
CutLocusandTopologyfrom SurfacePointData

TamalK. Dey� Kuiyu Li y

March24,2009

Abstract

A cut locusof a point p in a compactRiemannianmanifoldM is de�ned asthesetof pointswhereminimizing
geodesicsissuedfrom p stopbeingminimizing. It is known thata cut locuscontainsmostof the topologicalinfor-
mationof M . Our goal is to utilize this propertyof cut loci to decipherthe topologyof M from a point sample.
Recentlyit hasbeenshown thatRipscomplexescanbebuilt from a point sampleP of M systematicallyto compute
theBetti numbers,therankof thehomologygroupsof M . Ripscomplexescanbecomputedeasilyandthereforeare
favoredover otherssuchasrestrictedDelaunay, alpha, �Cech,andwitnesscomplex. However, thesizesof theRips
complexestendto belarge. Sincethedimensionof a cut locusis lower thanthatof themanifoldM , a subsampleof
P approximatingthecut locusis usuallymuchsmallerin sizeandhenceadmitsa relatively smallerRipscomplex.

In this paperwe exploretheabove approachfor point datasampledfrom surfacesembeddedin any high dimen-
sionalEuclideanspace.WepresentanalgorithmthatcomputesasubsampleP 0 of asampleP of a2-manifoldwhere
P 0 approximatesa cut locus.Empiricalresultsshow thatthe�rst Betti numberof M canbecomputedfrom theRips
complexesbuilt on thesesubsamples.Thesizesof theseRipscomplexesaremuchsmallerthantheonebuilt on the
original sampleof M .
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1 Intr oduction

A considerableamountof interesthasbeengeneratedrecentlyin applyinggeometricandtopologicaltechniquesto
dataanalysisin high dimensionalspaces[1, 7, 10, 11, 20, 24, 26, 27]. Assumingthatthedatais sampledfrom a low
dimensionalmanifold lying in a high dimensionalspace,the resultsin theseworks facilitatealgorithmsthat `learn'
different propertiesof the manifold. We are speci�cally interestedin extracting the topology (information about
homology)of themanifoldfrom its point data.

Recentlya few algorithmshave beenproposedfor the problemwhich have theoreticalguarantees[3, 5, 10,
24]. Thesealgorithmsaretheoreticallysoundbut arenot practical.They dwell on datastructuressuchasDelaunay
triangulationsandalphashapesthathave impracticallyhigh computationalcostin largedimensions.Alternativedata
structuressuchaswitnesscomplex, �Cechcomplex, andRips complexeshave beenproposed[7, 25] to counterthis
problem.Ripscomplexescanbecomputedmoreeasilythantheothersandsobecomeanattractive choice[8, 18] in
applications.Takingthisview point,ChazalandOudot[7] show how onecanbuild ahierarchyof Ripscomplexesfrom
apointclouddataandthenusetopologicalpersistence[15, 27] to computetheBetti numbersof thesampledmanifold.
However, thesizeof a Ripscomplex is relatively largeandthatbecomesa bottleneckfor computingpersistentBetti
numbersfrom them.It is this considerationwhichmotivatesourwork.

We utilize a well known structurecalledcut locusin differentialgeometryto cut down thesizeof theRipscom-
plexes.Let p beany point in am-dimensionalsmoothcompactRiemannianmanifoldM . Thecut locusC(p) � M is
thespaceof pointswheretheminimizing geodesicsissuedfrom p stopbeingminimizing. It is known thatM n C(p)
is aball andhencemostof thetopologyof M is containedin C(p). Speci�cally, ranksof all homologygroups(under
Z2 coef�cient ring) of C(p) coincidewith thoseof M exceptfor the full dimensionalone. Thecut locusbeingone
dimensionallower objectthanM canbeapproximatedby a subsampleof sizemuchsmallerthana sampleof M . As
aresulttheRipscomplexesgetmuchsmallerwhich in turn facilitatecomputationsof persistenthomologygroups,see
Table1.

In this paperwe explore the above approachfor surfacesembeddedin an arbitraryEuclideanspace,that is, M
is a compactsmooth2-manifold sitting in Rk for somek > 2. We assumeM to be connectedandhenceonly its
onedimensionalhomologygroupis interesting.We presentanalgorithmthat computesa subsampleP 0 � P from
a sampleP of M whereP 0 approximatesa cut locusC(p) whenP is suf�ciently dense.We distinguishour setup
from the framework whereM is presentedwith somelinear approximation.Cut loci in the presenceof an explicit
representationof thesurfacehave beenusedto computevarioustypesof optimalcycleson thesurface,see[12, 16].
Onemayarguethata linearapproximationof thesurfacecanbecomputedfrom its pointsample�rst, andthenknown
methodsfor computinga cut locuscanbeused.Sincewe areconsideringM sitting in high dimensionalembedding
space,this optionis not verypracticalthoughtheoreticallypossible.Also, our ulterior goalis to explorethecut locus
approachfor generaldimensionalmanifold.Thispaperis a steptowardthatgoal.

2 Geodesicsand cut locus

We brie�y review someof the key conceptsrelatedto geodesics,see[14] for details. Let M � Rk be a compact,
connected,smoothmanifoldwithoutboundary. Assumethatthemetricin M is inducedby thescalarproduct< �; � >
in Rk .

Geodesics. A curve  : I � R ! M is a geodesicif theaccelerationrepresentingthe rateof changeof the tangent
_ (t) hasno componentalongM for all t 2 I . More formally, the covariantderivative D

dt ( _ (t)) is 0 for all t 2 I .
Givena vectoru in the tangentspaceTM p at a point p 2 M , thereis a geodesic (t) parameterizedby arc lengths
where (0) = p and _ (0) = u=jjujj . Thegeodesic is saidto beissuedfrom p. Noticethattwo pointsp andq in M
mayhavemultiplegeodesicsbetweenthem.Amongthem,theonesminimizingthelength(if they exist) arecalledthe
minimizinggeodesicsbetweenp andq. SinceM is compact,it is geodesicallycomplete,implying thatany two points
admita minimizing geodesic.If theminimizing geodesicbetweenp;q 2 M is unique,we denoteit as pq with the
understandingthat pq(0) = p.

Distances. Onecande�ne the distanceof a point p to a setX � M asdM (p;X ) = inf x 2 X `px where`px is the
lengthof a minimizing geodesicbetweenp andx in M . We usesimilar notationdE (p;X ) to denotetheEuclidean
distancebetweena point p and a subsetX of Rk . Abusing the notationwe write dM (p;q) = dM (p; f qg) and
dE (p;q) = dE (p; f qg) for any two pointsp andq. It is known thatdE (p;q) 6 dM (p;q) wherep;q 2 M � Rk . We
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alsohaveHausdorff distancesdE
H anddM

H betweentwo setsX andY de�ned as

dE
H (X ; Y) = maxf sup

y2 Y
dE (y; X ); sup

x 2 X
dE (x; Y )g

dM
H (X ; Y) = maxf sup

y2 Y
dM (y; X ); sup

x 2 X
dM (x; Y )g:

Exponential map. Let p 2 M be an arbitrary point. We are interestedin the geodesicsissuedfrom p. There
is a naturalmapcalled the exponentialmapwhich takesa vector in the tangentspaceTM p at p andmapsit to a
point on thegeodesicissuedfrom p by goingover a distanceof the lengthjjujj . Formally, expp: TM p ! M where
expp(u) =  (jjujj ) sothat  (0) = p and _ (0) = u

jj u jj . SinceM is compact,themapexpp is de�ned for entireTM p

meaningthateachgeodesicissuedfrom p continuesto be geodesicfor the in�nite interval [0; 1 ]. However, sucha
geodesicmayceaseto beminimizingatsomepoint.

Cut point and locus. A cutpointof ageodesic issuedfrom p is thepointwhere ceasesto beminimizing. Thelocus
C(p) of all cut pointson geodesicsissuedfrom p is calledthecut locusof p, seeFigure1. Thereis a relatedconcept
calledconjugatelocus. This is the locusof all conjugatepointswherethe exponentialmapis critical. Formally, a
pointq =  (t) is a conjugatepointof p =  (0) if andonly if t _ (0) is acritical pointof expp.

At a cutpoint q 2 C(p) of a geodesic , only two thingsmayhappen:

(a) Eitherthereis anotherminimizinggeodesic� startingfrom p sothat� (t) =  (t) = q for somet 2 (0; 1 ], or

(b) q is the�rst conjugatepointof p along .

In Figure1, point q satis�es(a) andpoint s0 satis�es(b). It is obviousthat,for any pointq 2 M n C(p), thegeodesic
betweenp andq whichhasnot crossedC(p) is minimizing.

Injecti vity radius and reach. For anm-dimensionalmanifoldM , theexponentialmapallows us to mapraysfrom
the tangentspaceTM p � Rm to thegeodesicsin M . Denotean openEuclideanball with centerat 0 = exp� 1

p (p)
andradiusr asB (0; r ). Themapexpp is injective on B (0; r ) if andonly if r is smallerthanor equalto thegeodesic
distanceof p to C(p). Thismotivatesthede�nition of injectivity radiusof M givenby

i (M ) = inf
p2 M

dM (p;C(p)) :

Injectivity radiuscanbeseenastheintrinsiccounterpartof awell known extrinsicmeasurecalledthereach,

� (M ) = inf
p2 M

dE (p;Y )

whereY is the medialaxis of M [17]. Becauseof the property(b) of the cut points,expp on B (0; r ) is not only
injective but also a diffeomorphismif r < i (M ). The imageexpp(B (0; r )) is a geodesicball of radiusr in M
centeredaroundp.

Cut locustopology. Onemayobserve that the injectivity of expp canbeextendedto theentireopensetM n C(p).
It follows thatM n C(p) is homeomorphicto anopenm-ball if M is a m-manifold. This indicatesthat thetopology
of M is containedmostly in C(p). We make this statementmorepreciseusinghomologygroups.For a topological
spaceX, let Hj (X) denotethej -dimensionalhomologygroupde�ned over the�eld Z2. Therankof Hj (X) is called
thej th Betti numberof X anddenoted� j (X). In whatfollowswewrite X1 � X2 for two groupsX1 andX2 if they are
isomorphic.Thefollowing resultsrelatetopologyof M to its cut locus[9, 21].

Proposition2.1 LetM bea compactRiemannianm-manifoldwithoutboundaryandp 2 M beanypoint.

1. M n f pg deformationretractsto C(p) andM n C(p) deformationretractsto p;

2. for 0 6 j 6 m � 1, Hj (M ) � Hj (C(p)) .

If thecoef�cient ring in thehomologygroupis a �eld which is not necessarilyZ2, thesecondassertionremainstrue
if M is orientableandis trueonly for 0 6 j 6 m � 2 if M is non-orientable.
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3 Surfacecut locus

We considerthecasewhenM � Rk is a surface(2-manifold).Thecut locusof anarbitrarysmoothsurfaceM could
be structurallyintractablein thesensethat it may not evenbe triangulable.Fortunately, thereis a largeclasscalled
real-analyticsurfacesthatdonot exhibit this pathologicalbehavior. Thesesurfacescanbedescribedlocally by a real
analytic function (locally agreeswith Taylor seriesexpansion). It is known that the cut locusof any real-analytic,
compactk-manifoldis triangulable[4]. Henceforth,weassumethatM is real-analytic.

3.1 Structural properties

A cut locusof a real-analyticsurfaceis a graph, namelyit consistsof curve segmentswhich arejoined at vertices.
Myers[22, 23] showedsomemorestructuralpropertiesof cut loci. Let q beany pointonacut locusC(p). In general,
therecould be oneor moreminimizing geodesicsjoining p andq. Thesegeodesicsmay be separatedor clumped
together. To bepreciseconsidera parameterization� 7!  � where � is thegeodesic with _ (0) makinganangle�
with a �x edreferencevectorv 2 TM p. If q is a conjugatepoint to p, it is conceivablethatthereis aninterval [� 1; � 2]
sothatall geodesics � with � 2 [� 1; � 2] connectp andq. A remarkableresultof Myersis that,this is notpossibleif M
is a real-analyticsurfaceunlessthecut locusdegeneratesto a singlepoint. We usethis importantstructuralproperty
in ourproofs.Actually, Myers[22, 23] provedmore.Let thenumberof minimizinggeodesicsconnectingp to apoint
q 2 C(p) betheorderof q.

Proposition3.1 If C(p) is not a singlepoint, theorder of a point q 2 C(p) is equalto thenumberof edgesin C(p)
incidentto q.

HenceforthweassumethatC(p) is notasinglepointwhichhappensonly for geometricspheresandcanbehandled
easily. Oneimplicationof Proposition3.1is thatonly �nitely many minimizinggeodesicsconnectapoint to any point
in its cut locus.Also, thedegreeof avertex in thecut locusC(p) is exactlyequalto its order. In particular, leaves–the
degree1 verticeshave exactly onegeodesiccominginto it. Generally, the cut locusC(p), beinga graph,contains
cycleswith treestructuresattachedto them.We call q 2 C(p) a treepoint if eitherq is a leaf in C(p) or C(p) n f qg
containsa componentwhoserelativeclosurein C(p) is a tree.Otherwise,q is calledacyclepoint.

Figure1: Cut locusonKitten: cut locusdrawn onaplanewith treepointsshadedlighter(left),cut locusembeddedon
thesurface(right).

Notice that, for a treepoint q which is not a leaf, C(p) n f qg containsa componentcontractibleto q in M . In
Figure1, C(p) hastwo cyclessincethesurfacehasgenus1. Thepointsq, r , s0, s1, s2 aretreepoints. Observe that
eventhoughq belongsto a cycle, it separatesa treeandhenceis a treepoint by our de�nition. Theorderof q andr
is three.Thepoint s0 is a conjugatepoint andits orderis one.Thetwo minimizing geodesicsto s2 arehomotopicto
eachother. They separatea disk from thesurfacewhich containsall minimizing geodesicsto thesegmentfrom s0 to
s2. However, for acyclepoint this is not true.Weshow thattwo minimizinggeodesicscominginto acyclepoint from
p cannotbehomotopicin M .

Proposition3.2 Supposeq 2 C(p) is a cyclepoint. A minimizinggeodesic connectingp andq cannotbehomotopic
to anyotherminimizinggeodesic� 6=  connectingp andq.
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Proof. The two minimizing geodesics and� meetonly at p andq sincetwo minimizing geodesicsissuedfrom
p cannotmeetin M n C(p). Therefore, and� form a simplecycle in M . If  and� werehomotopic,this cycle
would boundanopendisk,sayD in M . If D doesnot intersectC(p), wehaveaninterval [� 1; � 2] where =  � 1 and
� =  � 2 suchthatall minimizinggeodesicsf  � g, � 2 [� 1; � 2] connectp andq. Thiswould violateproposition3.1.

So,assumethatD \ C(p) is non-empty. We claimthatD \ C(p) cannotcontainacycle. For if therewereacycle
in C(p) embeddedin adisk,it wouldcontradictthefactthatM nC(p) deformationretractsto p andhenceis connected
(Proposition2.1). Weareleft with theonly optionof D \ C(p) beinganon-emptytree.Therefore,q is a treepointby
de�nition. But, this violatestheassumptionthatq is a cyclepoint. It follows that and� arenothomotopic.

3.2 Geodesicspread

p

C(p)

sg t

Recall that our goal is to computethe topologyof M from a cut locusC(p). Unfor-
tunately, we cannotcomputean approximationof the entire cut locus C(p). Instead,we
approximatea subsetof it which still retainsthetopologicalinformationof C(p). This sub-
setcanbede�ned in termsof a notionof geodesicspread, which we now develop.A subset
of C(p) retainstheessentialtopologyof C(p) if it consistsof pointswheretwo minimizing
geodesicsmeetafterspreadingapartby anamountof at leasti (M ), theinjectivity radiusof
M . We formalizeandprove this fact andthendesignan algorithmto approximatesucha
subset.

Spreadspd. Let  : [0; t0] ! M and� : [0; t1] ! M be two minimizing geodesicsparameterizedby arc lengths
whichconnectp 2 M to  (t0) 2 C(p) and� (t1) 2 C(p) respectively. Let t0 6 t1. Thedistancespd( ; � ) is de�ned
as

spd( ; � ) = max
t 2 [0;t 0 ]

f dM ( (t); � (t))g:

This distancemeasureshow far aparttwo geodesicsgetwhentraveling from p to thecut locus. In the �gure above
spd( ; � ) = � .

Considera function! : C(p) ! R where! (q) is themaximumof spd( ; � ) overall pairsof minimizinggeodesics
 ; � connectingp andq. For any � > 0, wealsode�ne C� (p) � C(p) asthesetof pointsf q 2 C(p)g where! (q) > � .
We aim to approximatea supersetof C� (p) for some� 6 i (M ). Thereasonis that sucha subsetof C(p) contains
all informationabouttheonedimensionalhomologygroupof M . To prove this fact,we establish�rst thefollowing
result.

Proposition3.3 Let  1;  2 betwo minimizinggeodesicsconnectingp andq 2 C(p). If w(q) < i (M ),  1 and 2 are
homotopic.

Proof. Considertheminimizinggeodesic� t connecting 1(t) and 2(t), 0 6 t 6 tc where 1(tc) =  2(tc) = q, the
cutpointalong 1 and 2. Wehave� t (0) =  1(t) andlet � t (b) =  2(t). Considerthemapf : R � [0; tc] ! M given
by f (s; t) = � t (s). We show thattherestrictionof this mapfor s 2 [0; b] is smooth.

Let Sp(M ) � Tp(M ) � Tp(M ) bethesmooth2-manifoldde�ned by

Sp(M ) = f (v1; v2)jkv1k = kv2k = 1g:

Let � p : R � Sp(M ) ! M � M bethesmoothmapde�ned by

(t; v1; v2) 7! (expp(tv1); expp(tv2)) :

For two points x; y 2 M wheredM (x; y) 6 i (M ), let u(x; y) denotethe unit tangentvectorof the minimizing
geodesicbetweenx andy at x. Now considerthe map : [0; 1 ] � M � M ! M restrictedto the opensetof
f x; yg � M � M wheredM (x; y) < i (M ) and (s; x; y) = expx (su(x; y)) . Themap is alsosmooth.Therefore,
thecomposition � (idR � � p) is smooth(idR is theidentityonR). Sincef (s; t) =  (( idR � � p)(s; t; _ 1(0); _ 2(0)) ,
oneconcludesthatf is smooth.

Considerthe continuousfunction F : [0; 1] � R ! M given by F (w; t) = f (wdM ( 1(t);  2(t)) ; t). We have
F (0; t) =  1(t) andF (1; t) =  2(t). Thus,F is a homotopy between 1 and 2 proving theclaim.

CombiningProposition3.2andProposition3.3we conclude:
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Proposition3.4 A pointq 2 C(p) is a treepoint if ! (q) < i (M ).

Next we show thatany closedsetcontainingcycle pointscapturesthetopologyof C(p). Theclosureis neededto
takecareof pointssuchasq in Figure1. Let Cl Y denotetherelativeclosureof a setY � C(p).

Proposition3.5 LetX � C(p) beanyclosedsetcontainingall cyclepointsof C(p). Then,H1(X ) � H1(C(p)) .

Proof. Let Y � X be thesetof all cycle points. SinceX is closed,Cl Y � X . First we show that H1(Cl Y) �
H1(C(p)) . If Cl Y = Y , thereis notreepoint in theclosureof cyclepoints.It meansC(p) = Cl Y sinceotherwisethe
only possibilityis thatC(p) is disconnectedwhichcontradictsthefactthatM is connected.So,assumethatY � Cl Y
andlet y beany point in Cl Y n Y. SinceY containsall cycle points,y is a treepoint. Thetreerootedat y trivially
contractsto y. Contractingall suchtreesfor all pointsy 2 Cl Y n Y , we areleft with aset,sayY 0 � Cl Y sothat

H1(Y 0) � H1(C(p))

sincecontractingtreesto pointsdoesnot alterhomology. We claim thatY 0 = Cl Y . If not, considerthesetY 00=
Y 0n Cl Y . ThesetY 00is not connectedto Cl Y andhenceC(p) is not connected,animpossibility. It follows that

H1(Y 0) � H1(Cl Y) � H1(C(p)) :

Observe thataddingany subsetof C(p) to Cl Y doesnot addany cycle. If it did, � 1(C(p)) would be largerthan
� 1(Cl Y ). Therefore,for any X � Cl Y , � 1(X ) = � 1(Cl Y) which provesthat � 1(X ) = � 1(C(p)) , or H1(X ) is
isomorphicto H1(C(p)) .

As acorollaryof Proposition2.1,Proposition3.4,andProposition3.5we obtain:

Theorem3.1 For anyclosedsetX whereC� (p) � X � C(p), � 6 i (M ), wehaveH1(X ) � H1(C(p)) � H1(M ).

Proof. Thecomplementof X , C(p) nX , containsonly treepointsby Proposition3.4.Therefore,X containsall cycle
points.Propositions2.1and3.5imply theconclusionimmediately.

In our algorithmwe approximatea supersetof C� (p) for some� 6 i (M ) to honorTheorem3.1. Thealgorithm
approximatesgeodesicsby shortestpathsin anappropriategraphG spannedby a givenpointsetP � M . For a point
q 2 P andagraphGwith verticesin P, let

 G
pq = shortestpathbetweenp andq in Gand

dG(p;q) = Euclideanlengthof  G
pq:

Whenthe�x edsourcep is understoodfor all geodesicsandshortestpaths,wewrite

 q =  pq and G
q =  G

pq:

The algorithmapproximatesthe distancespd( q;  s) betweenthe two geodesicsemanatingfrom p by computinga
distancesimilar to spd betweentheshortestpaths G

q and G
s .

If this approximatedistanceis larger thana threshold� , it selectsendverticesq ands if they areclosesuchas
the onesin Figure2 (the two shortestpathsareapproximatingthe two geodesicsshown with dottedcurves). If �
is relatively small comparedto i (M ), the algorithmat leastapproximatesan appropriatesubsetX of C(p) which
satis�esTheorem3.1. At thesametime thealgorithmshouldnot computepointsfar away from C(p) eventhoughit
capturesall pointsof X . Observethatif spd( q;  s) is notsmall,thetwo geodesicscannotcomecloseunlessthey are
nearp or neara cut point. We usethis observationto restrictall outputpointsnearC(p). We needto de�ne anopen
setcontainingC(p) to makeourstatementprecise.For � > 0, let

W� (p) = f  (t)jt > tc � � > 0 where (tc) 2 C(p)g

which is aspacethatdeformationretractsto C(p) alongtheminimizinggeodesicsoriginatingfrom p.

Proposition3.6 For any� > 0 and� > 0 there existsa number� = � (� ; � ) > 0 sothat if x 2 M n W� (p), there is
a � -neighborhoodU of x where for any two pointsu; u0 2 U, spd( u ;  u0) < � . Samestatementalsoholdsfor the
distancedE

H ( u ;  u0).
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Figure2: Geodesicsapproximatedby shortestpaths.

Proof. Let C0(R; M ) denotethespaceof all continuousfunctionsfrom R to M . De�ne G : M nW� (p) ! C0(R; M )
by takingG(x) =  x where x (0) = p. Sincex is not in C(p),  x is well de�ned. Let L bethelengthof  x . De�ne
anopenset

U� = f � : R ! M j dM (� (t);  x (t)) < � for 0 6 t 6 Lg:

SinceG is continuousby thecontinuityof geodesic�o ws, theinverseimageG� 1(U� ) of theopensetU� is open.It
follows thatthereis a � -neighborhoodof x containedin G� 1(U� ) asclaimed.

3.3 Geodesicand spreadapproximation

Weapproximatetheminimizinggeodesicsby shortestpathsfrom p in anappropriategraphbuilt onthepointdatathat
samplesM . For this approximationto begood,weneedthatP sampleM well.

Sampling condition. We sayP � M is an"-sampleif eachpoint x 2 M hasa point in P within geodesicdistance
of " , thatis, dM (x; P) 6 " .

For a point setP � M , let G� (P) denotethe graphwith verticesin P andedgesthat connectany two points
p;q 2 P within Euclideandistance� , thatis, dE (p;q) 6 � . Considera sequencef Pn g of point setsconvergingto M ,
that is, thesequencef " n g approaches0 wherePn is an" n -sampleof M . For � n = �(

p
"n ), de�ne thesequenceof

graphsf Gn = G� n (Pn )g. For two pointsp;q 2 Pn , let ~ n =  Gn
pq betheshortestpathbetweenthemin Gn . Let W (p)

beanopensetcontainingthecut locusC(p). We havethefollowing claim.

Proposition3.7 Letf Pn g bea sequenceof " n -sampleof M convergingto it. For � n = �(
p

"n ), let f Gn = G� n (Pn )g
bea sequenceof graphsinducedbyf Pn g. For anyopensetW (p) containingthecut locusC(p), p 2 Pn , thesequence
of pathsf ~ n g betweenp anda pointq 2 (M n W (p)) \ Pn convergesuniformlyto theuniqueminimizinggeodesic
betweenp andq in M .

We prove the above propositionusing a techniqueproposedby Hildebrandt,Polthier, and Wardetzky [19] to
prove a similar resultfor convergenceof geodesicson polyhedralsurfaces.First, we needresultson approximating
geodesicdistances.Actually, thepropositionis provedby showing thattheconvergencein pathlengthstranslatesinto
a convergencein actualpaths.RecallthatdG(p;q) denotethelengthof theshortestpathbetweentwo verticesp andq
in a graphG.

Proposition3.8 Letp andq betwopointsasde�nedin Proposition3.7.Thereexist tworeals� n and� n sothat

(1 � � n )dM (p;q) 6 dGn (p;q) 6 (1 + � n )dM (p;q)

where � n ; � n ! 0 asn ! 1 .
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Proof. Let p = v0; v1; :::; vk = q be the sequenceof verticeson ~ n . Assuming" n suf�ciently small, we have
� n 6 � � (M ) where� (M ) is thereachof M . Therefore,

dE (vi ; vi +1 ) 6 � n 6 � � (M ):

Underthis conditionwe canapplyCorollary4 of [2] to claim

dE (vi ; vi +1 ) > (1 � O(� n ))dM (vi ; vi +1 )

> (1 � O(
p

"n ))dM (vi ; vi +1 )

which immediatelygives

dGn (p;q) > � k � 1
i =0 (1 � O(

p
"n ))dM (vi ; vi +1 ) (1)

> (1 � O(
p

"n ))dM (p;q):

On theotherhand,for " n 6 � n =4, Theorem2 of [2] provides

dGn (p;q) 6 (1 + 4" n =� n )dM (p;q): (2)

In ourcase,since� n = �(
p

"n ), theconditionof " n 6 � n =4 is satis�edfor suf�ciently small" n . We get

dGn (p;q) 6 (1 + O(
p

"n ))dM (p;q):

Thepropositionis establishedwhereboth� n and� n areO(
p

"n ) whichgoesto zeroas" n goesto zero.

Proof. [Proposition3.7] We will work onpathsin M . To doso,weconsiderthepath n whichconsistsof minimizing
geodesicsbetweenall pairsof consecutiveverticeson ~ n . Assumingthat n is arclengthparameterized,wehave

dM ( n (t);  n (t0)) 6 jt � t0j (3)

for any t; t0 in thedomainof  n . We deducefrom inequalities1 and2

jt � t0j 6 2dGn (p;q) 6 4dM (p;q) 6 4diam(M ): (4)

wherediam(M ) is thediameterof M .
Let k = 4diam(M ) andC0([0; k]; M ) denotethespaceof all continuousfunctionsc : [0; k] ! M . Interpretany

path
c : [0; b] ! M ; b 6 k

asanelementof C0([0; k]; M ) by considering~c : [0; k] ! M where

~c(t) =
�

c(t) for 0 6 t 6 b
c(b) for b 6 t 6 k:

Observe that the family f  n g belongsto C0([0; k]; M ) dueto the inequality4. It follows from inequality3 that the
family f  n g isequicontinuous.Also, theinequality4 impliesthatthesequencef  n g isuniformly bounded.Therefore,
Arzelá-Ascolitheoremfrom functionalanalysisappliesto establishthatthesetof accumulationpointsof f  n g is not
emptyin thecompact-opentopologyonC0([0; k]; M ).

Let  beanaccumulationpoint of f  n g. For a pathc : [0; b] ! M , b 6 k, let `(c) denoteits lengthwhich is the
supremumover all partitionsof Z = f t0 = 0 6 t1 6 ::: 6 tm = bg, that is, `(c) = supZ � m

i =1 dM (c(t i � 1); c(t i )) .
We have

dGn (p;q) 6 `( n ) 6 (1 + O(
p

"n ))dGn (p;q)

for small " n (applytheboundin theinequality1). Then,Proposition3.8 impliesthat`( n ) ! dM (p;q). Thelength
functional`: C0([0; k]; M ) ! [0; 1 ] is lowersemicontinuous.Therefore,

`( ) 6 lim inf `( n ) = dM (p;q):

Hence is a minimizing geodesicconnectingp andq. Sinceq lies outsidean openneighborhoodof the cut locus
of p, thereis a uniquesuchgeodesicbetweenp andq meaningthat the sequencef  n g convergesto the minimum
geodesic betweenp andq. Moreover, Arzelá-Ascolitheoremsaysthatthisconvergenceis uniform. Onecandeduce
from Proposition3.8 thatdGn (p;q), thelengthof ~ n approaches̀( n ) asn ! 1 . It follows that~ n convergesto 
uniformly aswell.
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Corollary 3.1 For any � > 0; � > 0, there exists" = " (�; � ) > 0 so that if P is an "-sampleandp andq are two
pointsin P with q 62W� (p), theshortestpath G

q betweenp andq in G�(
p

" ) (P) satis�esdE
H ( G

q ;  q) 6 � where  q

is theminimizinggeodesicconnectingp andq in M .

The above corollary relatesshortestpathsbetweenverticesto the minimizing geodesicsbetweenthem. We can
statea similar factfor all minimizinggeodesicsissuedfrom p.

Proposition3.9 For any� > 0; � > 0, thereexists" > 0 sothatif P is an"-sample, thenfor anyminimizinggeodesic
 q issuedfromp with q 62W� (p) there is a shortestpath G originatingfromp in G�(

p
" ) (P) wheredE

H ( q;  G) 6 � .

Proof. Let �q 2 (M n W� (p)) \ P be the closestpoint to q in termsof geodesicdistance.For any � and � , we
canchoose" to besmallenoughsothatdE

H ( q;  �q) < �= 2 by appealingto Proposition3.6. Theclaim follows since
dE

H ( �q;  G
�q ) 6 �= 2 canbeassumedfor suf�ciently small" .

Now we show how we approximatethespread.Oncewe approximatetheminimizing geodesicswith theshortest
pathsin G = G� (P), � = �(

p
" ), we canapproximatethe spreadspd( q;  s) betweentwo minimizing geodesics

to q ands respectively. For this we considerthe shortestpaths G
q and G

s , andfor eachv 2  G
q we �nd the setof

verticesV �  G
s that have nearlyequaldistancefrom the root p asv. The shortestpathsfrom v to all verticesof

 G
s in V approximatethedistancedM ( q(t);  s(t)) wherev =  q(t). We take the largestoneamongthesepathsto

approximatethelengthdM ( q(t);  s(t)) . Let thelengthof this largestpathbe`(v). De�ne

spdG( G
q ;  G

s ) = max
v2  G

q

f `(v)g

which is computedby APPROXSPD. SeeFigure3 for anillustrationof thecomputedspreadvalues.

APPROXSPD( G
q ;  G

s )

1. AssumeG = G� (P) is available;`max := 0;

2. for eachvertex v on  G
q do

(a) Determinethevertex setV = f wg sothat
w 2  G

s anddG(p;v) � � 6 dG(p;w) 6
dG(p;v) + � ;

(b) Computethelargestlength` of theshortest
pathsfrom v to w 2 V in G� (P);

(c) if (` > `max ) `max := `;

3. Return`max .

Proposition3.10 For any� > 0 and� > 0 thereis an" > 0 sothatif P is an"-sampleand� = �(
p

") thenfor q; s 2
M nW2� (p), APPROXSPD( G

q ;  G
s ) returnsspdG( G

q ;  G
s ) wherespd( q;  s) � � < spdG( G

q ;  G
s ) < spd( q;  s) + � .

Proof. Letv andv0betheverticeson G
q and G

s respectively realizingspdG( G
q ;  G

s ), thatis,dG(v; v0) = spdG( G
q ;  G

s ).
For convenience,we write a 2 b� c if b � c 6 a 6 b+ c. Noticethata 2 b � c impliesb 2 a � c. If " is chosen
suf�ciently small,all verticeson  G

q and G
s canbe assumedto beoutsideW� (p) sinceq ands areoutsideW2� (p).

Thismeanswe canapplyCorollary3.1.
Let �v betheclosestpoint on  q to v. We have seendG(p;v) 2 dM (p;v) � O(

p
" )dM (p;v). SincedE (v; �v) 6 �

(Corollary3.1),wehave

dG(p;v) 2 dM (p; �v) � O(
p

"dM (p;v) + � ): (5)

We alsohave dM (p;v0) 2 dG(p;v0) � O(
p

" )dG(p;v0). The algorithmensuresdG(p;v0) 2 dG(p;v) � � from
which we getdM (p;v0) 2 dG(p;v) � O(

p
"dG(p;v0) + � ). Combiningpreviousobservationswith the inequality5,

we get

dM (p;v0) 2 dM (p; �v) � O(
p

"dM (p;v)

+
p

"dG(p;v0) + � + � ) (6)
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Figure3: Pairs of verticesconnectedin G� areshadedaccordingto the spreadvaluecomputedfor the two shortest
pathsjoining thesourceto theverticesin thepairs;thedarker theshades,the larger is thespread.Notice thatpairs
nearthecut locushavedistinctly largespreadvalues.

Let �v0 denotetheclosestpoint on  s to v0 andlet z =  s(t) if �v =  q(t). UsingdE (v0; �v0) 6 � (Corollary3.1) we
obtainfrom theinequality6

dM (p; �v0) 2 dM (p; �v) � O(
p

"dM (p;v)

+
p

"dG(p;v0) + � + � )

= dM (p;z) � O(
p

"dM (p;v)

+
p

"dG(p;v0) + � + � ): (7)

Sinceboth �v0 andz belongto  s , theinequality7 provides

dM (z; �v0) = O(
p

"dM (p;v) +
p

"dG(p;v0) + � + � )

from whichweobtain
dM (z; v0) = O(

p
"dM (p;v) +

p
"dG(p;v0) + � + � ):

It follows

dM ( �v; z) 2 dM (v; v0) � (dM (v0; z) + dM (v; �v))

= dM (v; v0) � O(
p

"dM (p;v)

+
p

"dG(p;v0) + � + � )

= dG(v; v0) � O(
p

"dG(v; v0) +
p

"dM (p;v)

+
p

"dG(p;v0) + � + � ):

It follows thatthereis a � 1 whichgoesto zeroas" doeswheredG(v; v0) 6 dM ( �v; z) + � 1 6 spd( q;  s) + � 1.
A very similar proof canshow that therearetwo verticesu 2  G

q ; u0 2  G
s with dG(p;u) 2 dG(p;u0) � � sothat

spd( q;  s) 6 dG(u; u0) + � 2. SincedG(u; u0) 6 dG(v; v0) by the de�nition of v andv0, we have spd( q;  s) 6
dG(v; v0) + � 2 where� 2 ! 0 as" ! 0. For any given� , onecansatisfy� > maxf � 1; � 2g by choosing" suf�ciently
small.Then,weobtaintheresultasclaimed.

4 Cut locusapproximation

ThealgorithmCUTLOCUS below implementsthe following strategy. It selectsall pair of pointsq; s 2 P which are
closeandadmitshortestpaths G

q and G
s respectively in G = G� (P) wherespdG( G

q ;  G
s ) is morethana threshold.
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CUTLOCUS(p 2 P; �; � ; � )

1. ComputethegraphG = G� (P); C := ; ;

2. Computeshortestpathsfrom a point p 2 P to
all verticesin G� (P);

3. for eachq 2 P � f pg do
for eachpair q; s 2 P with dE (q; s) 6 � do

if APPROXSPD( G
q ;  G

s ) > �
thenC := C [ f q; sg;

4. ReturnC.

4.1 Justi�cation

Proposition4.1 For a suf�ciently smallpositive� andanypositives� and� , thereis an" > 0 sothatif P is " -sample,
� = �(

p
" ) and� > 2(� + � + � ), thenthefollowing is true: CUTLOCUS( p 2 P; �; � ; � ) computesa samplepoint

q 2 P for each x 2 C� (p) wheredE (q; x) 6 � + � + � and� > � + � + O(� ).

Proof. Let x 2 C� (p) for some� > 0. Therearetwo geodesics 1 and 2 connectingp andx wherespd( 1;  2) > � .
Let x1 andx2 betwo pointsin  1 and 2 respectively ontheboundaryof W� (p). By Proposition3.9,thereis an" > 0
sothattherearetwo shortestpaths G

1 and G
2 in thegraphG� (P) for � = �(

p
" ) wheredE

H ( G
i ;  x i ) = O(� ) for any

� and� .
Let v1 andv2 betheclosestverticesto x1 andx2 respectively on thepaths G

1 and G
2 . We get

dE (v1; x) 6 dE (v1; x1) + dE (x1; x) 6 � + � + � :

It followsthatdE (v1; v2) 6 2(� + � + � ). Assuming� > 2(� + � + � ), theshortestpaths G
v1

and G
v2

arecheckedfor
their distanceby APPROXSPD.

We have spd( v1 ;  v2 ) > spd( x 1 ;  x 2 ) � O(� ) sinceboth  v i and  x i makesO(� ) distancewith  G
v i

. For a
suf�ciently small � > 0, spd( x 1 ;  x 2 ) = spd( 1;  2) > � by de�nition of x beingin C� (p). Thus,spd( v1 ;  v2 ) >
� � O(� ). APPROXSPD( G

v1
;  G

v2
) returnsa valuemorethan� � O(� ) � � by Proposition3.10.Theverticesv1 and

v2 areoutputby CUTLOCUS if � � O(� ) � � > � , or equivalentlyif � > O(� ) + � + � . Eitherof v1 andv2 canbe
takenasq sincebothof themsatisfythestatedpropertiesof q in thelemma.

Proposition4.2 For any� > 0, there exist " > 0 and� > 0 sothat thefollowing holds.Let v bea vertex computed
by CUTLOCUS( p 2 P, � , � , � ) where P is an "-sampleof M and � = �(

p
" ). There is a point x 2 C(p) so that

dE (x; v) 6 2� .

Proof. If dE (v; C(p)) 6 2� , we aredone.So,assumeotherwise,thatis, v lies outsidethe2� -neighborhoodof C(p)
in Rk . Sincev is computedby CUTLOCUS, thereis anothervertex v0 computedby CUTLOCUS sothatdE (v; v0) 6 �
andtheshortestpaths G

v and G
v0 satisfyspdG( G

v ;  G
v0) > � . By Proposition3.10,

spd( v ;  v0) > spdG( G
v ;  G

v0) � �

for any � aslongas" is suf�ciently small.Therefore,we havespd( v ;  v0) > � � � .
Observe thatwe canassumedE (v0; C(p)) > � sinceotherwisev0 satis�esthe lemma.We want to applyPropo-

sition 3.6 to  v and v0 with � = � � � . For this � , let � = � (� ; � ) satisfytheproposition.If we choose� 6 � , one
shouldhavespd( v ;  v0) < � reachinga contradiction.

Theorem4.1 For any" 0 > 0, there is an " > 0 anda � > 2" 0 sothat if P is an "-sample, � = �(
p

"), and0 < � <
i (M ) � O(" 0), thenP 0 � P returnedby CUTLOCUS(p; �; � ; � ) hasdE

H (P0; X ) = O(" 0) where C� � X � C(p) for
� < i (M ).
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Proof. Observethatfor any " 0 > 0 wecansatisfy" 0 > � + � + � + � by assuming" to besuf�ciently small.Then,if
� is chosenwhere� > 2" 0, wehave � > 2(� + � + � ). Therefore,we canapplyProposition4.1to claim thatfor each
point x 2 C� (p), CUTLOCUS(p; �; � ; � ) outputsa point with distancedE (x; p) = O(" 0) where� = � + � + O(� ).
When� falls into thestatedrange,we have� < i (M ).

FromProposition4.2 we get that if � is suf�ciently small, all pointscomputedby CUTLOCUS arewithin 2� =
O("0) distanceof C(p). If " is smallenough,sucha � canbechosensatisfyingall constraints.Combiningall, we get
thatCUTLOCUS computesasetP 0 wheredE

H (P0; X ) = O(" 0) andC� (p) � X � C(p) for � < i (M ).

5 Computing homology

Ouralgorithmfor homologycomputation�rst estimatesasampledensityparameterwith whichwebuild agraphwhere
shortestpathsarecomputed.Ripscomplexesareconstructedwith aninput parameteron thepoint setapproximating
a cut locus.PersistentBetti numbersarecomputedon theseRipscomplexes.

Estimating density. Observe thatwe needanestimateof " to constructthegraphG� (P) sincewe set� = �(
p

" ).
We estimate" by usinga procedurethat wassuggestedin [3] to build a sequenceof subsamplesin the context of
computingwitnesscomplexes[25].

Let f p0g = L 0 � L 1 � ::: � L k = P whereL i +1 = L i [ f pi +1 g with pi +1 beingthefurthestpoint in P nL i from
L i , that is, pi +1 = argmaxq2 P nL i

dE (q; L i ). De�ne ~" i = dE (pi +1 ; L i ). We show that ~" i approximatesa sampling
density" i de�ned asfollows. A sampleL i � M is a tight " i -sampleif L i is an" i -sampleof M andthereis anx 2 M
for whichdM (x; L i ) = " i .

To prove that ~" i approximates" i we needProposition5.2 which in turn usesLemma 3 of [2]. Let 1
r 0

=
max ;t fk • (t)kg where variesoverall unit speedgeodesicsin M andt 2 R.

Proposition5.1([2]) For anytwo pointsp;q 2 M , if dM (p;q) 6 � r0, thendE (p;q) > 2r 0 sin( dM (p;q)
2r 0

).

Recallthat the reach� (M ) is thesmallestdistancebetweenM andits medialaxis. The reach� (M ) boundsr 0

from below. See[13] for a proofof this fact.

Proposition5.2 For anytwo pointsp;q 2 M , if dM (p;q) 6 � (M )=2, thendE (p;q) > 9
10 dM (p;q).

Proof. First,observethatdM (p;q) 6 � (M )
2 6 � r0 whichallowsusto applyProposition5.1.Second,sin(t) > t � t3=6

for t > 0. Pluggingthis into theboundgivenby Proposition5.1andwriting ` = dM (p;q), we get

dE (p;q) > (1 �
`2

24r 2
0

)` > (1 �
`2

24� (M )2 )`:

Since` 6 � (M )=2, we have

dE (p;q) > (1 �
1
96

)` >
9
10

dM (p;q):

Noticethatthechoiceof thefactor 9
10 is a little arbitrary. We couldhave takenthefactor 95

96 which would tighten
otherconstantsslightly.

Proposition5.3 Let f L i g bethesequenceof subsamplesasdescribedabove. If L i � P is a tight " i -sampleandP is
an "-sampleof M respectively, thenfor " < " i 6 � (M )=2, onehas 9

10 (" i � " ) 6 ~" i 6 " i .

Proof. Considera point x 2 M sothatdM (x; L i ) = " i . SinceL i is a tight " i -samplesucha point exists. Let w be
theclosestpoint to x in P n L i . We claim thatw is alsotheclosestpoint to x in P. If not, thereis a point in L i which
is closestto x in P. Then,dM (x; L i ) 6 " contradictingthat" < " i .

We havedM (w; x) 6 " sinceP is an"-sample.Let p betheclosestpoint to w in L i . Then,

dM (w; p) > dM (x; p) � " > dM (x; L i ) � " = " i � ":
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SinceL i is an" i -sample,dM (w; p) 6 " i 6 � (M )
2 . We canapplyProposition5.2 to claim dE (w; p) > 9

10 dM (w; p).

Then,we have ~" i > dE (w; p) > 9dM (w ;p)
10 > 9

10 (" i � " ): Thisprovesthelowerboundon ~" i .
To provetheupperbound,considerthepair (u; p), p 2 L i , u 2 P n L i which realizesthedistance~" i . SinceL i is

an" i -sampleandu 2 M n L i , ~" i 6 dM (u; p) 6 " i :

Now we have all ingredientsto compute� 1(M ) from a densesampleP of M . For any compactsetX � Rk , let
X � denoteits � -offsetin Rk , thatis,

X � = f x 2 Rk j inf
y2 X

dE (x; y) 6 � g:

Let C denotethesetof critical pointsof thedistancefunctiondE restrictedto thedomainof X. Thedistance

wfs(X) = inf
x 2 X

inf
c2 C

dE (x; c)

is calledtheweakfeaturesizeof X [6].

Rips complexes. The � -Rips complex of a point setP � Rk is de�ned asa simplicial complex R � (P) wherea
simplex � with verticesin P is in R � (P) if andonly if all edgesof � haslengthat most2� . ChazalandOudot[7]
show thatthej th Betti number� j (X) = rank Hj (X) canbecomputedfrom Ripscomplexesasfollows.

Let P � X bea point sampleof X with theHausdorff distancedE
H (P; X) 6 " . ThenaturalinclusionR � (P)

�
,!

R 4� (P) alsoinducesahomomorphism� � at thehomologylevel

Hj (R � (P)) � �

! Hj (R 4� (P)) :

Theinteger
� �; 4�

j (P) = rank (image� � )

denotesthe j th persistentBetti numbergivenby theinclusionof R � (P) into R 4� (P). PersistentBetti numberscan
be computedby the persistencealgorithmpioneeredby Edelsbrunner, ZomorodianandLetscher[15] andextended
laterby ZomorodianandCarlsson[27]. It is shown in [7] thatfor any offsetX � , 0 < � 6 wfs(X), onehas� j (X � ) =
� �; 4�

j (P) if 2" 6 � 6 1
4 (wfs(X) � " ). After computingthecomplexesR � (P) andR 4� (P) onecancomputethe

persistentBetti numbersby following the persistencealgorithm [15, 27] on a �ltration that addsthe simplicesof
R 4� (P) n R � (P) to R � (P).

Algorithm . We want to follow thesameapproachfor thecut locusthatwe approximateby CUTLOCUS. Let X �
C(p) be the closedset approximatedby the point setL 0

i � L i that CUTLOCUS computes.By Theorem3.1 and
Theorem4.1,H1(X ) � H1(M ) if appropriateparametervaluesarepassedto CUTLOCUS andL i is suf�ciently dense.
Let

� 1 = sup
�

(H1(X � ) � H1(X )) :

Following [11], onemaycall � 1 the �r st homological feature sizeof X . It turnsout that wfs(X ) is boundedabove
by � 1. The techniqueof [7] canbeusedto show that � �; 4�

1 (L 0
i ) is equalto � 1(X ) if 4" 0

i 6 � 6 1
4 (� 1 � "0

i ) where
dE

H (L 0
i ; X ) 6 "0

i .
For a largerangeof i , L i remainsa densesampleof M . Also, by Proposition5.3 theestimatedsamplingdensity

~" i of L i follows closelyits actualdensity" i for a largerangeof i aslong as" i remainslarger than" . Therefore,to
estimate" i properly, we considerall L i s iteratively in thealgorithm.Theorem4.1requiresthatdE

H (L 0
i ; X ) is at most

�
2 . If � satis�es3� 6 1

4 (� 1 � "0
i ), we have that4" 0

i 6 3� 6 1
4 (� 1 � "0

i ). Theconstraintson � canbesatis�ed if " i is
smallenough.Then,taking� = 3� wecancompute� 3� ;12�

1 (L 0
i ) whichequals� 1(X ).
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TOPODATA(P; �; � )

1. Initialize L = ; ;

2. while L 6= P do

(a) computep := argmaxq2 P dE (q; L );
L := L [ f pg; P := P n f pg;

(b) compute~" := dE (p;L );

(c) Compute L 0 := CUTLOCUS(p 2
L; �; � ;

p
~");

(d) Output� 3� ;12�
1 (L 0) by consideringthe in-

clusionR 3� (L 0)
�

,! R 12� (L 0);

The outputof TOPODATA canbe plottedagainstthe �ltration of the point sampleandthe mostpersistentBetti
numberscanbeselectedasoutlinedin [7]. Since~" i estimates" i for a largerangeof i , thepersistentBetti numbers
computedin step2(d) remainstablefor a large interval assumingthat theoriginal sampleis denseenoughfor L 0

i to
remaindensefor X for a largerangeof i . Notice thatwe do not have any relationestablishedbetween� 1, the �rst
homologicalfeaturesizeof X andthe injectivity radiusof M . It is conceivablethata point samplewhich is dense
for M maynot provide denseenoughsamplefor X . For this we assumethat theoriginal sampleis sodensethatL 0

i
remainsdensefor X for a largerangeof i . In particular, weassumethat" is suf�ciently smallsothat� canbechosen
suf�ciently smallsatisfying2" 0

i < � 6 1
12 (� 1 � "0

i ) for Theorem4.1to hold andfor computationof � 1(X ) to remain
correct.

Time complexity. Let P haven samplepoints.First,wedeterminethetimecomplexity of thealgorithmCUTLOCUS.
Computationof thegraphG� cannottakemorethanO(n2) timesinceit involvescheckingpairwisedistancesof points
in P. Computationof theshortestpathsfrom a sourcein step2 of CUTLOCUS takesO(n2) time. For step3 we need
to determineshortestpathsbetweendifferentverticesin G� . We computeall pairsshortestpathsin G� andkeepthe
pairwisedistancesin amatrix form. Oncethis is computed,step3 of CUTLOCUS canbeimplementedin O(n3) time.
Therefore,CUTLOCUS runsin O(n3) time.

In TOPODATA steps2(a-b)canbeperformedin O(n2) timewith astraightforwardpairwisedistancecomputations.
Step2(c) takesO(n3) timeasweargued.Sincepersistencealgorithmtakestimecubicin its inputsize,step2(d) takes
O(k3) time wherek is thenumberof simplicesin R 12� (L 0). SinceC(p) is smootheverywhereexceptat its vertices,
the analysisof [7] can be carriedout to claim that k = O(n). It implies that the step2(d) takes O(n3) time.
Accountingfor all iterations,we obtainthatTOPODATA runsin O(n4) time.

In theorywe do not gainany advantageby computinganapproximationto thecut locussincein theworstcasea
samplemayhavemostpointsconcentratednearacut locusthatis beingapproximated.However, this is toopatholog-
ical to happenin practice.In fact,for a uniform distribution,a cut locusof length` hasroughly `

" pointswhereasthe
surfacewith areaA hasroughly A

" 2 pointsimplying a reductionby a factorof A
`" . Our experimentsin 3D shows that

thenumberof pointsaredrasticallyreducedby cut locusapproximation,seeTable1.

6 Experimentsand conclusions

We implementedthe algorithmsCUTLOCUS andTOPODATA andran themon an Intel Xeon 2.66GHz,4GB RAM
machine.We deviatedfrom theoryslightly in theimplementation.If we let � = 2~", it satis�estherequiredconstraints
if " is suf�ciently small. Instead,in theimplementationwetake� = ~" to reducethesizesof theRipscomplexes.Also,
wetake� amultipleof � (seeTable1). Insteadof computing� 3� ;12� (�) wecompute� � ;2� (�) whichgivescorrectresult
in all casesthatwe tested.

Figure4 shows someof theresults.We alsoprovide thetime datafor differentstepsof thealgorithmsin Table1.
We observe thatthepoint setoutputby CUTLOCUS is muchsmallerthantheinput point set.As a resultthethesizes
of the Rips complexesbecomemuchsmallerasthe Table1 shows. Consequentlybuilding theRips complexesand
computingthepersistentBetti numbersfrom themtake lesstime. Thegainin time outweighstheextra time required
to computeanapproximationto thecut locus.In Table1 we alsoshow thetimesfor thecasewhenL = P.
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Model # v Locus � L-Rip( # e,# f) L-Rip L-Perst G-Rip(# e,# f) G-Rip G-Perst
Torus 9.4k 1.08 8� 3.9k,13.3k 0.01 0.04 219.6k,1897.7k 9.63 44.85
Kitten 31.3k 12.05 6� 13.2k,54.4k 0.07 0.18 940.5k,10569.9k 81.11 507.15
2-Torus 39.7k 24.33 8� 14.1k,47.7k 0.05 0.15 873.3k,7063.5k 32.97 663.77
Genus3 63.9k 81.26 8� 19.2k,74.3k 0.08 0.24 1709.7k,17018.2k 112.05 1496.45
Botijo 68.4k 78.46 8� 32.5k,138.2k 0.19 0.48 2016.9k,22232.8k 173.80 1004.03
Mother 75.1k 119.61 8� 25.9k,92.3k 0.11 0.31 1715.5k,14437.1k 74.27 2712.46
Hip 104.2k 492.07 3� 103.4k,439.4k 0.74 1.62 2202.7k,17231.1k 203.88 4727.57
Pegasus 141.5k 519.84 4� 95.9k,443.1k 0.73 1.41 2979.8k,28279.1k 3900.71 7728.63

Table1: # v columndenotesthenumberof verticesfor eachpointcloud.All timesarein seconds.Locuscolumnde-
notesthetimefor computingthecut locuswith parameterpassedto TOPODATA shown in � column.Thetwo numbers
in L-Rip(# e,# f) columnarethenumberof edgesandfacesof theRipscomplex of thesubsampleapproximatingthe
cut locus. L-Rip andL-Perstcolumndenotethe time for computingthis Ripscomplex andtime for runningpersis-
tenceon this Ripscomplex. G-Rip(# e,# f), G-Rip andG-Perstcolumnshave thesamemeaningasthepreviousthree
columnsbut correspondto theentirepoint cloudinsteadof thepointsapproximatingthecut locus.

A naturalextensionof ourwork wouldbeto applytheapproachto datasampledfrom highdimensionalmanifolds.
Our algorithmappliesto thesecasesstraightforwardly sinceit only involvescomputingdistanceson shortestpath
graphs.However, we do not have a proof of correctnessat themoment.We requirea generalizationof Theorem3.1.
Thisneedsageneralizationof thede�nitions of treeandcyclepoints.Also, wewould like to proveastrongerversion
of Theorem4.1wheretheHausdorff distanceboundis in termsof " insteadof " 0. Thiswouldrequirestrengtheningof
Propositions3.6and3.7in termsof " .

Notice that thepersistencealgorithmprovidesgeneratorsfor homologyclassesin additionto their ranks.There-
fore,onemaycomputeasetof cyclesfrom theinputpointclouddatathatrepresentabasisof the�rst homologygroup
of thesampledsurface.However, thesecyclesarenotguaranteedto beoptimalor closeto optimalin termsof lengths.
We planto addressthis issuein futurework.
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