Computing Homology Cycles with Certi ed Geometljy

bFHHCS Tamal K. Dey yami.
] i
m Department of Computer Science and Engineering ‘

The Ohio State University

Collaborators
A. Hirani(UIUC), B. Krishnamoorthy(WSU), J. Sun(Tsinghua.Jand
Y. Wang(OSU)

Dey (2010) Homology Cycles 1/42



Cycles: Medical Imaging & Molecular Biology

Dey (2010) Homology Cycles 2/ 42



Cycles: Computer-Aided Design

Dey (2010) Homology Cycles 3/42



Cycles: Computer Graphics

Dey (2010) Homology Cycles 4/ 42



Topological cycles: Homology

@ Rank: Smith-Normal-Form; Special cases [DE95]

Dey (2010) Homology Cycles 5/42



Topological cycles: Homology

@ Rank: Smith-Normal-Form; Special cases [DE95]
@ Representative cycles:

Dey (2010) Homology Cycles

5/42



Topological cycles: Homology

@ Rank: Smith-Normal-Form; Special cases [DE95]

@ Representative cycles:
o Surfaces [VY90,DS95]

Dey (2010) Homology Cycles 5/42



Topological cycles: Homology

@ Rank: Smith-Normal-Form; Special cases [DE95]
@ Representative cycles:

o Surfaces [VY90,DS95]
@ Volumes: [DG96]

Dey (2010) Homology Cycles 5/42



Topological cycles: Homology

@ Rank: Smith-Normal-Form; Special cases [DE95]
@ Representative cycles:

o Surfaces [VY90,DS95]
@ Volumes: [DG96]
o General case: Persistence algorithm [ELZ00]

Dey (2010) Homology Cycles 5/42



Topological cycles: Homology

@ Rank: Smith-Normal-Form; Special cases [DE95]
@ Representative cycles:

Surfaces [VY90,DS95]

Volumes: [DG96]

General case: Persistence algorithm [ELZ00]
All are geometry-oblivious

¢ ¢ ¢ ¢

Dey (2010) Homology Cycles 5/42



Topological cycles: Homology

@ Rank: Smith-Normal-Form; Special cases [DE95]
@ Representative cycles:

Surfaces [VY90,DS95]

Volumes: [DG96]

General case: Persistence algorithm [ELZ00]

All are geometry-oblivious

¢ ¢ © ¢

Dey (2010) Homology Cycles 5/42



Topological cycles: Homology

@ Rank: Smith-Normal-Form; Special cases [DE95]
@ Representative cycles:

Surfaces [VY90,DS95]

Volumes: [DG96]

General case: Persistence algorithm [ELZ00]

All are geometry-oblivious

¢ ¢ © ¢

Dey (2010) Homology Cycles 5/42



Topological cycles: Homology
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@ Representative cycles:

Surfaces [VY90,DS95]

Volumes: [DG96]

General case: Persistence algorithm [ELZ00]
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@ Goal: "Geometry-oblivious' to "Geometry-aware'
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OHBP: Optimal Homology Basis Problem

@ Compute an optimal set of cycles forming a basis

o First solution for surfaces: Erickson-Whittlesey [SODAO5]
@ General problem NP-hard: Chen-Freedman [SODA10]
@ Hi basis for simplicial complexes: Dey-Sun-Wang [SoCG10]
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OHCP: Optimal Homologous Cycle Problem

@ Compute an optimal cycle in a given class.

e Surfaces: Colin de Verdere-Lazarus [DCGO05], Colin de
Verdere-Erickson [SODA06], Chambers-Erickson-Nayyeri§&®9]

o General problem NP-hard: Chen-Freedman [SODA10]
@ Special cases: Dey-Hirani-Krishnamoorthy [STOC10]
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De nition

P

A p-chainin K is a formal sum op-simplices:c = g ;i; sumis the
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Cycle

De nition
A p-cycleis ap-chain that has an empty boundary J

1l-cycleab+ bc+ cd + de+ ea(under Z,)

o Eachp-boundary is g-cycle: @ @+1 =0
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Homology

De nition
The p-dimensional homology grouis de ned as H(K) = Z ,(K)=Bp(K) J

De nition
Two p-chainsc and c® are homologousf ¢ = ¢+ @11 d for some chairdJ

@)

(a) trivial (null-homologous) cycle; (b), (c) nontrivial homologaucycles
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Background
Previous Work

@ Algorithms for computing homology groups from point data [CQ08
@ Reconstruction of the sampled space (can be costly)

@ Rips,Cech or witness complexes are less constrained

@ We use Rips complex

@ NP-hard for higher dimensional homology groups [CF10]
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Optimal Homology Basis Problem EESEe[ge[¥[3ls}

Basis

o Let H;(T) denote thej-dimensional homology group df underZ;
@ The elements of Ki(T) are equivalence classeg][of 1-dimensional
cyclesqg, also calledoops

De nition

A minimal setf[g1]; :::; [0k]g generating H(T) is called itsbasis
Herek =rankH4(T)
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Background
Shortest Basis

@ We associate a weight/(g) 0 with each loopg in T

Xk
Len(G)=  w(gi)
i=1

De nition

A shortest basiof Hy(T) is a set ofk loops with minimal length that
generates hi(T)
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Background
Theorem 1

Theorem

Let K be a nite simplicial complex with non-negative weights on edge
A shortest basis foH;(K) can be computed in @?) time where n= jKj
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CEELEE
Approximation from Point Cloud

o LetP RY be a point set sampled from a smooth closed manifold
M  RY embedded isometrically

o We want to approximate a shortest basis of M ) from P
o Compute acomplexK from P
@ Compute a shortest basis of 1K)

@ Argue that if P is densg a subset of computed loops approximate a
shortest basis of I{M ) within constant factors
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CEELEE
Complexes

o LetP RY be a point set
@ B(p;r) denotes an opem-ball centered atp with radiusr

De nition

The Cech complexC (P) is a simplicial complex where a simplex
2CI(P)i Vert( ) P and\ paver yB(p;r=2) 60

De nition

The Rips complexR"(P) is a simplicial complex where a simplex
2R"(P)i Vert( ) are within pairwise Euclidean distance of

Proposition
For any nitesetP RYandanyr 0, C(P) R "(P) C?Z(P)
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CEELEE
BallsB(p;r=2) forp 2 P

L ,
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Cech complexX (P)



Rips compleR"(P)




CEELEE
Approximation Theorem

Theorem

Let M RY be a smooth, closed manifold with | as the length of a
shortest basis oH1(M ) and k=rankH1(M ).

Given a set P I}q _of n points which is arf-sample ofM and

4" r minf3 2 (M); ¢(M)g, one can compute a set of loops G if
O(nn2n) time where

1 4"
T | Len(G) @+ )i
1+ & r

32(M)

Here ny: n; are the number of edges and trianglesR? (P)
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Introduction
Our Result

@ OHCP is NP-hard ifZ> coe cient is used.
o What if we switch toZ?

Then this problem can be cast as a linear programming prolem
polynomial time algorithm

Are the solutions integral?
Yes, if the constraint matrix igotally unimodular

(]

We characterize the complexes for which this is true

e & 6 ¢

For such complexes, the optimal cycle can be computed
in polynomial time,

Dey (2010) Homology Cycles 28 /42



CEELEE
Total Unimodularity

De nition

A matrix is totally unimodular (TU) if the determinant of each square
submatrix is 0, 1 or -1.
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CEELEE
Total Unimodularity

De nition

A matrix is totally unimodular (TU) if the determinant of each square
submatrix is 0, 1 or -1.

Theorem

Let A be an m n totally unimodular matrix andb an integral vector, i.e.
b2 Z™. Then the polyhedrorP = fx 2 R"jAx = b;x 0Og is integral
meaning thatP is the convex hull of the integral vectors containedfn
In particular, the extreme points (vertices) & are integral. Similarly the
polyhedronQ = fx 2 R"jAx bg is integral.

v
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CEELEE
Optimization

@ Consider an integral vectds 2 Z™ and a real vectof 2 R".
o Consider theinteger linear program

Program
minfT x
subjectto Ax=Db;x O
and x2 zZ".

Corollary

Let A be a totally unimodular matrix. Then the integer linearqgram
above can be solved in time polynomial in the dimensions of A.
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Norm
P 1
@ A p-chain X i is de ned by its coe cient vectorx 2 Z™.
i=0
De nition
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Norm
P 1
@ A p-chain X i is de ned by its coe cient vectorx 2 Z™.
i=0
De nition

P
Forv 2 R™, the 1-normjjvjj1 is de ned as jvij.
i

De nition

The weighted 1-normof v is jjWvjj1, whereW ism m diagonal matrix.

v

@ Given ap-chainc and a matrixW, we need to nd a chainc which
has the minimal 1-normjW ¢ jj among all chains homologous t©
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Problem Formulation
Central Idea

@ Write OHCP as an integer program involving 1-norm minimization

@ Convert it to an integerlinear program by introducing some extra
variables and constraints.

o Find the conditions under which the constraint matrix of theggram
is totally unimodular.

@ For this class of problems, relax the integer linear programatlinear
program by dropping the constraint that the variables beagtal.
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Gl T
Optimization Program

@ Assume thatK containsm p-simplices anch (p + 1)-simplices.
o W is a diagonaim m matrix obtained fromweightson simplices:

Wi = w( j).

@ Given an integer valuegd-chainc, the problem to solve is

Program
minjjW xjj1
suchthat x=c+[@+1]y
and x2zZM;y2 z".
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Gl T
Integer Linear Program

Program p
min jwij(x" + x )
|
subjectto x* X = c+[@uly
XX 0
xtix 2ZMy22Z".
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Gl T
Linear Program

Program p
min _ jWij(Xi+ + %)
|
subjectto x* X = c+[@uly
XX 0
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Gl T
Constraint Matrix Unimodularity

@ The equality constraints can be rewritten as
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Gl T
Constraint Matrix Unimodularity

@ The equality constraints can be rewritten as
X'ox = et [@allyt Y
@ So the equality constraint matrix isi[ | B B], whereB = [ @+1].

Lemma
If B =[@+1] is totally unimodular then soi§l | B B].

Theorem

If the boundary matrix{@+1] of a nite simplicial complex of dimension
greater than p is totally unimodular, the optimal homologousaim
problem for p-chain can be solved in polynomial time.
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Optimal Homologous Cycle Problem SRVERL{eI[sE

Orientable Manifolds

Theorem

For a nite simplicial complex triangulating &p + 1) -dimensional compa
orientable manifold[@-1] is TU irrespective of the orientation.
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LEGIEES
Total Unimodularity and Relative Torsion

De nitions

A pure simplicial complewf dimensionp is a simplicial complex formed hy
a collection ofp-simplices and their proper faces.

A pure subcompleis a subcomplex that is a pure simplicial complex.
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LEGIEES
Total Unimodularity and Relative Torsion

De nitions

A pure simplicial complewf dimensionp is a simplicial complex formed &
a collection ofp-simplices and their proper faces.
A pure subcompleis a subcomplex that is a pure simplicial complex.

v

Theorem

[@-+1] is totally unimodular if and only iHy(L; Lo) is torsion-free, for all
pure subcomplexeko; L of K of dimensions p and p 1, respectively,
whereLy L . Hence, OHCP for p-chains in such complexes are

polynomial time solvable by linear programs.

Dey (2010) Homology Cycles 38142
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LEGIEES
A Special Case

Theorem

Let K be a nite simplicial complex embedded RI*1. Then, Hy(L; L o)
is torsion-free for all pure subcomplexeg and L of dimensions d and
d +1 respectively, such thaty L .
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LEGIEES
A Special Case

Theorem

Let K be a nite simplicial complex embedded RI*1. Then, Hy(L; L o)
is torsion-free for all pure subcomplexeg and L of dimensions d and
d +1 respectively, such thaty L .

Corollary

Given a d-chairc in a weighted nite simplicial complex embedded in
R4+l an optimal chain homologous to can be computed by a linear
program.
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RIS
Computed Optimal Cycles
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Conclusions

e O(n*) algorithm for OHBP for simplicial complexes. Can it be
improved?
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Conclusions

e O(n*) algorithm for OHBP for simplicial complexes. Can it be
improved?

o Are there interesting cases where higher dimensional versidOHBP
solvable in polynmial time?

e O(n?) algorithm for OHCP for special cases. Can it be improved?

@ What about e cient updates?
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Thank You
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