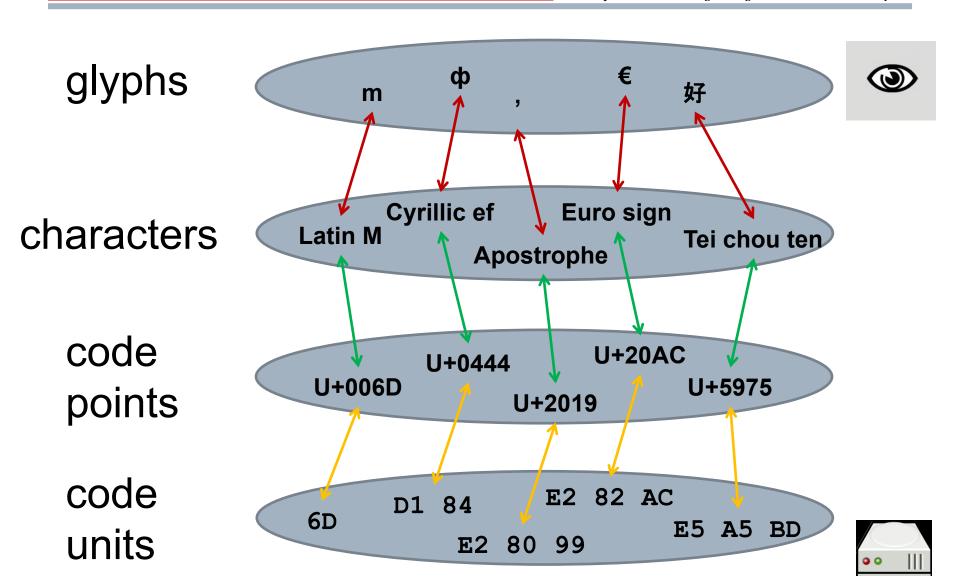
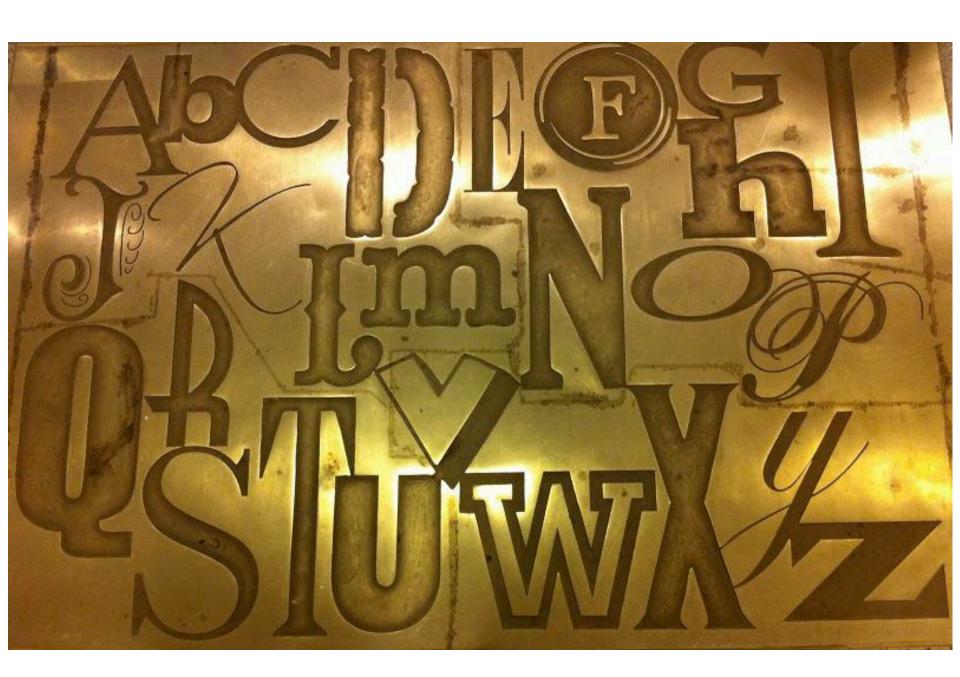

Unicode and UTF-8

Computer Science and Engineering ■ College of Engineering ■ The Ohio State University

Lecture 33


A standard for the discrete representation of written text


The Big Picture

The Big Picture

Text: A Sequence of Glyphs

Computer Science and Engineering ■ The Ohio State Universit

- ☐ Glyph: "An individual mark on a written medium that contributes to the meaning of what is written."
 - See foyer floor in main library
- One character can have many glyphs
 - Example: Latin E can be e, e, e, e, e, e, e, e...
- One glyph can be different characters
 - A is both (capital) Latin A and Greek Alpha
- One unit of text can consist of multiple glyphs
 - An accented letter (é) is two glyphs
 - The ligature of f+i (fi) is two glyphs

Glyphs vs Characters

glyphs

e
e
e
e
A

Computer Science and Engineering

The Ohio State University

Characters

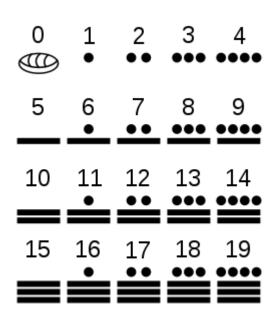
Latin small E
Latin capital A

Computer Science and Engineering

The Ohio State University

Greek capital alpha
Latin capital A

- □ Visual homograph: Two different characters that look the same
 - Would you click here: <u>www.paypal.com</u>?


Security Issue

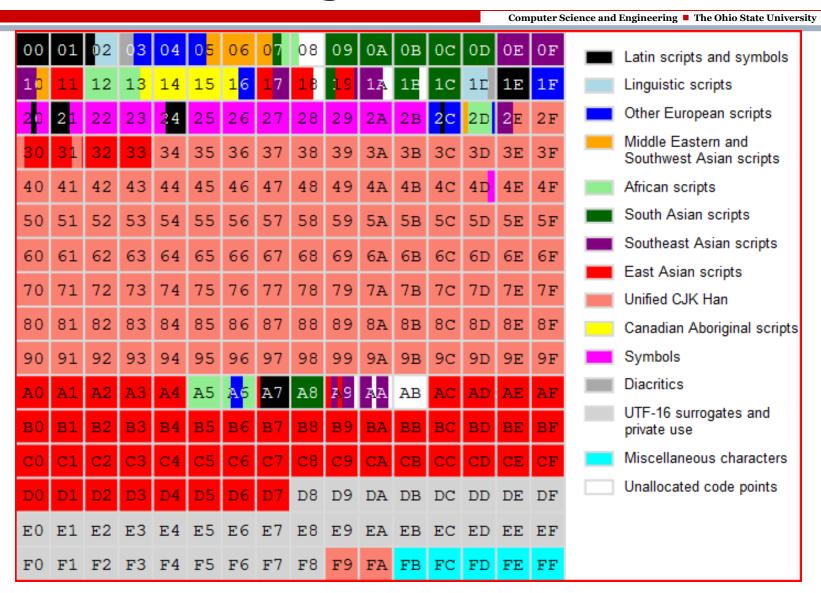
- □ Visual homograph: Two different characters that look the same
 - Would you click here: www.paypal.com?
 - Oops! The second 'a' is actually CYRILLIC SMALL LETTER A
 - This site successfully registered in 2005
- Other examples: combining characters
 - \tilde{n} = LATIN SMALL LETTER N WITH TILDE
- □ "Solution"
 - Heuristics that warn users when languages are mixed and homographs are possible

- Each character is assigned a unique code point
- A code point is defined by an integer value, and is also given a name
 - one hundred and nine (109, or 0x6d)
 - LATIN SMALL LETTER M
- □ Convention: Write code points as U+hex
 - Example: U+006D
- □ As of Sept 2022, v15 (see unicode.org):
 - Contains 149,186 code points emoji-versions.html
 - Covers 161 scripts (and counting...) unicode.org/charts/

Example Recent Addition (v11)

Computer Science and Engineering ■ The Ohio State University

Mayan numerals


1D2E0	\oplus	MAYAN	NUMERAL	ZERO
1D2E1	•	MAYAN	NUMERAL	ONE
1D2E2		MAYAN	NUMERAL	TWO
1D2E3	• • •	MAYAN	NUMERAL	THREE
1D2E4	••••	MAYAN	NUMERAL	FOUR
1D2E5		MAYAN	NUMERAL	FIVE
1D2E6	•	MAYAN	NUMERAL	SIX
1D2E7	<u></u>	MAYAN	NUMERAL	SEVEN
1D2E8	• • •	MAYAN	NUMERAL	EIGHT
1D2E9	••••	MAYAN	NUMERAL	NINE
1D2EA		MAYAN	NUMERAL	TEN
1D2EB	<u>•</u>	MAYAN	NUMERAL	ELEVEN
1D2EC	=	MAYAN	NUMERAL	TWELVE
1D2ED	•••	MAYAN	NUMERAL	THIRTEEN
1D2EE	••••	MAYAN	NUMERAL	FOURTEEN
1D2EF		MAYAN	NUMERAL	FIFTEEN
1D2F0		MAYAN	NUMERAL	SIXTEEN
1D2F1	☱	MAYAN	NUMERAL	SEVENTEEN
1D2F2		MAYAN	NUMERAL	EIGHTEEN
1D2F3	••••	MAYAN	NUMERAL	NINETEEN

Unicode: Mapping to Code Points

Computer Science and Engineering ■ The Ohio State University glyphs 好 Cyrillic ef **Euro sign** characters Latin M Tei chou ten **Apostrophe** code U+20AC U+0444 U+006D U+5975 points U+2019 code E2 82 AC D1 84 6D E5 A5 BD units 80 99

- Code points are grouped into categories
 - Basic Latin, Cyrillic, Arabic, Cherokee, Currency, Mathematical Operators, ...
- \square Standard allows for 17 x 2¹⁶ code points
 - 0 to 1,114,111 (i.e., > 1 million)
 - U+0000 to U+10FFFF
- □ Each group of 2¹⁶ called a *plane*
 - U+nnnnn, same green ==> same plane
- Plane 0 called basic multilingual plane (BMP)
 - Has (practically) everything you could need
 - Convention: code points in BMP written U+nnnn (ie with leading 0's if needed)
 - Others code points written without leading 0's

Basic Multilingual Plane

Supplemental Plane (plane 1)

Computer Science and Engineering ■ The Ohio State University

100	101	102	103	104	105	106	107	108	109	1 <mark>0A</mark>	10B	10 <mark>C</mark>	10D	10 <mark>E</mark>	10F
110	111	112	1 13	114	115	116	117	1 1 8	11 9	11A	11B	11C	11 D	11E	11F
120	121	122	123	124	125	126	127	128	129	12A	12B	12C	12D	12E	12 <mark>F</mark>
130	131	132	133	134	135	136	137	138	139	13A	13B	13C	13D	13E	13F
140	141	142	143	144	145	146	147	148	149	14A	14B	14C	14D	14E	14F
150	151	152	153	154	155	156	157	158	159	15A	15B	15C	15D	15E	15F
160	161	162	163	164	165	166	167	168	169	16A	16B	16C	16D	16E	16F
170	171	172	173	174	175	176	177	178	179	17A	17B	17C	17D	17E	17F
180	181	182	183	184	185	186	187	188	189	18A	18B	18C	18D	18E	18F
190	191	192	193	194	195	196	197	198	199	19A	19B	19C	19D	19E	19F
1A0	1A1	1A2	1A3	1A4	1A5	1A6	1A7	1A8	1A9	1AA	1AB	1AC	1AD	1AE	1AF
1B0	1B1	1B2	1B3	1B4	1B5	1B6	1B7	1B8	1B9	1BA	1BB	1BC	1BD	1BE	1BF
1C0	1C1	1C2	1C3	1C4	1C5	1C6	1C7	1C8	1C9	1CA	1CB	1CC	1CD	1CE	1CF
1D0	1D1	1D2	1D3	1D4	1D5	1D6	1D7	1D8	1D9	1DA	1DB	1DC	1DD	1DE	1DF
1E0	1E1	1E:2	1E3	1E4	1E5	1E6	1E7	1E8	1E9	1EA	1EB	1EC	1ED	1EE	1EF
1F0	1F1	1F2	1F3	1F4	1F5	1F6	1F7	1F8	1F9	1FA	1FB	1FC	1FD	1FE	1FF

- Non-Latin European scripts
- Cuneiform
- American scripts
- African scripts
- Latin script
- Middle Eastern and Southwest Asian scripts
- Hieroglyphs
- South and Central Asian scripts
- Southeast Asian scripts
- Symbols
- Indonesian and Oceanic scripts
- East Asian scripts
- Notational systems
- Unallocated code points

As of Unicode 14.0

- Encoding of code point (integer) in a sequence of bytes (octets)
 - Standard: all caps, with hyphen (UTF-8)
- Variable length
 - Some code points require 1 octet
 - Others require 2, 3, or 4
- □ Consequence: Can not infer number of characters from size of file!
- No endian-ness: just a sequence of octets
 - DO BF D1 80 D0 B8 D0 B2 D0 B5 D1 82...
- Other encodings exist!
 - Eg UTF-16 use 16 bits (more general term: code unit)

UTF-8: Code Points & Octets

Computer Science and Engineering ■ The Ohio State University glyphs 好 Cyrillic ef **Euro sign** characters Latin M Tei chou ten **Apostrophe** code U+20AC U+0444 U+006D U+5975 points U+2019 code E2 82 AC D1 84 6D E5 A5 BD units 80 99

- □ 1-byte encodings
 - First bit is 0
 - Example: 0110 1101 (encodes U+006D)
- 2-byte encodings
 - First byte starts with 110...
 - Second byte starts with 10...
 - □ Example: **110**1 0000 **10**11 1111
 - □ Payload: 1101 0000 1011 1111 = 100 0011 1111

= 0x043F

□ Code point: U+043F i.e. п, Cyrillic small letter pe

- Generalization: An encoding of length k:
 - First byte starts with k 1's, then 0
 - Example 1110 0110 ==> first byte of a 3-byte encoding
 - Subsequent k-1 bytes each start with 10
 - Remaining bits are payload
- □ Example: E2 82 AC 11100010 10000010 10101100
 - Payload: 0x20AC (i.e., U+20AC, €)
- Consequence: Stream is selfsynchronizing
 - A dropped byte affects only that character

UTF-8 Encoding Summary

Computer Science and Engineering ■ The Ohio State University

Unicode	Byte1	Byte2	Byte3	Byte4	example
U+0000-U+007F	0 xxxxxx				'\$' U+00 <u>2</u> 4 → 0 <u>010</u> 0100 → 0x24
U+0080-U+07FF	110ууухх	10xxxxxx			'¢' U+00 <u>A</u> 2 → 110000 <u>10</u> ,10 <u>10</u> 0010 → 0xC2,0xA2
U+0800-U+FFFF	1110уууу	10уууухх	10 <i>xxxx</i> x		<pre> '€' U+20AC → 11100010,10000010,10101100 → 0xE2,0x82,0xAC </pre>
U+10000-U+10FFFF	11110zzz	10 <i>zzyyyy</i>	10уууухх	10 <i>xxxxx</i>	'ቒ' U+ <u>024B6</u> 2 → 11110 <u>0</u> 00,1010 <u>0100</u> ,101011 <u>01</u> ,10 <u>10</u> 0010 → 0xF0,0xA4,0xAD,0xA2

(from wikipedia)

- □ For the following UTF-8 encoding, what is the corresponding code point(s)?
 - F0 A4 AD A2

- □ For the following Unicode code point, what is its UTF-8 encoding?
 - U+20AC

- Not all octet sequences are encodings
 - "overlong" encodings are illegal
 - example: C0 AF
 - **= 110**0 00**00 10**10 1111
 - = U+002F (should be encoded 2F)
- □ Classic security bug (IIS 2001)
 - Should reject URL requests with "../.."
 - □ Scanned for 2E 2E 2F 2E 2E (in encoding)
 - Accepted "..%c0%af.." (doesn't contain x2F)
 - □ 2E 2E CO AF 2E 2E
 - After accepting, server then decoded
 - □ 2E 2E CO AF 2E 2E decoded into "../.."
- Moral: Strings are sequences of "code units"
 - But we think (and see) code points

- □ Concrete invariant (convention)
 - No space, ;, :, & in representation
 - To represent these characters, use %hh instead (hh is ASCII code in hex)
 - □ %20 for space
 - Q: What about % in abstract value?
- □ Recall: correspondence relation

Other (Older) Encodings

Computer Science and Engineering ■ The Ohio State University

- □ In the beginning...
- Character sets were small
 - ASCII: only 128 characters (ie 2⁷)
 - 1 byte/character, leading bit always 0
- Globalization means more characters...
 - But 1 byte/character seems fundamental
- Solutions:
 - Use that leading bit!
 - □ Text data now looks just like binary data
 - Use more than 1 encoding!
 - Must specify data + encoding used

ASCII: 128 Codes

Computer Science and Engineering ■ The Ohio State University

ASCII Code Chart

	0	1	2	3	4	5	6	_ 7 _	8	9	L A	В	C	L D	E	<u>L</u> F_
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2			=	#	\$	%	&	-	(_	*	+	,	-	•	/
3	0	1	2	3	4	5	6	7	8	9	:	;	٧	=	۸	?
4	@	Α	В	C	D	Е	F	G	Н	Ι	J	K	L	М	N	0
5	Р	Q	R	S	T	U	٧	W	Х	Υ	Z]	\]	>	_
6	,	а	b	С	d	е	f	g	h	i	j	k	l	m	n	0
7	р	q	r	s	t	u	V	W	х	У	Z	{		/ }	~	DEL

6D = Latin small m

ISO-8859 family (eg -1 Latin)

Computer Science and Engineering ■ The Ohio State University

	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-В	-C	-D	-E	-F		
0-		0001	0002	0003	0004	0005	0006	0007	8000	0009	000A	000B	000C	0000	000E	000F		
1-	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	001B	001C	001D	001E	001F		
2-	0020	0021	0022	# 0023	\$ 0024	% 0025	& 0026	0027	0028)	*	+ 002B	9 002C	- 002D	• 002E	/ 002F		
3-	0	1	2	3	4	5	6	7	8	9	003A	• • • •	< 003C	= 003D	> 003E	? 003F		— 0-7F match ASCII
4-	@ 0040	A	B	C 0043	D	E 0045	F 0046	G	H 0048	I 0049	J	K	L 004C	M 004D	N 004E	O 004F		o /i illateli /iSCII
5-	P 0050	Q	R	S 0053	T 0064	U	V 0056	W 0057	X 0058	Y 0059	Z	0058	0050] 005D	↑ 005E	005F		
6-	0060	a	b	C	d	e 0065	f	g	h	i 0069	j	k	0060	m 006D	n 006E	O 006F		
7-	p	q	r 0072	S	t 0074	u	V	W	X	y	Z	{ 007B	007C	} 007D	~ 007E	007F	_	J
8-	080	0081	0082	0083	0084	0085	0086	0087	0088	0089	008A	008B	008C	0080	008E	008F		reserved
9-	0090	0091	0092	0093	0094	0095	0096	0097	8600	0099	009A	0098	009C	009D	009E	009F		(control characters)
A-	00A0	00A1	¢ 00A2	£	¤	¥ 00A5	I I 00A6	§ 00A7	•• 00A8	© 00A9	<u>a</u>	≪ 00AB	0 00AC	- 00AD	® ODAE	 00AF		֝ ֓֞֞֞֞֜֞֞֜֞֞֞֜֞֞֞֩֞֞֩֓֞֩
B-	O 0080	± 00B1	2 0082	3 00B3	0084	μ	¶ 0086	• 00B7	د 0088	1 0089	<u>0</u>	>> 0088	1/4 00BC	1/2 00BD	3/4 00BE	OOBF		A O == 1:66
C-	À	Á 0001	0002	à 0003	Ä 00C4	Å 0005	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ï		A0-FF differ, eg:
D-	Ð	Ñ	Ò	Ó	Ô 00D4	Õ	Ö	× 00D7	Ø	Ù	Ú	Û	Ü	Ý	Þ OODE	B		-1 "Western"
E-	à	á	â	ã 00E3	ä	å 00E5	æ 00E6	Ç	è	é 00E9	ê	ë	Ì 00EC	Í 00ED	î ODEE	i OOEF		-2 "East European" -9 "Turkish
F-	ð	ñ	Ò 00F2	Ó 00F3	ô	õ	Ö	• 00F7	Ø 00F8	ù ^{00F9}	ú	û 00FB	ü 00FC	ý 00FD	þ	ÿ	_	J Idikisii

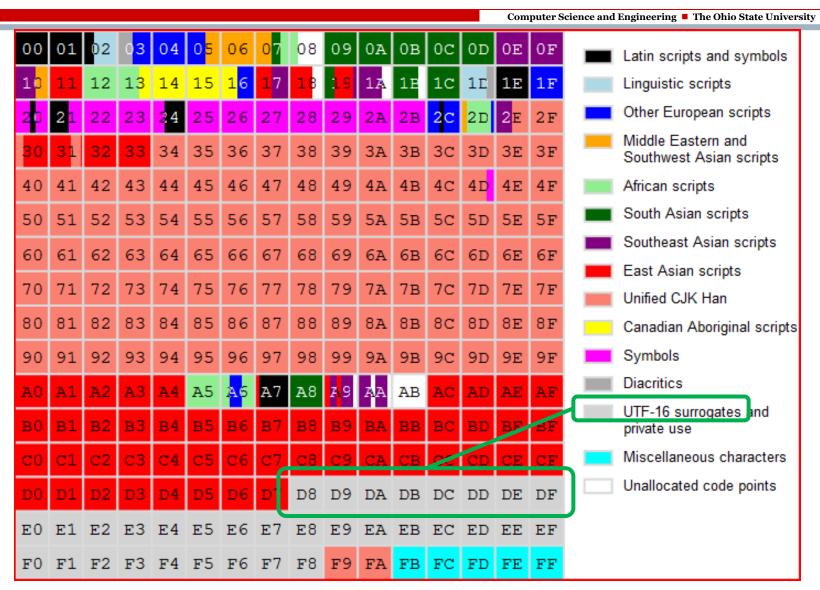
Windows Family (eg 1252 Latin)

Computer Science and Engineering ■ The Ohio State University

	Windows-1252 (CP1252)															
	х0	x1	x2	х3	х4	х5	х6	х7	х8	х9	хA	хВ	хС	хD	хE	хF
0x	NUL	<u>SOH</u>	<u>STX</u>	<u>ETX</u>	<u>EOT</u>	<u>ENQ</u>	<u>ACK</u>	<u>BEL</u>	<u>BS</u>	<u>HT</u>	<u>LF</u>	<u>VT</u>	<u>FF</u>	<u>CR</u>	<u>so</u>	<u>SI</u>
1x	DLE	<u>DC1</u>	DC2	DC3	DC4	<u>NAK</u>	<u>SYN</u>	<u>ETB</u>	<u>CAN</u>	<u>EM</u>	<u>SUB</u>	<u>ESC</u>	<u>FS</u>	<u>GS</u>	<u>RS</u>	<u>US</u>
2x	<u>SP</u>	İ	"	#	\$	%	&	•	()	*	+	,	-		/
3x	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4x	@	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
5x	Р	Q	R	s	Т	U	V	W	X	Υ	Z	[١]	٨	_
6x		а	b	С	d	е	f	g	h	i	j	k		111	n	0
7x	р	q	r	s	t	u	v	w	Х	y	Z	{		}	~	<u>DEL</u>
8x	€		,	f	"		1	‡	^	‰	Š	(Œ		Ž	
9x		٤	, 4		n	•	_	_	~	тм	š	>	œ		ž	Ÿ
Ах	NBSP	i	¢	£	¤	¥	ŀ	§		©	а	«	¬		®	-
Вх	0	±	2	3	,	μ	¶		د	1	0	»	1/4	1/2	3/4	¿
Сх	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	ĺ	Î	Ϊ
Dx	Đ	Ñ	Ò	Ó	Ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
Ex	à	á	â	ã	ä	å	æ	Ç	è	é	ê	ë	ì	í	î	ï
Fx	ð	ñ	Ò	ó	ô	õ	Ö	÷	Ø	ù	ú	û	ü	ý	þ	ÿ

92 = apostrophe

<u>Name</u>	<u>Labels</u>
The Encoding	
UTF-8	"unicode-1-1-utf-8"
	"utf-8"
	"utf8"
windows-1252	"ansi_x3.4-1968"
	"ascii"
	"cp1252"
	"cp819"
	"csisolatin1"
	"ibm819"
	"iso-8859-1"
	"is o-ir-100"
	"iso8859-1"
	"iso88591"
	"iso_8859-1"
	•


Early Unicode and UTF-16

Computer Science and Engineering ■ The Ohio State University

- Unicode started as 2¹⁶ code points
 - The BMP of modern Unicode
 - Bottom 256 code points match ISO-8859-1
- □ Simple 1:1 encoding (UTF-16)
 - Code point <--> 16-bit code unit
 - Simple, but leads to bloat of ASCII text
- □ Later added code points *outside* of BMP
 - A pair of words (surrogate pairs) carry 20-bit payload split, 10 bits in each word
 - First: 1101 10xx xxxx xxxx (xD800-DBFF)
 - Second: 1101 11yy yyyy yyyy (xDC00-DFFF)
- Consequence: U+D800 to U+DFFF became reserved code points in Unicode
 - And now we are stuck with this legacy, even for UTF-8

JavaScript and UTF-16 let $x = "\{1f916\}"$ // robot face x.codePointAt(0).toString(16) x.length // number of code units x.charCodeAt(0).toString(16); x.charAt(0); // char from 1 code unit Ruby and string encodings $x = "\{1f916\}"$ x.length x.bytes.map { |b| b.to s(2) } x.encoding x.encode! Encoding::UTF 16 x.bytes.map { |b| b.to s(16) }

Basic Multilingual Plane

- A multi-byte representation must distinguish between big & little endian
 - Example: 00 25 00 25 00 25
 - "%%%" if LE, "———" if BE
- One solution: Specify encoding in name
 - UTF-16BE or UTF-16LE
- □ Another solution: require byte order mark (BOM) at the start of the file
 - U+FEFF (ZERO WIDTH NO BREAK SPACE)
 - There is *no* U+FFFE code point
 - So FE FF → BigE, while FF FE → LittleE
 - Not considered part of the text

- □ Should we add a BOM to the start of UTF-8 files too?
 - UTF-8 encoding of U+FEFF is EF BB BF
- Advantages:
 - Forms magic-number for UTF-8 encoding
- Disadvantages:
 - Not backwards-compatible to ASCII
 - Existing programs may no longer work
 - E.g., In Unix, shebang (#!, i.e. 23 21) at start of file is significant: file is a script #! /bin/bash

ZWJ: Zero Width Joiner

Computer Science and Engineering ■ The Ohio State University

- Using U+FEFF as ZWNBSP deprecated
 - Reserved for BOM uses (at start of file)
- □ Alternative: U+200D ("zwidge")
- Joined characters may be rendered as a single glyph
 - Co-opted for use with emojis
- □ Example: (1 "character" in Twitter)
 - U+1F3F4 U+200D U+2620
 - WAVING BLACK FLAG, ZWJ, SKULL AND CROSSBONES

- What is a "text" file? (vs "binary")
 - Given a file, how can you tell which it is?
- A JavaScript program reads in a 5MB file of English prose into a string. How much memory does the string need?
- □ How many characters does s contain?

```
let s = . . . // JavaScript
console.assert (s.length() == 7) // true
```

- Which is better: UTF-8 or UTF-16?
- What's so scary about:

```
..%c0%af..
```

Summary

- □ Text vs binary
 - In pre-historic times: most significant bit
 - Now: data is data
- Unicode code points
 - Integers U+0000..U+10FFFF
 - BMP: Basic Multilingual Plane
- □ UTF-8
 - A variable-length, self-synchronizing encoding of unicode code points
 - Backwards compatible with ISO 8859-1, and hence with ASCII too