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Abstract

In many data analysis applications the following scenario is commonplace: we are
given a point set that is supposed to sample a hidden ground truth K in a metric
space, but it got corrupted with noise so that some of the data points lie far away
from K creating outliers also termed as ambient noise. One of the main goals of
denoising algorithms is to eliminate such noise so that the curated data lie within a
bounded Hausdorff distance of K. Popular denoising approaches such as deconvolution
and thresholding often require the user to set several parameters and/or to choose an
appropriate noise model while guaranteeing only asymptotic convergence. Our goal is
to lighten this burden as much as possible while ensuring theoretical guarantees in all
cases.

Specifically, first, we propose a simple denoising algorithm that requires only a
single parameter but provides a theoretical guarantee on the quality of the output on
general input points. We argue that this single parameter cannot be avoided. We next
present a simple algorithm that avoids even this parameter by paying for it with a slight
strengthening of the sampling condition on the input points which is not unrealistic.
We also provide some preliminary empirical evidence that our algorithms are effective
in practice.

1 Introduction

Real life data are almost always corrupted by noise. Of course, when we talk about noise, we
implicitly assume that the data sample a hidden space called the ground truth with respect
to which we measure the extent and type of noise. Some data can lie far away from the
ground truth leading to ambient noise. Clearly, the data density needs to be higher near the
ground truth if signal has to prevail over noise. Therefore, a worthwhile goal of a denoising
algorithm is to curate the data, eliminating the ambient noise while retaining most of the
subset that lies within a bounded distance from the ground truth.

In this paper we are interested in removing “outlier”-type of noise from input data.
Numerous algorithms have been developed for this problem in many different application
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fields; see e.g [21, 27]. There are two popular families of denoising/outlier detection ap-
proaches: Deconvolution and Thresholding. Deconvolution methods rely on the knowledge
of a generative noise model for the data. For example, the algorithm may assume that the
input data has been sampled according to a probability measure obtained by convolving
a distribution such as a Gaussian [23] with a measure whose support is the ground truth.
Alternatively, it may assume that the data is generated according to a probability measure
with a small Wasserstein distance to a measure supported by the ground truth [7]. The
denoising algorithm attempts to cancel the noise by deconvolving the data with the assumed
model.

A deconvolution algorithm requires the knowledge of the generative model and at least
a bound on the parameter(s) involved, such as the standard deviation of the Gaussian
convolution or the Wasserstein distance. Therefore, it requires at least one parameter as well
as the knowledge of the noise type. The results obtained in this setting are often asymptotic,
that is, theoretical guarantees hold in the limit when the number of points tends to infinity.

The method of thresholding relies on a density estimation procedure [26] by which it
estimates the density of the input locally. The data is cleaned, either by removing points
where density is lower than a threshold [16], or moving them from such areas toward higher
densities using gradient-like methods such as mean-shift [13, 25]. It has been recently used for
uncovering geometric information such as one dimensional features [18]. In [5], the distance
to a measure [10] that can also be seen as a density estimator [2] has been exploited for
thresholding. Other than selecting a threshold, these methods require the choice of a density
estimator. This estimation requires at least one additional parameter, either to define a kernel,
or a mass to define the distance to a measure. In the case of a gradient based movement of
the points, the nature of the movement also has to be defined by fixing the length of a step
and by determining the terminating condition of the algorithm.

New work. In above classical methods, the user is burdened with making several choices
such as fixing an appropriate noise model, selecting a threshold and/or other parameters. Our
main goal is to lighten this burden as much as possible. First, we show that denoising with a
single parameter is possible and this parameter is in some sense unavoidable unless a stronger
sampling condition on the input points is assumed. This leads to our main algorithm that
is completely free of any parameter when the input satisfies a stronger sampling condition
which is not unrealistic.

Our first algorithm Declutter algorithm uses a single parameter (presented in Section
3) and assumes a very general sampling condition which is not stricter than those for the
classical noise models mentioned previously because it holds with high probability for those
models as well. Additionally, our sampling condition also allows ambient noise and locally
adaptive samplings. Interestingly, we note that our Declutter algorithm is in fact a variant of
the approach proposed in [8] to construct the so-called ε-density net. Indeed, as we point out
in Appendix D , the procedure of [8] can also be directly used for denoising purpose and one
can obtain an analog of Theorems 3.3 and 3.7 in this paper for the resulting density net.

Use of a parameter in the denoising process is unavoidable in some sense, unless there are
other assumptions about the hidden space. This is illustrated by the example in Figure 1.
Does the sample here represent a set of small loops or one big circle? The answer depends
on the scale at which we examine the data. The choice of a parameter may represent this
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Figure 1: From left to right: the input sample,the output of Algorithm Declutter when k = 2, the

output of Algorithm Declutter when k = 10,the output of Algorithm ParfreeDeclutter.

choice of the scale [3, 15]. To remove this parameter, one needs other conditions for either
the hidden space itself or for the sample, say by assuming that the data has some uniformity.
Aiming to keep the sampling restrictions as minimal as possible, we show that it is sufficient
to assume the homogeneity in data only on or close to the ground truth for our second
algorithm which requires no input parameter.

Specifically, the parameter-free algorithm presented in Section 4 relies on an iteration
that intertwines our decluttering algorithm with a novel resampling procedure. Assuming
that the sample is sufficiently dense and somewhat uniform near the ground truth at scales
beyond a particular scale s, our algorithm selects a subset of the input point set that is close
to the ground truth without requiring any input from the user. The output maintains the
quality at scale s even though the algorithm has no explicit knowledge of this parameter. See
Figure 2 for an example.

Figure 2: From left to right: the ground truth, the noisy input samples (∼ 7000 points around the

ground truth and 2000 ambient noise points), two intermediate steps of our iterative parameter-free

denoising algorithm and the final output.

All missing details from this extended abstract can be found in the appendix. In addition,
in Appendix C, we show how the denoised data set can be used for homology inference. In
Appendix E, we provide various preliminary experimental results of our denoising algorithms.

Remark. Very recently, Jiang and Kpotufe proposed a consistent algorithm for estimating
the so-called modal-sets with also only one parameter [22]. The problem setup and goals are
very different: In their work, they assume that input points are sampled from a density field
that is locally maximal and constant on a compact domain. The goal is to show that as the
number of samples n tends to infinity, such domains (referred to as modal-sets in their paper)
can be recovered, and the recovered set converges to the true modal-sets under the Hausdorff
distance. We also note that our Declutter algorithm allows adaptive sampling as well.
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2 Preliminaries

We assume that the input is a set of points P sampled around a hidden compact set K, the
ground truth, in a metric space (X, dX). For simplicity, in what follows the reader can assume
X = Rd with P,K ⊂ X = Rd, and the metric dX of X is simply the Euclidean distance. Our
goal is to process P into another point set Q guaranteed to be Hausdorff close to K and
hence to be a better sample of the hidden space K for further applications. By Hausdorff
close, we mean that the (standard) Hausdorff distance δH(Q,K) between Q and K, defined
as the infimum of δ such that ∀p ∈ Q, dX(p,K) ≤ δ and ∀x ∈ K, dX(x,Q) ≤ δ, is bounded.
Note that ambient noise/outliers can incur a very large Hausdorff distance.

The quality of the output point set Q obviously depends on the “quality” of input
points P , which we formalize via the language of sampling conditions. We wish to produce
good quality output for inputs satisfying much weaker sampling conditions than a bounded
Hausdorff distance. Our sampling condition is based on the sampling condition introduced
and studied in [4, 5]; see Chapter 6 of [4] for discussions on the relation of their sampling
condition with some of the common noise models such as Gaussian. Below, we first introduce
a basic sampling condition deduced from the one in [4, 5], and then introduce its extensions
incorporating adaptivity and uniformity.

Basic sampling condition. Our sampling condition is built upon the concept of k-distance,
which is a specific instance of a broader concept called distance to a measure introduced
in [10]. The k-distance dP,k(x) is simply the root mean of square distance from x to its
k-nearest neighbors in P . The averaging makes it robust to outliers. One can view dP,k(x) as
capturing the inverse of the density of points in P around x [2]. As we show in Appendix D,
this specific form of k-distance is not essential – Indeed, several of its variants can replace its
role in the definition of sampling conditions below, and our Declutter algorithm will achieve
similar denoising guarantees.

Definition 2.1 ([10]). Given a point x ∈ X, let pi(x) ∈ P denote the i-th nearest neighbor

of x in P . The k-distance to a point set P ⊆ X is dP,k(x) =
√

1
k

∑k
i=1 dX(x, pi(x))2.

Claim 2.2 ([10]). dP,k(·) is 1-Lipschitz, i.e. |dP,k(x)−dP,k(y)| ≤ dX(x, y) for ∀(x, y) ∈ X×X.

All our sampling conditions are dependent on the choice of k in the k-distance, which we
reflect by writing εk instead of ε in the sampling conditions below. The following definition is
related to the sampling condition proposed in [5].

Definition 2.3. Given a compact set K ⊆ X and a parameter k, a point set P is an εk-noisy
sample of K if

1. ∀x ∈ K, dP,k(x) ≤ εk

2. ∀x ∈ X, dX(x,K) ≤ dP,k(x) + εk

Condition 1 in Definition 2.3 means that the density of P on the compact set K is bounded
from below, that is, K is well-sampled by P . Note, we only require P to be a dense enough
sample of K – there is no uniformity requirement in the sampling here.
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Condition 2 implies that a point with low k-distance, i.e. lying in high density region, has
to be close to K. Intuitively, P can contain outliers which can form small clusters but their
density can not be significant compared to the density of points near the compact set K.

Note that the choice of εk always exists for a bounded point set P , no matter what value
of k is – For example, one can set εk to be the diameter of point set P . However, the smallest
possible choice of εk to make P an εk-noisy sample of K depends on the value of k. We thus
use εk in the sampling condition to reflect this dependency.

In Section 4, we develop a parameter-free denoising algorithm. As Figure 1 illustrates, it
is necessary to have a mechanism to remove potential ambiguity about the ground truth. We
do so by using a stronger sampling condition to enforce some degree of uniformity:

Definition 2.4. Given a compact set K ⊆ X and a parameter k, a point set P is a uniform
(εk, c)-noisy sample of K if P is an εk-noisy sample of K (i.e, conditions of Def. 2.3 hold)
and

3. ∀p ∈ P, dP,k(p) ≥ εk
c
.

It is important to note that the lower bound in Condition 3 enforces that the sampling
needs to be homogeneous – i.e, dP,k(x) is bounded both from above and from below by
some constant factor of εk – only for points on and around the ground truth K. This is
because condition 1 in Def. 2.3 is only for points from K, and condition 1 together with the
1-Lipschitz property of dP,k (Claim 2.2) leads to an upper bound of O(εk) for dP,k(y) only for
points y within O(εk) distance to K. There is no such upper bound on dP,k for noisy points
far away from K and thus no homogeneity/uniformity requirements for them.

Adaptive sampling conditions. The sampling conditions given above are global, meaning
that they do not respect the “features” of the ground truth. We now introduce an adaptive
version of the sampling conditions with respect to a feature size function.

Definition 2.5. Given a compact set K ⊆ X, a feature size function f : K → R+ ∪ {0} is a
1-Lipschitz non-negative real function on K.

Several feature sizes exist in the literature of manifold reconstruction and topology inference,
including the local feature size [1], local weak feature size, µ-local weak feature size [9] or
lean set feature size [14]. All of these functions describe how complicated a compact set is
locally, and therefore indicate how dense a sample should be locally so that information can
be inferred faithfully. Any of these functions can be used as a feature size function to define
the adaptive sampling below. Let p̄ denote any one of the nearest points of p in K. Observe
that, in general, a point p can have multiple such nearest points.

Definition 2.6. Given a compact set K ⊆ X, a feature size function f of K, and a parameter
k, a point set P is a uniform (εk, c)-adaptive noisy sample of K if

1. ∀x ∈ K, dP,k(x) ≤ εkf(x).

2. ∀y ∈ X, dX(y,K) ≤ dP,k(y) + εkf(ȳ).

3. ∀p ∈ P, dP,k(p) ≥ εk
c
f(p̄).

We say that P is an εk-adaptive noisy sample of K if only conditions 1 and 2 above hold.
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We require that the feature size is positive everywhere as otherwise, the sampling condition
may require infinite samples in some cases. We also note that the requirement of the feature
size function being 1-Lipschitz is only needed to provide the theoretical guarantee for our
second parameter-free algorithm.

3 Decluttering

We now present a simple yet effective denoising algorithm which takes as input a set of points
P and a parameter k, and outputs a set of points Q ⊆ P with the following guarantees: If
P is an εk-noisy sample of a hidden compact set K ⊆ X, then the output Q lies close to K
in the Hausdorff distance (i.e, within a small tubular neighborhood of K and outliers are
all eliminated). The theoretical guarantee holds for both the non-adaptive and the adaptive
cases, as stated in Theorems 3.3 and 3.7.

Algorithm 1: Declutter(P ,k)

Data: Point set P , parameter k
Result: Denoised point set Q

1 begin
2 sort P such that dP,k(p1) ≤ · · · ≤ dP,k(p|P |).
3 Q0 ←− ∅
4 for i←− 1 to |P | do
5 if Qi−1 ∩B(pi, 2dP,k(pi)) = ∅ then
6 Qi = Qi−1 ∪ {pi}
7 else Qi = Qi−1

8 Q←− Qn

As the k-distance behaves like the inverse of density, points with a low k-distance are
expected to lie close to the ground truth K. A possible approach is to fix a threshold α and
only keep the points with a k-distance less than α. This thresholding solution requires an
additional parameter α. Furthermore, very importantly, such a thresholding approach does
not easily work for adaptive samples, where the density in an area with large feature size can
be lower than the density of noise close to an area with small feature size.

Our algorithm Declutter(P ,k), presented in Algorithm 1, works around these problems
by considering the points in the order of increasing values of their k-distances and using a
pruning step: Given a point pi, if there exists a point q deemed better in its vicinity, i.e., q
has smaller k-distance and has been previously selected (q ∈ Qi−1), then pi is not necessary to
describe the ground truth and we throw it away. Conversely, if no point close to pi has already
been selected, then pi is meaningful and we keep it. The notion of “closeness” or “vicinity”
is defined using the k-distance, so k is the only parameter. In particular, the “vicinity” of
a point pi is defined as the metric ball B(pi, 2dP,k(pi)); observe that this radius is different
for different points, and the radius of the ball is larger for outliers. Intuitively, the radius
2dP,k(pi) of the “vicinity” around pi can be viewed as the length we have to go over to reach
the hidden domain with certainty. So, bad points have a larger “vicinity”. We remark that
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this process is related to the construction of the “density net” introduced in [8], which we
discuss more in Appendix D .

P : ·
Qi−1 :

p

pi

×

Figure 3: Declutter.

See Figure 3 on the right for an artificial example, where the
black points are input points, and red crosses are in the current
output Qi−1. Now, at the ith iteration, suppose we are processing
the point pi (the green point). Since within the vicinity of pi there is
already a good point p, we consider pi to be not useful, and remove
it. Intuitively, for an outlier pi, it has a large k-distance and hence
a large vicinity. As we show later, our εk-noisy sampling condition
ensures that this vicinity of pi reaches the hidden compact set
which the input points presumably sample. Since points around
the hidden compact set should have higher density, there should be
a good point already chosen in Qi−1. Finally, it is also important
to note that, contrary to many common sparsification procedures,
our Declutter algorithm removes a noisy point because it has a
good point within its vicinity, and not because it is within the
vicinity of a good point. For example, in Figure 3, the red points such as p have small vicinity,
and pi is not in the vicinity of any of the red point.

In what follows, we will make this intuition more concrete. We first consider the simpler
non-adaptive case where P is an εk-noisy sample of K. We establish that Q and the ground
truth K are Hausdorff close in the following two lemmas. The first lemma says that the
ground truth K is well-sampled (w.r.t. εk) by the output Q of Declutter.

Lemma 3.1. Let Q ⊆ P be the output of Declutter(P ,k) where P is an εk-noisy sample of a
compact set K ⊆ X. Then, for any x ∈ K, there exists q ∈ Q such that dX(x, q) ≤ 5εk.

Proof. Let x ∈ K. By Condition 1 of Def. 2.3, we have dP,k(x) ≤ εk. This means that
the nearest neighbor pi of x in P satisfies dX(pi, x) ≤ dP,k(x) ≤ εk. If pi ∈ Q, then the
claim holds by setting q = pi. If pi /∈ Q, there must exist j < i with pj ∈ Qi−1 such
that dX(pi, pj) ≤ 2dP,k(pi). In other words, pi was removed by our algorithm because
pj ∈ Qi−1 ∩B(pi, 2dP,k(pi)). Combining triangle inequality with the 1-Lipschitz property of
dP,k (Claim 2.2), we then have

dX(x, pj) ≤ dX(x, pi) + dX(pi, pj) ≤ dX(x, pi) + 2dP,k(pi) ≤ 2dP,k(x) + 3dX(pi, x) ≤ 5εk,

which proves the claim.

The next lemma implies that all outliers are removed by our denoising algorithm.

Lemma 3.2. Let Q ⊆ P be the output of Declutter(P ,k) where P is an εk-noisy sample of a
compact set K ⊆ X. Then, for any q ∈ Q, there exists x ∈ K such that dX(q, x) ≤ 7εk.

Proof. Consider any pi ∈ P and let p̄i be one of its nearest points in K. It is sufficient to
show that if dX(pi, p̄i) > 7εk, then pi /∈ Q .

Indeed, by Condition 2 of Def. 2.3, dP,k(pi) ≥ dX(pi, p̄i)− εk > 6εk. By Lemma 3.1, there
exists q ∈ Q such that dX(p̄i, q) ≤ 5εk. Thus,

dP,k(q) ≤ dP,k(p̄i) + dX(p̄i, q) ≤ 6εk.
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Therefore, dP,k(pi) > 6εk ≥ dP,k(q) implying that q ∈ Qi−1. Combining triangle inequality
and Condition 2 of Def. 2.3, we have

dX(pi, q) ≤ dX(pi, p̄i) + dX(p̄i, q) ≤ dP,k(pi) + εk + 5εk < 2dP,k(pi).

Therefore, q ∈ Qi−1 ∩B(pi, 2dP,k(pi)), meaning that pi /∈ Q.

Theorem 3.3. Given a point set P which is an εk-noisy sample of a compact set K ⊆ X,
Algorithm Declutter returns a set Q ⊆ P such that δH(K,Q) ≤ 7εk.

Interestingly, if the input point set is uniform then the denoised set is also uniform, a fact
that turns out to be useful for our parameter-free algorithm later.

Proposition 3.4. If P is a uniform (εk, c)-noisy sample of a compact set K ⊆ X, then the
distance between any pair of points of Q is at least 2 εk

c
.

Proof. Let p and q be in Q with p 6= q and, assume without loss of generality that dP,k(p) ≤
dP,k(q). Then, p /∈ B(q, 2dP,k(q)) and dP,k(q) ≥ εk

c
. Therefore, dX(p, q) ≥ 2 εk

c
.

Adaptive case. Assume the input is an adaptive sample P ⊆ X with respect to a feature
size function f . The denoised point set Q may also be adaptive. We hence need an adaptive
version of the Hausdorff distance denoted δfH(Q,K) and defined as the infimum of δ such
that (i) ∀p ∈ Q, dX(p,K) ≤ δf(p̄), and (ii) ∀x ∈ K, dX(x,Q) ≤ δf(x), where p̄ is a nearest
point of p in K. Similar to the non-adaptive case, we establish that P and output Q are
Hausdorff close via Lemmas 3.5 and 3.6 whose proofs are same as those for Lemmas 3.1 and
3.2 respectively, but using an adaptive distance w.r.t. the feature size function. Note that
the algorithm does not need to know what the feature size function f is, hence only one
parameter (k) remains.

Lemma 3.5. Let Q ⊆ P be the output of Declutter(P, k) where P is an εk-adaptive noisy
sample of a compact set K ⊆ X. Then, ∀x ∈ K, ∃q ∈ Q, dX(x, q) ≤ 5εkf(x).

Lemma 3.6. Let Q ⊆ P be the output of Declutter(P, k) where P is an εk-adaptive noisy
sample of a compact set K ⊆ X. Then, for ∀q ∈ Q, dX(q, q̄) ≤ 7εkf(q̄).

Theorem 3.7. Given an εk-adaptive noisy sample P of a compact set K ⊆ X with feature
size f , Algorithm Declutter returns a sample Q ⊆ P of K where δfH(Q,K) ≤ 7εk.

Again, if the input set is uniform, the output remains uniform as stated below.

Proposition 3.8. Given an input point set P which is an uniform (εk, c)-adaptive noisy
sample of a compact set K ⊆ X, the output Q ⊆ P of Declutter satisfies

∀(qi, qj) ∈ Q, i 6= j =⇒ dX(qi, qj) ≥ 2
εk
c
f(q̄i)

Proof. Let qi and qj be two points of Q with i < j. Then qi is not in the ball of center qj
and radius 2dP,k(qj). Hence dX(qi, qj) ≥ 2dP,k(qj) ≥ 2 εk

c
f(q̄j). Since i < j, it also follows that

dX(qi, qj) ≥ 2dP,k(qj) ≥ 2dP,k(qi) ≥ 2 εk
c
f(q̄i).
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The algorithm Declutter removes outliers from the input point set P . As a result, we
obtain a point set which lies close to the ground truth with respect to the Hausdorff distance.
Such point sets can be used for inference about the ground truth with further processing. For
example, in topological data analysis, our result can be used to perform topology inference
from noisy input points in the non-adaptive setting; see Appendix C for more details.

An example of the output of algorithm Declutter is given in Figure 4 (a) – (d). More
examples (including for adaptive inputs) can be found in Appendix E .

Extensions. It turns out that there are many choices that can be used for the k-distance
dP,k(x) instead of the one introduced in Definition 2.1. Indeed, the goal of k-distance
intuitively is to provide a more robust distance estimate – Specifically, assume P is a noisy
sample of a hidden domain K ⊂ X. With the presence of noisy points far away from K, the
distance dX(x, P ) no longer serves as a good approximation of dX(x,K), the distance from x to
the hidden domain K. We thus need a more robust distance estimate. The k-distance dP,k(x)
introduced in Definition 2.1 is one such choice, and there are many other valid choices. As we
show in Appendix D, we only need the choice of dP,k(x) to be 1-Lipschitz, and is less sensitive
than dX(x, P ) (that is, dX(x, P ) ≤ dP,k(x)). We can then define the sampling condition (as
in Definitions 2.3 and 2.4) using a different choice of dP,k(x), and Theorems 3.3 and 3.7

still hold. For example, we could replace k-distance by dP,k(x) = 1
k

∑k
i=1 d(x, pi(x)) where

pi(x) is the ith nearest neighbor of x in P ; that is, dP,k(x) is the average distance to the k
nearest neighbors of x in P . Alternatively, we can replace k-distance by dP,k(x) = d(x, pk(x)),
the distance from x to its k-th nearest neighbor in P (which was used in [8] to construct
the ε-density net). Declutter algorithm works for all these choices with the same denoising
guarantees.

One can in fact further relax the conditions on dP,k(x) or even on the input metric space
(X, dX) such that the triangle inequality for dX only approximately holds. The corresponding
guarantees of our Declutter algorithm are provided in Appendix D .

4 Parameter-free decluttering

The algorithm Declutter is not entirely satisfactory. First, we need to fix the parameter k a
priori. Second, while providing a Hausdorff distance guarantee, this procedure also “sparsifies”
input points. Specifically, the empty-ball test also induces some degree of sparsification, as
for any point q kept in Q, the ball B(q, 2dP,k(q)) does not contain any other output points in
Q. While this sparsification property is desirable for some applications, it removes too many
points in some cases – See Figure 4 for an example, where the output density is dominated
by εk and does not preserve the dense sampling provided by the input around the hidden
compact set K. In particular, for k = 9, it does not completely remove ambient noise, while,
for k = 30, the output is too sparse.
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(a) (b) (c) (d) (e)
Figure 4: (a) – (d) show results of the Algorithm Declutter: (a) the ground truth, (b) the noisy

input with 15K points with 1000 ambient noisy points, (c) the output of Algorithm Declutter when

k = 9, (d) the output of Algorithm Declutter when k = 30. In (e), we show the output of Algorithm

ParfreeDeclutter. As shown in Appendix E, algorithm ParfreeDeclutter can remove ambient noise for

much sparser input samples with more noisy points.

Algorithm 2: ParfreeDeclutter(P )

Data: Point set P
Result: Denoised point set P0

1 begin
2 Set i∗ = blog2(|P |)c, and Pi∗ ←− P
3 for i←− i∗ to 1 do
4 Q←− Declutter(Pi,2

i)

5 Pi−1 ←− ∪q∈QB(q, (10 + 2
√

2)dPi,2i(q)) ∩ Pi

In this section, we address both of the above concerns by a novel iterative re-sampling
procedure as described in Algorithm ParfreeDeclutter(P ). Roughly speaking, we start with
k = |P | and gradually decrease it by halving each time. At iteration i, let Pi denote the
set of points so far kept by the algorithm; i is initialized to be blog2(|P |)c and is gradually
decreased. We perform the denoising algorithm Declutter(Pi, k = 2i) given in the previous
section to first denoise Pi and obtain a denoised output set Q. This set can be too sparse.
We enrich it by re-introducing some points from Pi, obtaining a denser sampling Pi−1 ⊆ Pi of
the ground truth. We call this a re-sampling process. This re-sampling step may bring some
outliers back into the current set. However, it turns out that a repeated cycle of decluttering
and resampling with decreasing values of k removes these outliers progressively. See Figure 2
and also more examples in Appendix E.The entire process remains free of any user supplied
parameter. In the end, we show that for an input that satisfies a uniform sampling condition,
we can obtain an output set which is both dense and Hausdorff close to the hidden compact
set, without the need to know the parameters of the input sampling conditions.

In order to formulate the exact statement of Theorem 4.1, we need to introduce a more
relaxed sampling condition. We relax the notion of uniform (εk, c)-noisy sample by removing
condition 2. We call it a weak uniform (εk, c)-noisy sample. Recall that condition 2 was the
one forbidding the noise to be too dense. So essentially, a weak uniform (εk, c)-noisy sample
only concerns points on and around the ground truth, with no conditions on outliers.

Theorem 4.1. Given a point set P and i0 such that for all i > i0, P is a weak uniform
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(ε2i , 2)-noisy sample of K and is also a uniform (ε2i0 , 2)-noisy sample of K, Algorithm
ParfreeDeclutter returns a point set P0 ⊆ P such that dH(P0, K) ≤ (87 + 16

√
2)ε2i0 .

We elaborate a little on the sampling conditions. On one hand, as illustrated by Figure 1,
the uniformity on input points is somewhat necessary in order to obtain a parameter-free
algorithm. So requiring a uniform (ε2i0 , 2)-noisy sample of K is reasonable. Now it would
have been ideal if the theorem only required that P is a uniform (ε2i0 , 2)-noisy sample of
K for some k0 = 2i0 . However, to make sure that this uniformity is not destroyed during
our iterative declutter-resample process before we reach i = i0, we also need to assume that,
around the compact set, the sampling is uniform for any k = 2i with i > i0 (i.e, before we
reach i = i0). The specific statement for this guarantee is given in Lemma 4.3. However,
while the uniformity for points around the compact set is required for any i > i0, the condition
that noisy points cannot be arbitrarily dense is only required for one parameter, k = 2i0 .

The constant for the ball radius in the resampling step is taken as 10 + 2
√

2 which we call
the resampling constant C. Our theoretical guarantees hold with this resampling constant
though a value of 4 works well in practice. The algorithm reduces more noise with decreasing
C. On the flip side, the risk of removing points causing loss of true signal also increases with
decreasing C. Section 5 and Appendix E provide several results for Algorithm ParfreeDeclutter.
We also point out that while our theoretical guarantee is for non-adaptive case, in practice,
the algorithm works well on adaptive sampling as well.

Proof for Theorem 4.1. Aside from the technical Lemma 4.2 on the k-distance, the proof
is divided into three steps. First, Lemma 4.3 shows that applying the loop of the algorithm
once with parameter 2k does not alter the existing sampling conditions for k′ ≤ k. This
implies that the ε2i0 -noisy sample condition on P will also hold for Pi0 . Then Lemma 4.4
guarantees that the step going from Pi0 to Pi0−1 will remove all outliers. Combined with
Theorem 3.3, which guarantees that Pi0−1 samples well K, it guarantees that the Hausdorff
distance between Pi0−1 and K is bounded. However, we do not know i0 and we have no means
to stop the algorithm at this point. Fortunately, we can prove Lemma 4.5 which guarantees
that the remaining iterations will not remove too many points and break the theoretical
guarantees – that is, no harm is done in the subsequent iterations even after i < i0. Putting
all three together leads to our main result Theorem 4.1.

Lemma 4.2. Given a point set P , x ∈ X and 0 ≤ i ≤ k, the distance to the i-th nearest

neighbor of x in P satisfies, dX(x, pi) ≤
√

k
k−i+1

dP,k(x).

Proof. The claim is proved by the following derivation.

k − i+ 1

k
dX(x, pi)

2 ≤ 1

k

k∑
j=i

dX(x, pj)
2 ≤ 1

k

k∑
j=1

dX(x, pj)
2 = dP,k(x)2.

Lemma 4.3. Let P be a weak uniform (ε2k, 2)-noisy sample of K. For any k′ ≤ k such
that P is a (weak) uniform (εk′ , c)-noisy sample of K for some c, applying one step of the
algorithm, with parameter 2k and resampling constant C = 10 + 2

√
2 gives a point set P ′ ⊆ P

which is a (weak) uniform (εk′ , c)-noisy sample of K.
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Proof. We show that if P is a uniform (εk′ , c)-noisy sample of K, then P ′ will also be a
uniform (εk′ , c)-noisy sample of K. The similar version for weak uniformity follows from the
same argument.

First, it is easy to see that as P ′ ⊂ P , the second and third sampling conditions of Def.
2.4 hold for P ′ as well. What remains is to show that Condition 1 also holds.

Take an arbitrary point x ∈ K. We know that dP,2k(x) ≤ ε2k as P is a weak uniform
(ε2k, 2)-noisy sample of K. Hence there exists p ∈ P such that dX(p, x) ≤ dP,2k(x) ≤ ε2k
and dP,2k(p) ≤ 2ε2k. Writing Q the result of the decluttering step, ∃q ∈ Q such that
dX(p, q) ≤ 2dP,2k(p) ≤ 4ε2k. Moreover, dP,2k(q) ≥ ε2k

2
due to the uniformity condition for P .

Using Lemma 4.2, for k′ ≤ k, the k′ nearest neighbors of x, which are chosen from P ,
NNk′(x) satisfies:

NNk′(x) ⊂ B(x,
√

2ε2k) ⊂ B(p, (1 +
√

2)ε2k) ⊂ B(q, (5 +
√

2)ε2k) ⊂ B(q, (10 + 2
√

2)dP,2k(q))

Hence NNk′(x) ⊂ P ′ and dP ′,k′(x) = dP,k′(x) ≤ εk. This proves the lemma.

Lemma 4.4. Let P be a uniform (εk, 2)-noisy sample of K. One iteration of decluttering and
resampling with parameter k and resampling constant C = 10 + 2

√
2 provides a set P ′ ⊆ P

such that δH(P ′, K) ≤ 8Cεk + 7εk.

Proof. Let Q denote the output after the decluttering step. Using Theorem 3.3 we know
that δH(Q,K) ≤ 7εk. Note that Q ⊂ P ′. Thus, we only need to show that for any p ∈ P ′,
dX(p,K) ≤ 8Cεk + 7εk. Indeed, by the way the algorithm removes points, for any p ∈ P ′,
there exists q ∈ Q such that p ∈ B(q, CdP,k(q)). It then follows that

dX(p,K) ≤ CdP,k(q) + dX(q,K) ≤ C(εk + dX(q,K)) + 7εk ≤ 8Cεk + 7εk.

Lemma 4.5. Given a point y ∈ Pi, there exists p ∈ P0 such that dX(y, p) ≤ κdPi,2i(y), where

κ = 18+17
√
2

4
.

Proof. We show this lemma by induction on i. First for i = 0 the claim holds trivially.
Assuming that the result holds for all j < i and taking y ∈ Pi, we distinguish three cases.

Case 1: y ∈ Pi−1 and dPi−1,2i−1(y) ≤ dPi,2i(y).
Applying the recurrence hypothesis for j = i− 1 gives the result immediately.

Case 2: y /∈ Pi−1. It means that y has been removed by decluttering and not been
put back by resampling. These together imply that there exists q ∈ Qi ⊆ Pi−1 such that
dX(y, q) ≤ 2dPi,2i(y) and dX(y, q) > CdPi,2i(q) with C = 10 + 2

√
2. From the proof of

Lemma 4.3, we know that the 2i−1 nearest neighbors of q in Pi are resampled and included in
Pi−1. Therefore, dPi−1,2i−1(q) = dPi,2i−1(q) ≤ dPi,2i(q). Moreover, since q ∈ Pi−1, the inductive
hypothesis implies that there exists p ∈ P0 such that dX(p, q) ≤ κdPi−1,2i−1(q) ≤ κdPi,2i(q).
Putting everything together, we get that there exists p ∈ P0 such that

dX(p, y) ≤ dX(p, q) + dX(q, y) ≤ κdPi,2i(q) + 2dPi,2i(y) ≤
(

κ

5 +
√

2
+ 2

)
dPi,2i(y) ≤ κdPi,2i(y).

The derivation above also uses the relation that dPi,2i(q) <
1
C
dX(y, q) ≤ 2

C
dPi,2i(y).
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Case 3: y ∈ Pi−1 and dPi−1,2i−1(y) > dPi,2i(y).
The second part implies that at least one of the 2i−1 nearest neighbors of y in Pi does not
belong to Pi−1. Let z be such a point. Note that dX(y, z) ≤

√
2dPi,2i(y) by Lemma 4.2. For

point z, we can apply the second case and therefore, there exists p ∈ P0 such that

dX(p, y) ≤ dX(p, z) + dX(z, y) ≤
(

κ

5 +
√

2
+ 2

)
dPi,2i(z) +

√
2dPi,2i(y)

≤
(

κ

5 +
√

2
+ 2

)(
dPi,2i(y) + dX(z, y)

)
+
√

2dPi,2i(y)

≤
((

κ

5 +
√

2
+ 2

)
(1 +

√
2) +

√
2

)
dPi,2i(y) ≤ κdPi,2i(y)

Putting everything together. A repeated application of Lemma 4.3 (with weak uni-
formity) guarantees that Pi0+1 is a weak uniform (ε2i0+1 , 2)-noisy sample of K. One more
application (with uniformity) provides that Pi0 is a uniform (ε2i0 , 2)-noisy sample of K. Thus,
Lemma 4.4 implies that dH(Pi0−1, K) ≤ (87 + 16

√
2)ε2i0 . Notice that P0 ⊂ Pi0−1 and thus

for any p ∈ P0, dX(p,K) ≤ (87 + 16
√

2)ε2i0 .
To show the other direction, consider any point x ∈ K. Since Pi0 is a uniform (ε2i0 , 2)-

noisy sample of K, there exists y ∈ Pi0 such that dX(x, y) ≤ ε2i0 and dPi0
,2i0 (y) ≤ 2ε2i0 .

Applying Lemma 4.5, there exists p ∈ P0 such that dX(y, p) ≤ 18+17
√
2

2
ε2i0 . Hence dX(x, p) ≤(

18+17
√
2

2
+ 1
)
ε2i0 ≤ (87 + 16

√
2)ε2i0 . The theorem then follows. �

5 Preliminary experimental results

We now present some preliminary experimental results for the two denoising algorithms
developed in this paper. See Appendix E for more results.

In Figure 5, we show different stages of the ParfreeDeclutter algorithm on an input
with adaptively sampled points. Even though for the parameter-free algorithm, theoretical
guarantees are only provided for uniform samples, we note that it performs well on this
adaptive case as well.

A second example is given in Figure 6. Here, the input data is obtained from a set of noisy
GPS trajectories in the city of Berlin. In particular, given a set of trajectories (each modeled
as polygonal curves), we first convert it to a density field by KDE (kernel density estimation).
We then take the input as the set of grid points in 2D where every point is associated with
a mass (density). Figure 6 (a) shows the heat-map of the density field where light color
indicates high density and blue indicates low density. In (b) and (c), we show the output
of our Declutter algorithm (the ParfreeDeclutter algorithm does not provide good results as
the input is highly non-uniform) for k = 40 and k = 75 respectively. In (d), we show the set
of 40% points with the highest density values. The sampling of the road network is highly
non-uniform. In particular, in the middle portion, even points off the roads have very high
density due to noisy input trajectories. Hence a simple thresholding cannot remove these
points and the output in (d) fills the space between roads in the middle portion; however
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Figure 5: Experiment on a two dimensional manifold in three dimensions. From left to right,
the ground truth, the noisy adaptively sampled input, output of two intermediate steps of
Algorithm ParfreeDeclutter, and the final result.

(a) (b) (c) (d)
Figure 6: (a) The heat-map of a density field generated from GPS traces. There are around
15k (weighted) grid points serving as an input point set. The output of Algorithm Declutter
when (b) k = 40 and (c) k = 75, (d) thresholding of 40% points with the highest density.

more aggressive thresholding will cause loss of important roads. Our Declutter algorithm
can capture the main road structures without collapsing nearby roads in the middle portion
though it also sparsifies the data.

In another experiment, we apply the denoising algorithm as a pre-processing for high-
dimensional data classification. Here we use MNIST data sets, which is a database of
handwritten digits from ’0’ to ’9’. Table 1 shows the experiment on digit 1 and digit 7. We
take a random collection of 1352 images of digit ’1’ and 1279 images of digit ’7’ correctly
labeled as a training set, and take 10816 images of digit 1 and digit 7 as a testing set. Each
of the image is 28 × 28 pixels and thus can be viewed as a vector in R784. We use the L1

metric to measure distance between such image-vectors. We use a linear SVM to classify the
10816 testing images. The classification error rate for the testing set is 0.6564% shown in the
second row of Table 1.

Next, we artificially add two types of noises to input data: the swapping-noise and the
background-noise. The swapping-noise means that we randomly mislabel some images of ‘1’
as ’7’, and some images of ‘7’ as ’1’. As shown in the third row of Table 1, the classification
error increases to about 4.096% after such mislabeling in the training set.

Next, we apply our ParfreeDeclutter algorithm to this training set with added swapping-
noise (to the set of images with label ’1’ and the set with label ’7’ separately) to first clean
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1 Error(%)
2 Original # Digit 1 1352 # Digit 7 1279 0.6564

3 Swap. Noise # Mislabelled 1 270 # Mislabelled 7 266 4.0957
4 Digit 1 Digit 7
5 # Removed # True Noise # Removed # True Noise
6 L1 Denoising 314 264 17 1 2.4500

7 Back. Noise # Noisy 1 250 # Noisy 7 250 1.1464
8 Digit 1 Digit 7
9 # Removed # True Noise # Removed # True Noise
10 L1 Denoising 294 250 277 250 0.7488

Table 1: Results of denoising on digit 1 and digit 7 from the MNIST.

up the training set. As we can see in Row-6 of Table 1, we removed most images with a
mislabeled ‘1’ (which means the image is ’7’ but it is labeled as ’1’). A discussion on why
mislabeled ‘7’s are not removed is given in Appendix E. We then use the denoised dataset as
the new training set, and improved the classification error to 2.45%.

The second type of noise is the background noise, where we replace the black backgrounds
of a random subset of images in the training set (250 ‘1’s and 250 ‘7’s) with some other
grey-scaled images. Under such noise, the classification error increases to 1.146%. Again,
we perform our ParfreeDeclutter algorithm to denoise the training sets, and use the denoised
data sets as the new training set. The classification error is then improved to 0.7488%. More
results on the MNIST data sets are reported in Appendix E.

6 Discussions

Parameter selection is a notorious problem for many algorithms in practice. Our high level
goal is to understand the roles of parameters in algorithms for denoising, how to reduce their
use and what theoretical guarantees do they entail. While this paper presented some results
towards this direction, many interesting questions ensue. For example, how can we further
relax our sampling conditions, making them allow more general inputs, and how to connect
them with other classical noise models?

We also note that while the output of ParfreeDeclutter is guaranteed to be close to the
ground truth w.r.t. the Hausdorff distance, this Hausdorff distance itself is not estimated.
Estimating this distance appears to be difficult. We could estimate it if we knew the correct
scale, i.e. i0, to remove the ambiguity. Interestingly, even with the uniformity condition, it is
not clear how to estimate this distance in a parameter free manner.

We do not provide guarantees for the parameter-free algorithm in an adaptive setting
though the algorithm behaved well empirically for the adaptive case too. A partial result is
presented in Appendix B , but the need for a small εk in the conditions defeat the attempts
to obtain a complete result.
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The problem of parameter-free denoising under more general sampling conditions remains
open. It may be possible to obtain results by replacing uniformity with other assumptions,
for example topological assumptions: say, if the ground truth is a simply connected manifold
without boundaries, can this help to denoise and eventually reconstruct the manifold?
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A Missing details from section 3

Proof of Lemma 3.5. Let x be a point of K. Then there exists i such that dX(pi, x) ≤
dP,k(x) ≤ εkf(x). If pi belongs to Q, then setting q = pi proves the lemma. Otherwise,
because of the way that the algorithm eliminates points, there must exist j < i such that
pj ∈ Qi−1 ⊆ Q and

dX(pi, pj) ≤ 2dP,k(pi) ≤ 2(dP,k(x) + dX(pi, x)) ≤ 4εkf(x),

the second inequality follows from the 1-Lipschitz property of dP,k function and the sampling
Condition 1. Then

dX(x, pj) ≤ dX(x, pi) + dX(pi, pj) ≤ 5εkf(x).

Proof of Lemma 3.6. Consider any pi ∈ P and let p̄i be one of its nearest points in K.
It is sufficient to show that if dX(pi, p̄i) > 7εkf(p̄i), then pi /∈ Q .

By Condition 2 of Def. 2.6, dP,k(pi) ≥ dX(pi, p̄i) − εkf(p̄i) > 6εkf(p̄i). By Lemma 3.5,
there exists q ∈ Q such that dX(p̄i, q) ≤ 5εkf(p̄i). Thus,

dP,k(q) ≤ dP,k(p̄i) + dX(p̄i, q) ≤ 6εkf(p̄i).

Therefore, dP,k(pi) > 6εkf(p̄i) ≥ dP,k(q) implying that q ∈ Qi−1. Combining triangle
inequality and Condition 2 of Def. 2.6, we have

dX(pi, q) ≤ dX(pi, p̄i) + dX(p̄i, q) ≤ dP,k(pi) + εkf(p̄i) + 5εkf(p̄i) < 2dP,k(pi).

Therefore, q ∈ Qi−1 ∩B(pi, 2dP,k(pi)), meaning that pi /∈ Q.
Hence, we have a point of Qi−1 inside the ball of center pi and radius 2dP,k(pi), which

guarantees that pi is not selected. The lemma then follows.

B Towards parameter-free denoising for adaptive case

Unfortunately, our parameter-free denoising algorithm does not fully work in the adaptive
setting. We can still prove that one iteration of the loop works. However, the value chosen
for the resampling constant C has to be sufficiently large with respect to εk. This condition
is not satisfied when k is large as εk in that case is very large.

Theorem B.1. Let P be a point set that is both a uniform (ε2k, 2)-adaptive noisy sample
and a uniform (εk, 2)-adaptive noisy sample of K. Applying one step of the ParfreeDeclutter
algorithm with parameter 2k gives a point set P ′ which is a uniform (ε2k, 2)-adaptive noisy
sample of K when ε2k is sufficiently small and the resampling constant C is sufficiently large.

Proof. As in the global conditions case, only the first condition has to be checked. Let x ∈ K
then, following the proof of Lemma 3.5, there exists q ∈ P ′ such that dX(x, q) ≤ 5ε2k and
dP,2k(q) ≤ 2ε2k. The feature size f is 1-Lipschitz and thus:

f(x) ≤ f(q̄) + dX(q̄, x)

≤ f(q̄) + dX(q, q̄) + dX(q, x)

≤ f(q̄) + dP,2k(q) + ε2kf(q̄) + 5ε2kf(x)
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Hence

f(q̄) ≥ 1− 7ε2k
1 + ε2k

f(x).

Therefore dP,2k(q) ≥ 1−7ε2k
1+ε2k

ε2k
2
f(x). The claimed result is obtained if the constant C satisfies

C ≥ 2(5+
√
2)(1+ε2k)

1−7ε2k
as B(x,

√
2ε2kf(x)) ⊂ B(q, CdP,2k(q)).

C Application to topological data analysis

In this section, we provide an example of using our decluttering algorithm for topology
inference. We quickly introduce notations for some notions of algebraic topology and refer
the reader to [17, 20, 24] for the definitions and basic properties. Our approaches mostly use
standard arguments from the literature of topology inference; e.g, [5, 11, 14].

Given a topological space X, we denote Hi(X) its i-dimensional homology group with
coefficients in a field. As all our results are independent of i, we will write H∗(X). We
consider the persistent homology of filtrations obtained as sub-level sets of distance functions.
Given a compact set K, we denote the distance function to K by dK . We moreover assume
that the ambient space is triangulable which ensures that these functions are tame and the
persistence diagram Dgm(d−1K ) is well defined. We use dB for the bottleneck distance between
two persistence diagrams. We recall the main theorem from [12] which implies:

Proposition C.1. Let A and B be two triangulable compact sets in a metric space. Then,

dB(Dgm(d−1A ),Dgm(d−1B )) ≤ dH(A,B).

This result trivially guarantees that the result of our decluttering algorithm allows us to
approximate the persistence diagram of the ground truth.

Corollary C.2. Given a point set P which is an εk-noisy sample of a compact set K, the
Declutter algorithm returns a set Q such that

dB(Dgm(d−1K ),Dgm(d−1Q )) ≤ 7εk.

The algorithm reduces the size of the set needed to compute an approximation diagram.
Previous approaches relying on the distance to a measure to handle noise ended up with a
weighted set of size roughly nk or used multiplicative approximations which in turn implied a
stability result at logarithmic scale for the Bottleneck distance [6, 19]. The present result
uses an unweighted distance to compute the persistence diagram and provides guarantees
without the logarithmic scale using fewer points than before.

If one is interested in inferring homology instead of computing a persistence diagram, our
previous results guarantee that the Čech complex Cα(Q) or the Rips complex Rα(Q) can
be used. Following [11], we use a nested pair of filtration to remove noise. Given A ⊂ B,
we consider the map φ induced at the homology level by the inclusion A ↪→ B. We denote
H∗(A ↪→ B) = Im(φ). More precisely, denoting Kλ = d−1K (λ) and wfs as the weak feature
size, we obtain:
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Proposition C.3. Let P be an εk-noisy sample of a compact set K ⊂ Rd with εk <
1
28

wfs(K).
Let Q be the output of Declutter(P ). Then for all α, α′ ∈ [7εk,wfs(K) − 7εk] such that
α′ − α > 14εk and for all λ ∈ (0,wfs(K)), we have

H∗(K
λ) ∼= H∗(Cα(Q) ↪→ Cα′(Q))

Proposition C.4. Let P be an εk-noisy sample of a compact set K ⊂ Rd with εk <
1
35

wfs(K).
Let Q be the output of Declutter(P ). Then for all α ∈ [7εk,

1
4
(wfs(K) − 7εk)] and λ ∈

(0,wfs(K)), we have
H∗(K

λ) ∼= H∗(Rα(Q) ↪→ R4α(Q))

These two propositions are direct consequences of [11, Theorems 3.5 & 3.6]. To be used,
both these results need the input of one or more parameters, α and α′, corresponding to a
choice of scale. This cannot be avoided as it is equivalent to estimating the Hausdorff distance
between a point set and an unknown compact set, problem discussed in the introduction.
However, by adding a uniformity hypothesis and knowing the uniformity constant c, the
problem can be solved. We use the fact that the minimum dP,k over the point set P is
bounded from below. Let us write κ = minp∈P dP,k(p).

Lemma C.5. If P is an εk-noisy sample of K then κ ≤ 2εk.

Proof. Let x ∈ K, then there exists p ∈ P such that dX(x, p) ≤ dP,k(x) ≤ εk. Therefore
κ ≤ dP,k(p) ≤ dP,k(x) + dX(x, p) ≤ 2εk.

This trivial observation has the consequence that c is greater than 1
2

in any uniform
(εk, c)-noisy sample. We can compute cκ and use it to define an α for using the previous
propositions. We formulate the conditions precisely in the following propositions. Note that
the upper bound for α is not necessarily known. However, the conditions imply that the
interval of correct values for α is non-empty.

Proposition C.6. Let P be a uniform (εk, c)-noisy sample of a compact set K ⊂ Rd with
cεk <

1
56

wfs(K). Let Q be the output of Declutter(P ). Then for all α, α′ ∈ [7cκ,wfs(K)−7cεk]
such that α′ − α > 14cκ and for all λ ∈ (0,wfs(K)), we have

H∗(K
λ) ∼= H∗(Cα(Q) ↪→ Cα′(Q))

Proof. Following Proposition C.3, we need to choose α and α′ inside the interval [7εk,wfs(K)−
7εk]. Using the third hypothesis, we know that 7cκ ≥ 7cεk. We need to show that α and α′

exist, i.e. 21cκ < wfs(K)− 7εk. Recall that c ≥ 2 , κ ≤ 2εk. Therefore, 21cκ+ 7εk ≤ 56cεk <
wfs(K).

Proposition C.7. Let P be a uniform (εk, c)-noisy sample of a compact set K ⊂ Rd with
cεk <

1
70

wfs(K). Let Q be the output of Declutter(P ). Then for all α ∈ [7cκ, 1
4
(wfs(K)− 7εk)]

and λ ∈ (0,wfs(K)), we have

H∗(K
λ) ∼= H∗(Rα(Q) ↪→ R4α(Q))

The proof is similar to the one for the previous proposition. Note that even if the
theoretical bound can be larger, we can always pick α = 7cκ in the second case and the proof
works. The sampling conditions on these results can be weakened by using the more general
notion of (εk, r, c)-sample of [4], assuming that r is sufficiently large with respect to εk.
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D Extensions for Declutter algorithm

It turns out that our Declutter algorithm can be run with different choices for the k-distance
dP,k(x) as introduced in Definition 2.1 which still yields similar denosing guarantees.

Specifically, assume that we now have a certain robust distance estimate dP,k(x) for each
point x ∈ X such that the following properties are satisfied.

Conditions for dP,k .
(A) For any x ∈ X, dX(x, P ) ≤ dP,k(x); and
(B) dP,k is 1-Lipschitz, that is, for any x, y ∈ X we have dP,k(x) ≤ dP,k(y) + d(x, y).

Examples .
(1) We can set dP,k to be the average distance to k nearest neighbors in P ; that is, for

any x ∈ X, define dP,k(x) = 1
k

∑k
i=1 d(x, pi(x)) where pi(x) is the ith nearest neighbor

of x in P . We refer to this as the average k-distance. It is easy to show that the average
k-distance satisfies the two conditions above.
(2) We can set dP,k(x) to be the distance from x to its k-th nearest neighbors in P ; that
is, dP,k(x) = dX(x, pk(x)). We refer to this distance as k-th NN-distance.

We can then define the sampling condition (as in Definitions 2.3 and 2.4) based on our
choice of dP,k as before. Notice that, under different choices of dP,k, P will be an εk-noisy
sample for different values of εk. Following the same arguments as in Section 3, we can show
that Theorems 3.3 and 3.7 still hold as long as dP,k satisfies the two conditions above. For
clarity, we provide an explicit statement for the analog of Theorem 3.3 below and omit the
corresponding statement for Theorem 3.7.

Theorem D.1. Given a εk-noisy sample P of a compact set K ⊆ X under a choice of dP,k
that satisfies the conditions (A) and (B) as stated above, Algorithm Declutter returns a set
Q ⊆ P such that

dH(K,Q) ≤ 7εk.

We remark that in [8], Chan et al. proposed to use the k-th NN-distance to generate the
so-called ε-density net, where k = εn. The criterion to remove points from P to generate
Q in their procedure is slightly different from our Declutter algorithm. However, it is easy
to show that the output of their procedure (which is a k/n-density net) satisfies the same
guarantee as the output of the Declutter algorithm does (Theorem D.1).

Further extensions. One can in fact further relax the conditions on dP,k(x) or even on
the input metric space (X, dX) such that the triangle inequality for dX only approximately
holds. In particular, we assume that

Relaxation-1 . dX(x, y) ≤ cX[dX(x,w) +dX(w, y)], for any x, y, w ∈ X, with cX ≥ 1. That is,
the input ambient space (X, dX) is almost a metric space where the triangle inequality
holds with a multiplicative factor.

Relaxation-2 . dP,k(x) ≤ cLip[dP,k(y) + dX(x, y)], for any x, y ∈ X with cLip ≥ 1. That is,
the 1-Lipschitz condition on dP,k is also relaxed to have a multiplicative factor.
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We then obtain the following analog of Theorem 3.3:

Theorem D.2. Suppose (X, dX) is a space where dX satisfies Relaxation-1 above. Let dP,k be
a robust distance function w.r.t. P that satisfies Condition (A) and Relaxation-2 defined above.
Given a point set P which is an εk-noisy sample of a compact set K ⊆ X under the choice of
dP,k, Algorithm Declutter returns a set Q ⊆ P such that

dH(K,Q) ≤ mεk

where m = max
{
cLip + cXcLip + 4cXcLip

2 + 1,
2+cX

2+4cX
2cLip

2−cX

}
.

Finally, we remark that a different way to generalize the 1-Lipschitz condition for dP,k(x)
is by asserting dP,k(x) − dP,k(y) ≤ cLipdX(x, y). We can use this to replace Relaxation-2
and obtain a similar guarantee as in the above theorem. We can also further generalize
Relaxation-2 by allowing an additive term as well. We omit the resulting bound on the output
of the Declutter algorithm.

E Experimental results

In this section, we provide more details of our empirical results, an abridged version of which
already appeared in the main text. We start with the decluterring algorithm. This algorithm
needs the input of a parameter k. This parameter has a direct influence on the result. On
one hand, if k is too small, not all noisy points are removed from the sample. On the other
hand, if k is too large, we remove too many points and end up with a very sparse sample
that is unable to describe the underlying object precisely.

Experiments for Declutter algorithm. Figure 7 presents results of Algorithm Declutter
for the so-called Botijo example. In this case, no satisfying k can be found. A parameter
k that is sufficiently large to remove the noise creates an output set that is too sparse to
describe the ground truth well.

Figure 7: From left to right, the ground truth, the noisy input and the output of Algorithm
Declutter for k = 81 and k = 148
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We further illustrate the behavior of our algorithm by looking at the Hausdorff distance
between the output and the ground truth, and at the cardinality of the output, in the function
of k (Figure 8). Note that the Hausdorff distance drops suddenly when we remove the last
of the outliers. However, it is already too late to represent the ground truth well as only a
handful of points are kept at this stage. While sparsity is often a desired property, here it
becomes a hindrance as we are no longer able to describe the underlying set.

Figure 8: Hausdorff distance between the ground truth and the output of the declutter
algorithm, and cardinality of this output in the function of k.

The introduction of the resample step allows us to solve this sparsity problem. If we were
able to choose the right parameter k, we could simply sparsify and then resample to get a
good output. One can hope that the huge drop in the left graph could be used to choose
the parameter. However, the knowledge of the ground truth is needed to compute it, and
estimating the Hausdorff distance between a set and the ground truth is impossible without
some additional assumptions like the uniformity we use.

A second example is given in Figure 9. Here, the input data is obtained from a set of
noisy GPS trajectories in the city of Berlin. In particular, given a set of trajectories (each
modeled as polygonal curves), we first convert it to a density field by KDE (kernel density
estimation). We then take the input as the set of grid points in 2D where every point is
associated with a mass (density). Figure 9 (a) shows the heat-map of the density field where
light color indicates high density and blue indicates low density. In (b) and (c), we show the
outputs of Declutter algorithm (the ParfreeDeclutter algorithm would not provide good results
as the input is highly non-uniform) for k = 40 and k = 75 respectively. In (d), we show
the set of 40% points with the highest density values. The sampling of the road network is
highly non-uniform. In particular, in the middle portion, even points off the roads have very
high density (due to noisy input trajectories) as well. Hence a simple thresholding cannot
remove these points and the output in (d) fills the space between roads in the middle portion.
If we increase the threshold further, that is, reduce the number of points we want to keep
in the thresholding, we will lose structures of some main roads. Our Declutter algorithm
can capture the main road structures without collapsing nearby roads in the middle portion,
although it also sparsifies the data.
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(a) (b) (c) (d)

Figure 9: (a)The heat-map of a density field generated from GPS traces. There are around
15k (weighted) grid points, serving as an input point set. The output of Algorithm Declutter
when (b) k = 40 and (c) k = 75, (d) Thresholding of 40% points with the highest density.

Experiments on ParfreeDeclutter algorithm. We will now illustrate our parameter-free
denoising algorithm on several examples. Recall that the theoretical guarantee of the output
of our parameter-free algorithm (i.e, ParfreeDeclutter algorithm) so far is only provided for
samples satisfying some uniformity conditions.

We start with some curves in the plane. Figure 10 shows the results on two different
inputs. In both cases, the curves have self-intersections. The noisy inputs are again obtained
by moving every input point according to a Gaussian distribution and adding some white
background noise. The details of the noise models can be found in Table 2 and the details on
the size of the various point sets are given in Table 3.

The first steps of the algorithm remove the outliers lying further away from the ground
truth. As the value of the parameter k decreases, we remove nearby outliers. The result is a
set of points located around the curves, in a tubular neighborhood of width that depends
on the standard deviation of the Gaussian noise. Small sharp features are lost due to the
blurring created by the Gaussian noise but the Hausdorff distance between the final output
and the ground truth is as good as one can hope for when using a method oblivious of the
ground truth.

Figure 11 gives an example of an adaptive sample where Algorithm ParfreeDeclutter
doesn’t work. The ground truth is a heptagon with its vertices being connected to the center.
Algorithm ParfreeDeclutter doesn’t work in this case because the sample is highly non-uniform
and the ambient noise is very dense (63.33% is ambient noise). The center part of the graph
is significantly denser than other parts as the center vertex has a larger degree. So the
sparser parts (other edges of the star and heptagon) are regarded as noises by Algorithm
ParfreeDeclutter and thus removed.

Figure 12 (Figure 5 in the main text) presents results obtained on an adaptive sample
of a 2-manifold in 3D. We consider again the so-called Botijo example with an adaptive
sampling. Contrary to the previous curves that were sampled uniformly, the density of this
point set depends on the local feature size. We also generate the noisy input the same way,
adding a Gaussian noise at each point that has a standard deviation proportional to the local
feature size. Despite the absence of theoretical guarantees for the adaptive setting, Algorithm
ParfreeDeclutter removes the outliers while maintaining the points close to the ground truth.

Finally, our last example is on a high dimensional data set. We use subsets of the MINIST
database. This database contains handwritten digits. We take all ”1” digits (1000 images)
and add some images from other digits to constitute the noise. Every image is a 28 × 28
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Figure 10: Results of Algorithm ParfreeDeclutter on two samples of one dimensional compact
sets. From left to right, the ground truth, the noisy input, two intermediate steps of the
algorithm, and the final result.

Figure 11: A case where Algorithm ParfreeDeclutter doesn’t work. From left to right, the
ground truth, the noisy input, an intermediate step of the algorithm and the final result.

Figure Standard deviation of Gaussian Size of ambient noise (percentage)
Figure 10 first row 0.05 2000 (37.99%)

Figure 10 second row 0.05 2000 (45.43%)
Figure 12 0.1 2000 (28.90%)

Table 2: Parameter of the noise model for Figure 10 and Figure 12

matrix and is considered as a point in dimension 784. We then use the L2 metric between
the images. Table 4 contains our experiment result. Our algorithm partially removes the
noisy points as well as a few good points. If we add some random points in our space, we
no longer encounter this problem, which means if we add points with every pixel a random
number, then we can remove all noises without removing any good points.
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Figure 12: Experiment on a two dimensional manifold. From left to right, the ground truth,
the noisy input, two intermediate steps of Algorithm ParfreeDeclutter and the final result.

Figure Sample Ground truth Noise input Intermediate steps Final result
Figure 10 first row uniform 5264 7264 6026 5875 5480

Figure 10 second row uniform 4402 6402 5197 4992 4475
Figure 12 adaptive 6921 8921 7815 7337 6983

Table 3: Cardinality of each dataset in Figure 10 and Figure 12

Ground truth Noise Images removed after sampling Digit 1 removed
1000 digit 1 200 digit 7 85 5
1000 digit 1 200 digit 8 94 5
1000 digit 1 200 digit 0-9 except 1 126 9

Table 4: Experiment on high-dimension datasets. The third and forth columns show number
of corresponding images.

Denoising for data classification. Finally, we apply our denoising algorithm as a pre-
processing for high-dimensional data classification. Specifically, here we use MNIST data sets,
which is a database of handwritten digits from ’0’ to ’9’. Table 5 shows the experiment on
digit 1 and digit 7. We take a random collection of 1352 images of digit ’1’ and 1279 images
of digit ’7’ correctly labeled as training set, and take 10816 number of images of digit 1 and
digit 7 as testing set. Each of the image is 28× 28 and thus can be viewed as a vector in
R784. We use the L1 metric to measure distance between such image-vectors. We use a linear
SVM to classify the 10816 testing images. The classification error rate for the testing set is
0.6564%, shown in the second row of Table 5.

Next, we artificially add two types of noises to input data: the swapping-noise and the
background-noise.

The swapping-noise means that we randomly mislabel some images of ‘1’ as ’7’, and some
images of ‘7’ as ’1’. As shown in the third row of Table 5, the classification error increases to
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about 4.096% after such mislabeling in the training set.
Next, we apply our ParfreeDeclutter algorithm to the training set (to the images with

label ’1’ and those with label ’7’ separately) to first clean up the training set. As we can
see in Row-6 of Table 5, we removed most images with a mislabeled ‘1’ which means the
image is ’7’ but it is labeled as ’1’. We then use the denoised dataset as the training set, and
improved the classification error to 2.45%.

While our denoising algorithm improved the classification accuracy, we note that it does
not remove many mislabeled ‘7’s from the set of images of digit ‘7’. The reason is that the
images of ‘1’ are significantly more clustered than those of digit ‘7’. Hence the set of images
of ‘1’s labelled as ‘7’ themselves actually form a cluster; those points actually have even
smaller k-distance than the images of ‘7’ as shown in Figure 13, and thus are considered to
be signal by our denoising algorithm.

Figure 13: Left: k-distance density distribution of digit 7s with digit 1s as the noise when
k = 32: Note, the points corresponding to images of digit ‘1’ actually have a smaller k-distance
than those of digit ‘7’. Right: Graph after being reduced to 3 dimension by PCA, the red
one is for 1s, the green one is for 7s.

The second type of noise is the background noise, where we replace the black backgrounds
of a random subset of images in the training set (250 ‘1’s and 250 ‘7’s) with some other
grey-scaled images. Under such noise, the classification error increases to 1.146%. Again, we
perform our ParfreeDeclutter algorithm to the training set separately, and use the denoised
data sets as the new training set. The classification error is then improved to 0.7488%.
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1 Error(%)
2 Original # Digit 1 1352 # Digit 7 1279 0.6564

3 Swap. Noise # Mislabelled 1 270 # Mislabelled 7 266 4.0957
4 Digit 1 Digit 7
5 # Removed # True Noise # Removed # True Noise
6 L1 Denoising 314 264 17 1 2.4500

7 Back. Noise # Noisy 1 250 # Noisy 7 250 1.1464
8 Digit 1 Digit 7
9 # Removed # True Noise # Removed # True Noise
10 L1 Denoising 294 250 277 250 0.7488

Table 5: Results of denoising on digit 1 and digit 7 from the MNIST.
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