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Background
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De�nition
A p-cycleis a p-chain that has an empty boundary

a

b
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d

e

1-cycleab+ bc + cd + de+ ea (under Z2)

Eachp-boundary is ap-cycle: @p � @p+1 = 0
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The p-dimensional homology groupis de�ned as Hp(K) = Z p(K)=Bp(K)

De�nition

Two p-chainsc and c0 are homologousif c = c0+ @p+1 d for some chaind

(a) (b) (c)

(a) trivial (null-homologous) cycle; (b), (c) nontrivial homologous cycles
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Algorithms for computing homology groups from point data [CO08]

Reconstruction of the sampled space (can be costly)

Rips, �Cech or witness complexes are less constrained

We use Rips complex

NP-hard for higher dimensional homology groups [CF10]
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Basis

Let Hj (T ) denote thej -dimensional homology group ofT underZ2

The elements of H1(T ) are equivalence classes [g] of 1-dimensional
cyclesg, also calledloops

De�nition

A minimal setf [g1]; :::; [gk ]g generating H1(T ) is called itsbasis
Herek = rank H1(T )
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We associate a weightw(g) � 0 with each loopg in T

The length of a set of loopsG = f g1; : : : ; gkg is given by

Len(G) =
kX

i=1

w(gi)

De�nition

A shortest basisof H1(T ) is a set ofk loops with minimal length that
generates H1(T )
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Optimal Homology Basis Problem Background

Theorem 1

Theorem
Let K be a �nite simplicial complex with non-negative weights on edges.
A shortest basis forH1(K) can be computed in O(n4) time where n= jKj
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Optimal Homology Basis Problem Background

Approximation from Point Cloud

Let P � Rd be a point set sampled from a smooth closed manifold
M � Rd embedded isometrically

We want to approximate a shortest basis of H1(M ) from P

Compute acomplexK from P

Compute a shortest basis of H1(K)

Argue that if P is dense, a subset of computed loops approximate a
shortest basis of H1(M ) within constant factors
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De�nition

The �Cech complexCr (P) is a simplicial complex where a simplex
� 2 Cr (P) i� Vert( � ) � P and \ p2 Vert( � )B(p; r=2) 6= 0

De�nition

The Rips complexR r (P) is a simplicial complex where a simplex
� 2 R r (P) i� Vert( � ) are within pairwise Euclidean distance ofr

Proposition

For any �nite set P � Rd and any r� 0, Cr (P) � R r (P) � C 2r (P)
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Optimal Homology Basis Problem Background

Approximation Theorem

Theorem

Let M � Rd be a smooth, closed manifold with l as the length of a
shortest basis ofH1(M ) and k = rank H1(M ).
Given a set P� M of n points which is an"-sample ofM and

4" � r � minf 1
2

q
3
5 � (M ); � c(M )g, one can compute a set of loops G in

O(nn2
ent ) time where

1

1 + 4r 2

3� 2(M )

l � Len(G) � (1 +
4"
r

)l:

Here ne; nt are the number of edges and triangles inR 2r (P)
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Optimal Homologous Cycle Problem Introduction

Our Result

OHCP is NP-hard ifZ2 coe�cient is used.

What if we switch toZ?

Then this problem can be cast as a linear programming problem)
polynomial time algorithm

Are the solutions integral?

Yes, if the constraint matrix istotally unimodular

We characterize the complexes for which this is true

For such complexes, the optimal cycle can be computed
in polynomial time,
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Optimal Homologous Cycle Problem Background

Total Unimodularity

De�nition

A matrix is totally unimodular (TU) if the determinant of each square
submatrix is 0, 1 or -1.

Theorem
Let A be an m� n totally unimodular matrix andb an integral vector, i.e.
b 2 Zm. Then the polyhedronP = f x 2 RnjAx = b; x � 0g is integral
meaning thatP is the convex hull of the integral vectors contained inP.
In particular, the extreme points (vertices) ofP are integral. Similarly the
polyhedronQ = f x 2 RnjAx � bg is integral.
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Optimization

Consider an integral vectorb 2 Zm and a real vectorf 2 Rn.

Consider theinteger linear program

Program

minfT x
subject to Ax = b; x � 0

and x 2 Zn.

Corollary

Let A be a totally unimodular matrix. Then the integer linear program
above can be solved in time polynomial in the dimensions of A.
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Optimal Homologous Cycle Problem Problem Formulation

Norm

A p-chain
m� 1P

i =0
xi � i is de�ned by its coe�cient vector x 2 Zm.
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Optimal Homologous Cycle Problem Problem Formulation

Norm

A p-chain
m� 1P

i =0
xi � i is de�ned by its coe�cient vector x 2 Zm.

De�nition

For v 2 Rm, the 1-norm jjvjj1 is de�ned as
P

i
jvi j.

De�nition

The weighted 1-normof v is jjW vjj1, whereW is m � m diagonal matrix.

Given ap-chain c and a matrixW , we need to �nd a chainc� which
has the minimal 1-normjjW c� jj among all chains homologous toc
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Optimal Homologous Cycle Problem Problem Formulation

Central Idea

Write OHCP as an integer program involving 1-norm minimization.
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Optimal Homologous Cycle Problem Problem Formulation

Central Idea

Write OHCP as an integer program involving 1-norm minimization.

Convert it to an integerlinear program by introducing some extra
variables and constraints.

Find the conditions under which the constraint matrix of the program
is totally unimodular.

For this class of problems, relax the integer linear program to a linear
program by dropping the constraint that the variables be integral.
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Optimal Homologous Cycle Problem Problem Formulation

Optimization Program

Assume thatK containsm p-simplices andn (p + 1)-simplices.
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Optimal Homologous Cycle Problem Problem Formulation

Optimization Program

Assume thatK containsm p-simplices andn (p + 1)-simplices.

W is a diagonalm � m matrix obtained fromweightson simplices:

wi = w(� i ).

Given an integer valuedp-chain c, the problem to solve is

Program

minjjW xjj1

such that x = c + [ @p+1 ]y
and x 2 Zm; y 2 Zn.
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Optimal Homologous Cycle Problem Problem Formulation

Integer Linear Program

Program

min
P

i
jwi j(x+

i + x�
i )

subject to x+ � x� = c + [ @p+1 ]y
x+ ; x� � 0
x+ ; x� 2 Zm; y 2 Zn.
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Optimal Homologous Cycle Problem Problem Formulation

Linear Program

Program

min
P

i
jwi j(x+

i + x�
i )

subject to x+ � x� = c + [ @p+1 ]y
x+ ; x� � 0
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Optimal Homologous Cycle Problem Problem Formulation

Constraint Matrix Unimodularity

The equality constraints can be rewritten as
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Optimal Homologous Cycle Problem Problem Formulation

Constraint Matrix Unimodularity

The equality constraints can be rewritten as

x+ � x� = c + [ @p+1 ](y+ � y)

So the equality constraint matrix is [I � I � B B], whereB = [ @p+1 ].

Lemma

If B = [ @p+1 ] is totally unimodular then so is[I � I � B B].

Theorem

If the boundary matrix[@p+1 ] of a �nite simplicial complex of dimension
greater than p is totally unimodular, the optimal homologous chain
problem for p-chain can be solved in polynomial time.
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Optimal Homologous Cycle Problem Manifolds

Orientable Manifolds

Theorem

For a �nite simplicial complex triangulating a(p + 1) -dimensional compact
orientable manifold,[@p+1 ] is TU irrespective of the orientation.
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Optimal Homologous Cycle Problem Manifolds

Total Unimodularity and Relative Torsion

De�nitions
A pure simplicial complexof dimensionp is a simplicial complex formed by
a collection ofp-simplices and their proper faces.
A pure subcomplexis a subcomplex that is a pure simplicial complex.
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Optimal Homologous Cycle Problem Manifolds

Total Unimodularity and Relative Torsion

De�nitions
A pure simplicial complexof dimensionp is a simplicial complex formed by
a collection ofp-simplices and their proper faces.
A pure subcomplexis a subcomplex that is a pure simplicial complex.

Theorem

[@p+1 ] is totally unimodular if and only ifHp(L ; L 0) is torsion-free, for all
pure subcomplexesL 0; L of K of dimensions p and p+ 1 , respectively,
whereL 0 � L . Hence, OHCP for p-chains in such complexes are
polynomial time solvable by linear programs.
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Optimal Homologous Cycle Problem Manifolds

A Special Case

Theorem

Let K be a �nite simplicial complex embedded inRd+1 . Then, Hd (L ; L 0)
is torsion-free for all pure subcomplexesL 0 and L of dimensions d and
d + 1 respectively, such thatL 0 � L .
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Optimal Homologous Cycle Problem Manifolds

A Special Case

Theorem

Let K be a �nite simplicial complex embedded inRd+1 . Then, Hd (L ; L 0)
is torsion-free for all pure subcomplexesL 0 and L of dimensions d and
d + 1 respectively, such thatL 0 � L .

Corollary

Given a d-chainc in a weighted �nite simplicial complex embedded in
Rd+1 , an optimal chain homologous toc can be computed by a linear
program.
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Optimal Homologous Cycle Problem Experiments

Computed Optimal Cycles
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Conclusions

Conclusions

O(n4) algorithm for OHBP for simplicial complexes. Can it be
improved?
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Conclusions

Conclusions

O(n4) algorithm for OHBP for simplicial complexes. Can it be
improved?

Are there interesting cases where higher dimensional version of OHBP
solvable in polynmial time?

O(n3) algorithm for OHCP for special cases. Can it be improved?

What about e�cient updates?
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Thank

Thank You
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