJust Workspairing that provides no protection against ac-
tive MITM attacks such as active eavesdropping and spoo�ng. In
addition, nearly all of them have con�gured random static MAC
addresses and insecure key exchanges, which allows tracking and
eavesdropping attacks that can leak user's personal identity and
private data. Our results show that there is a wide spread of vulner-
abilities across various bare-metal BLE-IoT devices. To show the
security implications of the identi�ed vulnerabilities, we demon-
strate three types of concrete attacks on 5 real-world BLE devices.

Contributions. Our paper makes the following contributions:

� We design the �rst automated static analysis toolFirmXRayto
detect BLE link layer vulnerabilities from the con�gurations of
bare-metal �rmware with a novel algorithm to recognize the
base address, and then identify and resolve the con�gurations.

� We propose a mobile-app-based scalable approach to e�ciently
collect bare-metal �rmware images from only mobile apps, re-
sulting in 793unique ones corresponding to538unique devices.

� We implementFirmXRayatopGhidra, and evaluate it with793
unique �rmware, in which our tool discovered that71:5%of the
devices useJust Workspairing, and nearly all of them have con�g-
ured random static MAC addresses and insecure key exchanges.

2 BACKGROUND
2.1 Bare-metal Firmware
Bare-metal �rmware is ubiquitous among various IoT embedded
devices such as smart sensors, smart toys, smart locks, and smart

Figure 1: Memory layout of bare-metal IoT devices.

lights, because of its low energy consumption and also the trade
o� between price and performance. Since it directly runs on a logic
hardware without any operating systems, fundamentally it is barely
a binary blob that only contains the program code to manage the
device functionality using an in�nite loop and interacts with other
software components through interrupts.

Nowadays, many manufactures, such as Nordic [11], TI [15], and
Dialog [6], have developed various Micro Controller Units (MCUs),
which are small and self-contained computers on micro chips to
support the bare-metal �rmware. Meanwhile, they often adopt low-
energy technologies such as BLE, and low-end processors such
as ARM Cortex-M0. Moreover, to facilitate the development of
an embedded device, these manufactures also provide software
development kits (SDKs) that have integrated a number of basic
functionalities. Typical examples are SoftDevice [12] from Nordic
and BLE-Stack [2] from TI, which enable developers to implement
speci�c device logic such as BLE pairing and data exchange, atop
the programming interfaces provided in the SDK.

Memory layout of bare-metal �rmware. The memory layout
of a typical bare-metal IoT device is presented in Figure 1 [10]. At
a high level, the layout consists of two main regions: (i) read only
memory (ROM) containing program code and persistent data, and
(ii) random access memory (RAM) holding run-time variables. The
ROM is located at the lower address space (e.g., 0x0) whereas the
RAM is at higher address space (e.g., 0x20000000), and there is a
gap between these two memory regions. On the ROM side, there are
multiple isolated sections including theSDKprovided code for the
precompiled vendor-speci�c functions,applicationcode for device
logic, andbootloaderfor boot logic. On the RAM side, there are mul-
tiple RAM sections correspondingly for theapplicationandSDKto
store static variables, as well as thestackandheapto store local and
dynamically allocated variables. For each section in the ROM and
RAM, it starts from an absolute base address, such asAPP_ROM_BASE
for application, which can be customized before compilation.

Over-the-air upgrade of the �rmware. While the bootloader
and theSDKare preloaded into the device memory and seldom get
changed overtime, there is a need for developers to upgrade the
applicationwith new patches (e.g., when �xing vulnerabilities or
bugs). Since theapplicationcode does not rely on OS and is isolated
from other sections in the ROM, it is usually small in size (less than
one megabyte according to our observation), which thus allows the
upgrade procedure to directly replace the oldapplicationwith a
new one. Additionally, since bare-metal devices often do not have
direct Internet access (e.g., cellular network or Wi-Fi), they rely on
other entities (e.g., smartphones) to serve as intermediate relays to
download the upgraded �rmware from remote servers, and then
transfer the �rmware to the devices. Such an upgrade process is
calledover-the-air (OTA) upgradebecause the transfer is through
wireless network such as Bluetooth. After receiving the upgraded

Figure 2: Bluetooth Low Energy protocol stack.

�rmware, the device reboots and the bootloader replaces the old
�rmware with the latest one.

2.2 Bluetooth Low Energy

BLE protocol stack. The architecture of the BLE protocol stack [16]
is shown in Figure 2. At a high level, it is divided into three compo-
nents: application, host, and controller. At the bottom of the stack,
the link layer directly interacts with the physical layer, and is re-
sponsible for basic functions including advertising, connection, and
encryption. Meanwhile, the host communicates with the link layer
through the Host Controller Interface (HCI) and de�nes secure
device communication protocols such as Generic Attribute Pro�le
(GAP). At the top of the stack, the application layer leverages the
abstractions from the host to implement speci�c application logic.

BLE work�ow. The general work�ow of Bluetooth Low Energy
is presented in Figure 3, which illustrates how a central device (e.g.,
a smartphone) pairs with a peripheral device (e.g., a BLE smart
band), and exchanges data. At a high level, the work�ow is broken
down into eight steps across three main stages: (I) Broadcast and
connection, (II) Pairing and bonding, and (III) Data Transmission.
The details of each stage are described as follows.

(I) Broadcast and connection. In this stage, the smartphone rec-
ognizes the broadcasting smart band and establishes a connection
with it. Initially, in order to indicate the willingness of connection,
the smart band needs to broadcast data packets to all nearby de-
vices, which include identi�able information such as Media Access
Control (MAC) address and universally unique identi�ers (UUIDs).
A device that broadcasts information and waits for connection (¶)
is regarded as aperipheral, while the one scans the advertised BLE
packets (·) from the peripherals and initiates the connection is
called acentral. After the central initiates the connection request
(¸) to the peripheral, the connection is successfully established (¹).

(II) Pairing and bonding. The channel between the central and
peripheral often needs to be encrypted, and thus the pairing process
is for them to negotiate the cryptographic key. While broadcast and
connection is a mandatory stage for all BLE communications, the
pairing and bonding stage is optional. If none of the device requests
for pairing, the transferred data will be in plain text. Speci�cally,
the pairing process consists of the following three steps:

� Pairing feature exchange (º). At �rst, the two devices ex-
change their pairing features so that an appropriate pairing
method (e.g., passkey entry) can be negotiated. The exchanged
features include their I/O capabilities, MITM requirement, BLE
version,etc.If MITM protection is needed and certain I/O require-
ments (e.g., having a keyboard or display) are satis�ed, they will

Figure 3: Bluetooth Low Energy work�ow.

select a secure pairing method includingpasskey entry, numeric
comparison, andOut Of Band(OOB). Otherwise, they have to use
Just Works, which has the weakest security protection.

� LTK/STK generation (»). After the pairing method is decided,
the two devices then negotiate the encryption key. This step
performs di�erently according to speci�c BLE versions. When
two devices are below BLE 4.2, they use BLE Legacy Pairing to
generate a temporary short term key (STK) to encrypt the long
term key (LTK), in which the STK is generated based on the
selected pairing method (e.g., requiring a user to manually enter
a 6-digit passkey) [16]. If the two devices support at least BLE
4.2, the LE Secure Connection (LESC) pairing can be used. Based
on the Elliptic-Curve Di�e�Hellman (ECDH) protocol, each of
them generates a public-private key pair and only exchanges the
public key, and then an LTK is directly calculated on both sides
to encrypt the session. Note that the selected pairing method is
used to authenticate the pairing process (e.g., asking the user to
enter a password). If bonding is speci�ed, the negotiated key is
stored in non-volatile memory for future communications.

� Transport speci�c key distribution (¼). After the STK or
LTK has been generated, the transport speci�c keys are dis-
tributed from one entity to the other. The distributed keys in-
clude the LTK (in Legacy pairing), Identity Resolution Key (IRK),
Connection Signature Resolving Key (CSRK), and so on.

(III) Data Transmission. When the �rst two stages are completed,
the central and the peripheral start to communicate with each other
(½). The communication is through reading or writing data on cer-
tain BLE attribute called characteristic. To be more speci�c, the BLE
stack maintains a set of hierarchical attributes including services,
characteristics, and descriptors [7], which are identi�ed by UUIDs.

3 OVERVIEW
3.1 Threat Model, Scope, and Assumptions

Threat model. In this paper, we consider that nearby attackers
can compromise the devices by leveraging the vulnerabilities at the
BLE link layer. These attackers are capable of sni�ng BLE packets
during broadcast and data transmission, and also performing MITM
attacks. These attacks can be launched by using a programmable

Figure 4: An example of a Just Workspairing vulnerability.

BLE development board such as a Nordic nRF52-DK [13] to build
a Bluetooth sni�er and MITM proxy.

Scope.While there are many attacks against BLE (e.g., [30, 34, 44,
48, 63]), we particularly focus on those caused by the vulnerabilities
at the BLE link layer, which is responsible for broadcast, pairing,
and encryption. To summarize, there are three types of such attacks:
(i) identity tracking, (ii) active MITM, and (iii) passive MITM.

(i) Identity tracking . This attack enables an attacker to keep track
of a victim's identity based on the advertised information such
as MAC address from a BLE peripheral. While MAC address
is mandatory in each BLE packet, which makes identity track-
ing possible [27], it can be con�gured to be a static address
(e.g., public IEEE address [40]), or a randomly generated address
which keeps changing periodically (e.g., every 15 minutes [40]).
Therefore, in this case, how resilient the device against identity
tracking depends on the device con�guration.

(ii) Active MITM . An active MITM attack allows intercepting (e.g.,
active eavesdropping) and modifying messages (e.g., spoo�ng).
In BLE, such a vulnerability can also be identi�ed from con�gu-
rations. Speci�cally, among the four types of pairing,numeric
comparisonandpasskey entryare able to prevent active MITM at-
tacks since they rely on a third-party entity (e.g., a human being)
to authenticate the connection with a dedicated I/O (e.g., by man-
ually entering a passkey on the screen). Meanwhile,OOBcan
mitigate this attack by narrowing down to an extremely short
connection distance. However, if the �rmware fails to properly
con�gure with MITM protection, or lacks certain I/O capabilities
(which will still be re�ected in the con�gurations), it has to use
Just Workspairing, which provides no protection against active
MITM attacks.

(iii) Passive MITM. Passive MITM attack allows an attacker to
read messages, such as passive eavesdropping. As in BLE, al-
though the communication tra�c is encrypted after pairing, the
LTK can still be eavesdropped since the two devices have to �rst
establish a temporary encryption key negotiated in plain-text
when no public key cryptography is used. To mitigate this vul-
nerability, Bluetooth Special Interest Group (SIG) [3] has adopted
the Elliptic-Curve Di�e�Hellman (ECDH) protocol for key ex-
change since BLE 4.2 [16], which is known as the Low Energy
Secure Connection (LESC) pairing. However, such a protection
also relies on user con�guration, because both the central and pe-
ripheral must explicitly request for LESC pairing, and meanwhile
have to invoke the ECDH key exchange [36].

Figure 5: Overview of FirmXRay.

Assumptions. We focus on the bare-metal �rmware developed
based on the Nordic or TI SDKs, which are all ARM Cortex-M ar-
chitecture. We also assume that they are not obfuscated and no
address space layout randomization (ASLR) is deployed, and the
�rmware are distributed via the relay of mobile apps (to achieve
the OTA upgrade).

3.2 Motivating Example
To clearly illustrate how the link layer vulnerabilities can be iden-
ti�ed from con�gurations, and the corresponding technical chal-
lenges, we present a motivating example in Figure 4. The example
comes from an IoT wristband �rmware developed based on the
Nordic SDK. In particular, starting from line 1, the �rmware loads a
value0x0 into registerr2 . Going through a series of operations in-
cluding logical or (orr), logical and (and), and arithmetic add (add)
(line 2-5), the value ofr2 becomes0xD. Next, this value is stored
into a speci�c location0x20003268(line 6-7), which refers to a
static data structureble_gap_sec_params_tin RAM. Afterwards,
an address0x20003268is loaded intor2 (line 8), which essentially
makesr2 a pointer pointing to that data structure. Finally, a super-
visor call is invoked by ansvc instruction [9] along with an svc
number0x7f (line 10). After thesvc is called, the SDK function
SD_BLE_GAP_SEC_PARAMS_REPLYis invoked, takingr0, r1 , andr2
as parameters to reply the peer device with its pairing features.

The con�guration pairing_feature is auint8 integer located
at the starting address of the structure, where the pairing features
are represented by di�erent bits of the integer. More speci�cally,
the �rst bit speci�es whether bonding is performed, the second
indicates whether MITM protection is necessary, and the third to
the �fth bits represent the speci�c I/O capabilities, according to the
SDK speci�cation [12]. As a result, the value0xDcan be interpreted
as a pairing con�guration: the device requires bonding, no MITM
protection, and does not have I/O capabilities. Therefore, we can
conclude that the wristband contains a vulnerability that usesJust
Worksto pair with a smartphone.

3.3 FirmXRayOverview
Based on the above motivating example, we can notice that in order
to identify the vulnerabilities, we must �rst correctly disassemble
the �rmware to recognize the instructions and parameters, then
identify the con�guration data structures, and �nally compute the
con�guration values. More speci�cally, we need:

� Robust Firmware Disassembling. While the �rmware disas-
sembling in ARM (RISC) is relatively easy than x86 (CISC), we
still need to recognize the base address for the disassembling
since the �rmware code we acquire start from customized bases.

Figure 6: E�ect of disassembling with di�erent base addresses across absolute pointers.

� Precise Data Structure Recognition. After disassembling,Fir-
mXRayhas to identify the con�gurations from the disassembled
code. However, as shown in Figure 4, con�gurations are often
embedded in complicated data structures, and the names of vari-
ables and functions, and their types, etc., of bare-metal �rmware
are completely stripped.

� Con�guration Value Resolution. As indicated in Figure 4, the
con�gurations are not directly hardcoded in the program, but
instead are generated through complicated computations such as
logical, arithmetic, and bit-wise operations. Hence, it is necessary
to design an algorithm to resolve the con�guration values.
As such, we have designed three corresponding techniques, as

shown in Figure 5.FirmXRay �rst takes a bare-metal �rmware
as input, and recognizes the base address usingRobust Firmware
Disassembling(Ÿ4.1). Next, based on the disassembled �rmware, it
identi�es the con�guration data structures usingPrecise Data Struc-
ture Recognition(Ÿ4.2). Finally, with the identi�ed con�gurations,
FirmXRayresolves the concrete con�guration values usingCon�g-
uration Value Resolutionand identi�es the vulnerabilities with the
corresponding detection policies (Ÿ4.3).

4 DETAILED DESIGN
4.1 Robust Firmware Disassembling

Observations. When given a �rmware image,FirmXRay�rst has
to recognize the base address for robust �rmware disassembling.
To clearly illustrate the challenges, we present three simpli�ed real-
world examples in Figure 6. We can notice that if the �rmware is cor-
rectly rebased, as shown in the bottom half of Figure 6(1), the corre-
sponding instructions such asblx would successfully recognize the
target functionFoothrough its absolute function pointer address at
0x22A90pointed by a pointer at0x204C4; otherwise, this absolute
address falls beyond the �rmware address space as shown in the
top half of Figure 6(1). Similarly, the absolute string pointers in Fig-
ure 6(2) and the vector table entries in Figure 6(3) would also point to
wrong locations if their target addresses are not properly resolved.

As shown in the above three cases, if the �rmware starts from
an incorrect base, theabsolute pointers(e.g., the above pointers us-
ing absolute addresses) would be dereferenced at wrong locations,
which causes incorrect disassembly. The root cause is that the ad-
dresses of their targets (e.g., function entries, strings, interrupt num-
bers) shift along with the base address, while the absolute pointer
values remain unchanged. For example, the address of the target

function Fooshifts from0x22A90to 0x7A90when the base changes
from 0x1B000to 0x0, while the absolute pointer address remains
0x22A90regardless of the base. Therefore, we must recognize the
correct base that properly links these pointers to their right targets.

Although there exist a handful of e�orts (i.e., [61] [50]) in base
address recognition, these approaches rely on a single type of clues
(namely the function prologues), which can lead to incorrect results
when there is insu�cient number of such clues in the �rmware,
as shown in our experiment (detailed in Ÿ5.2.1). As a result, we
propose a more systematic approach based on the observation that
the absolute pointers must point to certain instructions or variables
with respect to their types, and suchpoint-to relations of absolute
pointerscan provide strong clues to infer the base address. For in-
stance, as illustrated in Figure 6(1), a function pointer must point to
a valid function entry. If the �rmware starts from an incorrect base,
this function pointer will point to a wrong location. Therefore, only
the correct base address can link an absolute pointer (e.g., a function
pointer) with the intended target (e.g., a function entry). Based on
this observation, we can model the base address recognition as a
point-to constraint solving problem of absolute pointers.

Our Approach. Consequently, we propose a two step approach to
recognize the base address. In particular, the �rst step is to extract all
absolute pointers from the �rmware, and the second step is to asso-
ciate constraints between the absolute pointers and their intended
targets, and �nally solve the constraints, from which to infer the
base address. The details of these two steps are described as follows.

Step-I: Absolute pointer recognition. Without the knowledge
of the base address,FirmXRay�rst loads the �rmware with a 0x0
base address and disassembles the program instructions. The rea-
son for why a zero base works is that the ARM instructions are
always aligned with 2 or 4 bytes [9]. For disassembling, we apply a
linear sweep algorithm [45] to exhaustively disassemble all possible
instructions. To identify the absolute pointers, we can particularly
focus on all of the load instructions (i.e., ldr in ARM), since they
must be loaded into registers before being dereferenced. However,
not all the absolute pointers in the load instructions are useful as
many of them point to the RAM locations to deference run-time
values, which are not visible statically. Therefore, we must look for
absolute pointers that reference the static code or data. Fortunately,
as illustrated in Figure 6, there are three types of absolute pointers
that fall into this category: (i) absolute function pointers, (ii) abso-
lute string pointers, and (iii) vector table entries. These pointers
can also be easily distinguished with the pointers that deference

run-time values which are located at higher address space as shown
in Figure 1. In the following, we describe how we identify these
three types of pointers.

(i) Absolute function pointer . After being loaded vialdr , an ab-
solute function pointer will be dereferenced and go through the
blx instruction for function invocation, as shown in Figure 6(1).
As a result,FirmXRayidenti�es function pointers by checking
whether they are eventually taken by ablx or bx instruction.
We usePF to denote the set of absolute function pointers.

(ii) Absolute string pointer . Unlike absolute function pointers
that can be easily identi�ed, it is actually hard to recognize
absolute string pointers because there is no instruction that
takes an explicit string as operand. We therefore have to rely on
other clues to identify them. One clue is the SDK functions that
take strings as parameters. By recognizing these functions, we
are able to identify the ones that use absolute string pointers.
We usePS to denote the set of absolute string pointers.

(iii) Vector table entry . We also identi�ed a special type of bare-
metal unique absolute pointers, which reside in a vector table of
interrupt handlers. The entries in the vector table point to the
locations that store the speci�c interrupt numbers (e.g., 0xE7).
Since this vector table is located atAPP_ROM_BASE, FirmXRay
scans the �rmware from the base address to identify this vector
table, which has a strong signature (i.e., an array of absolute
addresses). We usePV to denote the set of vector table entries.
Additionally, FirmXRayalso searches for necessary gadgets to

build up the constraints, including function entries, strings, and
interrupt numbers. The function entries are recognized through the
function prologues which are usually the instructions to push regis-
ter values onto the stack (e.g., PUSH, STMFD). Meanwhile,FirmXRay
recognizes the possible readable strings according to the printable
ASCII values and their ending null bytes. Finally, it recognizes the
interrupt numbers based on the manufacture-reserved values.

Step-II. Constrained Base address modeling and solving. Hav-
ing identi�ed all absolute pointers and their possible targets, we
need to resolve the �rmware base address based on thepoint-to
constraints of absolute pointersidenti�ed in PF, PS, andPV . It might
appear that we can resolve the �rmware base address by using
just a single pointer inPF, or PS, or PV . For example, as illustrated
in the top half of Figure 6(1), by subtracting the absolute pointer
value (0x22A90) with the address of its intended target (0x7A90),
the base address is resolved as0x1B000. However, it is actually
hard to resolve the base address by solely relying on just one (or a
few) absolute pointer. Back to our example, if we link the absolute
function pointer (e.g., 0x22A90) to another valid function entry (e.g.,
0x8A90), we can resolve a di�erent base address (e.g., 0x1A000) that
satis�es the point-to constraint as well. Therefore, we must combine
all the absolute pointers we identi�ed to resolve the base address.

With these pointers, by looking at each individual one, we may
obtain multiple candidate base addresses, but there must be one
optimal base address that has the maximum number of matches of
the identi�ed point-to constraints. For instance, the base address
0x1B000satis�es the four constraints illustrated in Figure 6. In
general, assume there areN absolute pointers, there will beN con-
straints. Ideally, there exists one optimal base address that satis�es

all N constraints. However, this cannot be always true, since many
constraints cannot be resolved. For example, there exist a few func-
tion pointers that do not point to typical function prologues (e.g.,
push) but instead point to code snippets that start from various
instructions (e.g., ldr). Therefore, the optimal base address should
be the one that satis�es the most number of constraints. We thus
de�ne a target function

N¹xº = NF¹xº + NS¹xº + NV ¹xº (1)

to measure how many constraints a base addressx can satisfy,
where NF¹xº, NS¹xº, NV ¹xº denote the number of satis�ed con-
straints inPF, PS, andPV , respectively. With this target function,
we can traverse the address spaceRto �nd the optimal base address
X with the maximum function value, which can be formulated as

X = arg max
x 2R

N¹xº (2)

Intuitively, we can start fromROM_BASEand iterate through the
ROM to try all possible bases. However, we �nd that the search
spaceRcan be optimized with a restricted boundary. Speci�cally,
we use the absolute addresses to infer the upper bound, which is
the smallest absolute pointer address. Therefore, we only need to
searchR in the following range

R = fx j 0 < x < Amin g (3)

whereAmin denotes the minimum absolute pointer address (e.g.,
0x1B169) among all the identi�ed absolute pointers (e.g., 0x22A90,
0x23058, 0x1B169, 0x1B183). To search forX, we design a simple
probe-and-test algorithm. Starting from the lower bound ofR, Fir-
mXRayiterates each candidatex in R and calculatesN¹xº. Note
that we only need to probe thosex with even values, since ARM
instructions are aligned with 2 or 4 bytes. To this end, we de�ne

d¹x;pº = p � x (4)

wherep 2 PF [PS[PV andd¹x;pº denotes the concrete target mem-
ory address pointed byp with the given base addressx. Then, for
each potentialx and each absolute pointerp, FirmXRayperforms
the following three checks:

(i) If p 2 PF, FirmXRaychecks ifd¹x;pº is a valid function entry. If
so, it increasesNF¹xº by 1.

(ii) If p 2 PS, FirmXRaychecks ifd¹x;pº is a valid string. If so, it
increasesNS¹xº by 1.

(iii) If p 2 PV , FirmXRayexamines whetherd¹x;pº is an interrupt
number. If so,NV ¹xº is added by 1.
After all of the candidatex have been probed and tested,Fir-

mXRayselects thex with the maximumN¹xº value as the optimal
base address, and thisx satis�es the most number of constraints.

4.2 Precise Data Structure Recognition
Given the disassembled �rmware code,FirmXRayneeds to rec-
ognize the con�guration data structures. While there are many
techniques for reverse engineering data structures from stripped
binaries, they cannot be easily applied to our problem. For instance,
dynamic approaches such asRewards[39] and Howard [51], are
not suitable for bare-metal �rmware because they require vendor-
speci�c execution contexts such as hardware inputs for execution.
While TIE[38] does not require to run the �rmware, it still falls

short because it attempts to recover all data structures using type
inference, while we only focus on those that must be taken as static
SDK function parameters.

As a result, we develop our own customized static analysis. Our
key insight is that no matter where these data structures are de�ned
in the memory, they will �nally be taken as parameters by the SDK
functions, because the �rmware needs to invoke these precompiled
functions to con�gure the device hardware. For example, in Figure 4,
the structure pointer is taken as a parameter (stored in a registerr2)
by function SD_BLE_GAP_SEC_PARAMS_REPLYto set up the pairing
feature. As such,FirmXRay�rst identi�es the SDK functions, and
further recognizes the con�gurations through function parameters.

To identify the SDK functions,FirmXRayrequires vendor-speci�c
knowledge to establish signatures of the function invocation points,
and these knowledge were gathered manually from the SDK speci-
�cations prior to the analysis. In particular, the Nordic and TI SDKs
use special mechanisms to invoke these functions. Nordic uses su-
pervisor calls (i.e., svc) [14] where each function is associated with a
correspondingsvc number (e.g.,0x7Ffor SD_BLE_GAP_SEC_PARAMS
_REPLYas shown in Figure 4). TI usesICall [5] to invoke SDK func-
tions, and each function is dispatched by theICall interface with
a speci�c command, which allows us to identify them precisely.
Based on these knowledge,FirmXRay scans through the disas-
sembled code to recognize these SDK functions, and identi�es the
con�guration data structures from their parameters.

4.3 Con�guration Value Resolution
Having identi�ed the con�guration data structures, we design the
following three-step analysis to resolve the con�guration values:

Step-I. Con�guration path extraction. In this step, our goal is
to extract the program path with the instructions involved in the
con�guration value generation, and we adopt a backward program
slicing [54] algorithm. At a high level,FirmXRaystarts from the
SDK function invocation points identi�ed in Ÿ4.2 and backward
traverses the program control �ow graphG to record all instruc-
tions (e.g., theorr , and, andaddinstructions in Figure 4) that are
necessary for computing the con�guration value. At �rst, the al-
gorithm takes the following inputs: a function invocation pointA
(e.g., ansvc instruction), the current function blockB, a dependent
variable (e.g., registers and memory locations) setD, and the cur-
rent con�guration paths. It backward iterates the instructions inB
starting fromA. For each instructioni in B, if it modi�es the value
of any target variables inD, the algorithm adds all other variables
in i to D, removes the target variables, and records the instruction
i in s. In particular, to determine whetheri should be involved as
part of the program path, the algorithm focuses on three types of
dependencies, including register to register, register to memory,
and memory to register. Note that unlike x86 instructions, ARM
does not have dependencies between memories. As such,FirmXRay
focuses on two types of data dependencies:

� Register to Register dependence. It is quite common when
the value of a register depends on another register. For instance,
in instruction add r1 r2 r3 , the value ofr1 depends onr2 and
r3. Therefore, ifr1 is in D, we append this instruction tos, and
addr2 andr3 to D as the new dependent variables.

Policy SDK Function Name
Reg.

Description
Index

SD_BLE_GAP_ADDR_SET 0 Con�gure the MAC address
SD_BLE_GAP_APPEARANCE_SET 0 Set device description

(i)
SD_BLE_GATTS_SERVICE_ADD 0, 1 Add a BLE GATT service
SD_BLE_GATTS_CHARACTERISTIC_ADD2 Add a BLE GATT characteristic
SD_BLE_UUID_VS_ADD 0 Specify the UUID base
GAP_ConfigDeviceAddr* 0 Setup the address type
GATTServApp_RegisterService* 0 Register BLE GATT service

(ii)

SD_BLE_GAP_SEC_PARAMS_REPLY 2 Reply peripheral pairing features
SD_BLE_GAP_AUTH 1 Reply central pairing features
SD_BLE_GAP_AUTH_KEY_REPLY 1, 2 Reply with an authentication key
SD_BLE_GATTS_CHARACTERISTIC_ADD2 Add a BLE GATT characteristic
GAPBondMgr_SetParameter* 2 Setup pairing parameters
GATTServApp_RegisterService* 0 Register BLE GATT service

(iii)
SD_BLE_GAP_LESC_DHKEY_REPLY 0 Reply with a DH key
GAPBondMgr_SetParameter* 2 Setup pairing parameters

Table 1: Targeted SDK functions in our detection policies
(Note: functions w/ * are for TI, and otherwise for Nordic).

� Memory to Register (or vice versa) dependence . This is when
the register value depends on certain memory location. For in-
stance, inldr r2 [0x260c8] , r2 loads the value by dereferenc-
ing memory location0x260c8. Therefore, ifr2 is in D,FirmXRay
records this instruction tos, and also adds0x260c8to D.
Finally, when a �xed point is reached where the slicer state re-

mains unchanged (e.g., D becomes empty), the algorithm addss to S
and returns. Otherwise, the algorithm continues to jump to previous
blocks by �rst setting up a new context (i.e., creating new copies of
D ands) for each path, and then recursively invoking itself in each of
the previous blockb in G. Ultimately, the algorithm producesScon-
taining a set of con�guration value generation paths that eventually
generate the target values. Note that to prevent branch explosion,
we have limited the length of the con�guration path of our static
analysis with a threshold approach as in other works (e.g., [55] [42]).

Step-II. Con�guration value generation. Based on the extracted
con�guration value generation paths,FirmXRaythen statically ex-
ecutes each instruction in a forward order to generate the concrete
values of our targets. Speci�cally,FirmXRay�rst creates an exe-
cution context for each path, including the registers (e.g., r1-r12,
sp) and memory (e.g., RAM and stack). Next, it forward executes
each instruction in order and modi�es the context accordingly (e.g.,
updating values in registers and memory) based on the instruction
semantics de�ned in the o�cial documentation [9]. However, the
execution of a con�guration path may have dependencies on other
paths (e.g., initialization of global variables), which indicates that
we must execute them in a correct order. As a result,FirmXRay
maintains a queue for all the con�guration paths, and each executed
path will be removed from the queue. WhenFirmXRayencounters
a path that should be executed after others, it removes the path
from the head of the queue and pushes it to the end. If the queue
becomes empty, which means all the paths have been statically
executed,FirmXRayretrieves the concrete values of our targets
from the corresponding execution context and outputs the results.

Step-III. Vulnerability detection. When the con�guration val-
ues are resolved, the �nal step is to identify the vulnerabilities
from them. Since the con�gurations are identi�ed through SDK
function parameters,FirmXRayrequires SDK-speci�c knowledge
to recognize the con�guration semantics. In particular, for each
vendor,FirmXRayfocuses on the SDK functions listed in the sec-
ond column of Table 1, and their descriptions and parameters of
our interest are also described in the table. Based on these SDK

functions, we further de�ne three detection policies to detect the
vulnerabilities that lead to the attacks mentioned in Ÿ3.1.

(i) Identity tracking vulnerability detection. At a high level,
there are two types of identity that can be tracked: static MAC ad-
dress [27] and static UUIDs [63] [20]. Therefore, we have two cor-
responding policies. The �rst is through static MAC address iden-
ti�cation by checking the MAC address types through APIs such
asSD_BLE_GAP_ADDR_SETfor Nordic andGAP_ConfigDeviceAd
dr for TI. According to the BLE speci�cation [16], the MAC ad-
dress can be con�gured as three types: (1) public address that
never changes, (2) random static address that may change only
when reboot, and (3) private address that change periodically
(e.g., every 15 minutes). Although a random static address may al-
ter after a device power cycle, it is still not resilient to tracking be-
cause (i) BLE devices seldom power o� since they are supposed to
run for a long time due to the low energy cost (e.g., sensors), (ii) as
revealed in previous research [27], many random static addresses
remain unchanged even after reboot on some devices such as
�tness trackers. As a result, if the �rmware uses public address
or random static address, it is vulnerable to identity tracking.

The second policy to detect identity tracking is to check
whether there are static UUIDs speci�ed in the �rmware. Simi-
larly, we target corresponding APIs that take static UUIDs as pa-
rameters to identify them, such asSD_BLE_GATTS_SERVICE_ADD
for Nordic andGATTServApp_RegisterServicefor TI.

(ii) Active MITM vulnerability detection. As mentioned in Ÿ3.1,
the insecure pairing method such asJust Workscan lead to
active MITM attacks. Fundamentally, the pairing method is
negotiated when two devices exchange the pairing features.
Therefore, we focus on APIs that specify the pairing feature,
such asSD_BLE_GAP_SEC_PARAMS_REPLYandGAPBondMgr_Set
Parameter. If no MITM protection or no I/O capability is speci-
�ed, the device has to useJust Workspairing. In addition, the cor-
rect implementation of the secure pairing method (e.g., passkey
entryandOOB) may require the invocation of other procedures,
such as exchanging an authentication key with theSD_BLE_GAP_
AUTH_KEY_REPLYAPI for Nordic. If the corresponding APIs are
not invoked, the pairing will be downgraded toJust Works.

The MITM vulnerability can also be revealed in the secu-
rity permissions of characteristics, which is the second layer
of protection against active MITM attacks. Note that for each
characteristic, there are three levels of security permissions:
no protection, encrypted read/write, and authenticated read-
/write [49]. For instance, a developer may specify authenticated
read and write to ensure that the characteristic can be read
and written only when the authentication is in place. Our de-
tection focuses on APIs that specify these permissions, such
as SD_BLE_GATTS_CHARACTERISTIC_ADDfor Nordic andGATT
ServApp_RegisterService for TI.

(iii) Passive MITM vulnerability detection. Recall in Ÿ3.1, failed
to enforce the LESC pairing can lead to passive MITM attacks.
To detect this vulnerability, we check if the LESC con�gura-
tion is enabled using APIGAPBondMgr_SetParameterfor TI, or
whether the ECDH key exchange is invoked during pairing using
API SD_BLE_GAP_LESC_DHKEY_REPLYfor Nordic.

Category
Total Statistics Vulnerabilities

F # D
Avg. Size Median IT AM PM

(KB) Time (m) # F # D # F # D # F # D

Nordic-based Firmware

Wearable 204 138 98:2 42:8 204 138 171 112 203 137
Others 76 22 223:5 48:8 76 22 63 14 75 21
Sensor 67 51 80:9 9:5 67 51 51 37 66 50
Tag (Tracker) 58 41 84:2 164:3 58 41 45 29 57 40
Robot 41 21 117:7 37:2 41 21 35 18 25 20
Medical Devices 41 21 138:6 82:3 41 21 22 10 37 20
Bike Accessory 41 35 92:3 21:1 41 35 36 30 41 35
Car Accessory 25 21 75:6 250:3 21 17 20 17 25 21
Smart Light 21 19 81:2 179:1 20 18 16 14 21 19
Switch 20 11 72:8 111:8 20 11 11 8 20 11
Smart Home 20 18 63:0 10:3 20 18 10 10 20 18
Smart Eyeglasses 19 7 58:1 56:4 19 7 19 7 19 7
Thermometer 16 13 54:2 27:9 16 13 10 9 16 13
Smart Lock 15 9 67:0 1:6 15 9 8 5 14 8
Beacon 13 12 61:4 0:9 13 12 9 8 12 11
Firearm Accessory 11 5 87:7 150:1 11 5 7 4 11 5
Agricultural Equip. 10 10 142:8 29:6 5 5 9 9 10 10
Battery 9 9 34:3 1:9 9 9 7 7 9 9
Game Accessory 9 9 67:4 12:5 9 9 8 8 9 9
Keyboard 7 5 63:4 21:6 7 5 7 5 7 5
Mouse 6 6 58:2 20:9 6 6 5 5 6 6
Printer 6 2 24:1 3:5 6 2 6 2 6 2
Surf Board 6 6 71:9 655:9 6 6 2 2 6 6
Sports Accessory 4 4 88:9 136:7 4 4 3 3 4 4
Smart Toy 4 4 58:0 1:8 4 4 3 3 4 4
Smart Clothes 3 2 57:6 7:6 3 2 3 2 3 2
Sailing Accessory 3 2 73:5 256:1 3 2 2 1 3 2
Diving Accessory 3 1 19:6 2:2 3 1 3 1 3 1
Network Device 3 3 74:2 261:3 3 3 2 2 3 3
Camera 3 3 143:0 0:1 3 3 0 0 3 3
Alarm 2 2 41:7 23:7 2 2 2 2 2 2
Headphone 2 1 122:7 40:1 2 1 0 0 2 1

TI-based Firmware

Sensor 19 19 132:9 0:2 19 19 0 0 19 19
Smart Lock 2 2 46:3 0:1 2 2 1 1 2 2
Smart Toy 2 2 47:8 0:1 2 2 0 0 2 2
Medical Devices 1 1 70:2 0:1 1 1 0 0 1 1
Others 1 1 76:7 0:2 1 1 0 0 1 1

Total 793 538 102:7 21:9 783 528 596 385 767 530

Table 2: Experiment results across �rmware categories. (F:
Firmware, D: Device, IT: Identity Tracking, AM: Active
MITM, PM: Passive MITM)

5 EVALUATION
We have implemented a prototype ofFirmXRay1 based onGhidra[8]
with more than 5K lines of our own code. While there are a great
number of MCU manufactures, our implementation particularly tar-
gets the bare-metal �rmware developed based on the Nordic or TI
SDK. In this section, we present our evaluation results. We �rst de-
scribe the experiment setup in Ÿ5.1. Then, we provide the detailed ex-
periment results in Ÿ5.2, followed by the attack case studies in Ÿ5.3.

5.1 Experiment Setup

Bare-metal �rmware collection. To evaluateFirmXRay, we �rst
need to collect the bare-metal �rmware. Intuitively, we can either
crawl �rmware through the manufacturer's websites or dump them
from the actual device hardware. However, such approaches are
not scalable for two reasons. First, developers seldom make the
device �rmware publicly available. Second, it will be costly to buy
all these devices. Therefore, we must look for cost-e�ective and
scalable approaches. To this end, as indicated in Ÿ2.1, bare-metal
�rmware are usually transferred from mobile apps to devices for
over-the-air upgrade, and thus the apps should at least have the

1The source code is available at https://github.com/OSUSecLab/FirmXRay.

	Abstract
	1 Introduction
	2 Background
	2.1 Bare-metal Firmware
	2.2 Bluetooth Low Energy

	3 Overview
	3.1 Threat Model, Scope, and Assumptions
	3.2 Motivating Example
	3.3 FirmXRay Overview

	4 Detailed Design
	4.1 Robust Firmware Disassembling
	4.2 Precise Data Structure Recognition
	4.3 Configuration Value Resolution

	5 Evaluation
	5.1 Experiment Setup
	5.2 Experiment Results
	5.3 Attack Case Studies

	6 Discussion
	7 Related Work
	8 Conclusion
	References

