
Delaunay Meshing of Isosurfaces

Tamal K. Dey Joshua A. Levine

Department of Computer Science and Engineering

The Ohio State University

Columbus, OH, 43201, USA

{tamaldey|levinej}@cse.ohio-state.edu

Abstract

We present an isosurface meshing algorithm, DELISO,

based on the Delaunay refinement paradigm. This

paradigm has been successfully applied to mesh a variety

of domains with guarantees for topology, geometry, mesh

gradedness, and triangle shape. A restricted Delaunay tri-

angulation, dual of the intersection between the surface and

the three dimensional Voronoi diagram, is often the main

ingredient in Delaunay refinement. Computing and storing

three dimensional Voronoi/Delaunay diagrams become bot-

tlenecks for Delaunay refinement techniques since isosur-

face computations generally have large input datasets and

output meshes. A highlight of our algorithm is that we find

a simple way to recover the restricted Delaunay triangula-

tion of the surface without computing the full 3D structure.

We employ techniques for efficient ray tracing of isosurfaces

to generate surface sample points, and demonstrate the ef-

fectiveness of our implementation using a variety of volume

datasets.

1. Introduction

In the domain of implicit functions, many significant re-

search results have been produced in meshing of isosur-

faces. One of the earliest known approaches to isosurface

polygonalization is credited to Wyvill et al. [22] and was

followed by the MARCHING CUBES algorithm of Lorensen

and Cline [14]. More recently though, there has been

a growing concern with designing algorithms that satisfy

constraints regarding geometric closeness and topological

equivalence between the output triangulation and the iso-

surface. Not only do we aim to produce a mesh with the

same topological and geometric guarantees but also to pro-

duce a Delaunay mesh with adaptive density and bounded

aspect ratio. Such a mesh is favored in many applica-

tions since these qualities lead to reducing discretization

error and mesh size. Among the recent works focusing

on provable algorithms for meshing surfaces [3, 4, 7, 19]

some [4, 7] employ a Delaunay refinement strategy that fits

our requirement.

The Delaunay refinement paradigm works on a simple

principle: build the Delaunay triangulation over a set of

points in the domain and then repeatedly insert additional

domain points until certain criteria are satisfied. The main

challenge is a proof of termination. For the case of sur-

faces, one guides the refinement using a subcomplex of

the three dimensional Delaunay triangulation called the re-

stricted Delaunay triangulation. To provide a topological

guarantee between the output mesh and the input surface, a

theorem by Edelsbrunner and Shah [12] regarding the topo-

logical ball property is applied. This theorem says that if

every Voronoi face of dimension k which intersects the sur-

face does so in a topological (k−1)-ball, then the restricted

Delaunay triangulation is homomeomorphic to the surface.

Geometric guarantees for the size and shape of restricted

Delaunay triangles can also be included.

Despite the benefits of using Delaunay refinement, a

practical limitation remains since the computation of a three

dimensional Delaunay triangulation and its restricted De-

launay triangulation can be quite expensive. In particular,

the cumulative cost of repeated insertions in the 3D struc-

tures may become prohibitive. Our main contribution is a

technique to reduce the burden of 3D Delaunay triangula-

tions. We observe that the topological ball property, a key

to topological guarantee, is satisfied early in the refinement

process and that the bulk of the refinement is carried out to

capture the geometry. Once the density of sampled points

is enough for the topology of the restricted Delaunay tri-

angulation to be correct, we can discard the Delaunay tri-

angulation entirely and continue refinement using a more

lightweight structure to produce an output faster.

The main flow of our algorithm is based on the tech-

nique proposed by Cheng, Dey, Ramos, and Ray [7] for

smooth surface meshing which was later adapted in the

SURFREMESH algorithm by Dey, Li, and Ray [11] for

meshing polygonal surfaces. This algorithm provides guar-

antees for the topology and geometry of the output mesh

with respect to the input surface. We show that our two

stage technique greatly improves the time and space re-

quired for computations.

2. Isosurfaces and Delaunay Meshing

In simulation and visualization applications, it is often

the case that surfaces are represented in both a parameter-

ized form and an implicit form. For computational pur-

poses, the parameterized form is represented by a piecewise

linear surface (a polygonal mesh), while the implicit form

is usually represented by a (scalar) volume dataset, a col-

lection of points in R
3 each of which has the value of some

scalar field f associated with it. Moving from one form to

another is often necessary: the implicit form is compact and

appropriate for certain applications such as blending, but

the parameterized form allows other computations such as

static analysis and finite element methods to be performed

efficiently.

The transformation from the implicit form to the para-

metric one is popularly known as the Isosurface Prob-
lem. Let f : R

3 → R be a C2-smooth function and

P ⊂ R
3 be a discrete point set. Define the volume dataset

f̂ = {(p, f(p)) | p ∈ P}, a subset of the graph of f . We

will assume that Σ = f−1(κ) is a compact surface. The set

Σ is the isosurface of value κ for f and κ is the isovalue on

which Σ is defined. The isosurface problem asks to find a

polygonal mesh for Σ—a parametric representation of the

implicit surface defined by the set {x ∈ R
3 | f(x) = κ}.

Note that one cannot sample Σ given only the discrete data

f̂ . Instead, one interpolates a function g from f̂ and pre-

sumes that Σ = f−1(κ) = g−1(κ).

2.1. Delaunay vs. Non-Delaunay Isosur-
faces

Delaunay refinement is credited to Chew [9] for describ-

ing the “furthest point” insertion strategy. Since then, the

merits of the Delaunay refinement paradigm have already

been shown for meshing a variety of domains including

smooth surfaces [4, 7, 11], polyhedral surfaces, and the vol-

umes enclosed by them [6, 15, 18]. Recently Cheng, Dey,

and Ramos [5] showed how Delaunay refinement can be

used for meshing domains as general as piecewise smooth

complexes. Sampling theory in the context of surface re-

construction [1, 10] shows that in surface approximations

both point-wise and normal-wise approximation errors de-

pend on the circumradius of the triangles. Since a Delaunay

triangulation keeps the circumradii of triangles small, it of-

ten provides a good approximation.

MARCHING CUBES is a popular algorithm for extracting

isosurface meshes which are not necessarily Delaunay. This

algorithm has many advantages; in particular, its speed and

simplicity allow for rapid isosurface generation. However,

the following issues remain a concern:

1.) Topological and geometric closeness are not guaranteed

between the output triangulation and the isosurface Σ.

2.) The triangulation of Σ is not adaptive in the sense that

the gradedness or distribution of the surface samples is

not sensitive to the features of the surface.

3.) No constraints regarding triangle shape exist—this defi-

ciency can lead to numerical error and other simulation

issues for finite element methods on the output polygo-

nal mesh.

Variants of the original MARCHING CUBES exist to

solve the topological concern [2, 8, 20]. However by adapt-

ing the Delaunay refinement approach in [7], our algorithm,

DELISO, addresses all three of these concerns simultane-

ously and efficiently while producing a Delaunay mesh.

Figure 1. ATOM isosurfaces. Left: MARCHING

CUBES output. Right: DELISO output.

As motivating examples, consider the isosurfaces gener-

ated in Figures 1 and 2. Here we show the isosurfaces of the

ATOM and FUEL datasets generated with the isovalues 20.1

and 70.1, respectively. In each figure we have the outputs

of both MARCHING CUBES and our isosurface meshing al-

gorithm, DELISO. While both are topologically correct for

these cases, only DELISO is provably so. Here the adap-

tivity of DELISO is apparent: for ATOM the outer spherical

regions are meshed with larger, flatter triangles, the center

torus is meshed with smaller triangles, and the inner ellip-

soid with even smaller triangles. As a result, the MARCH-

ING CUBES version has 22498 vertices compared with only

2089 vertices in the DELISO version. The FUEL dataset

similarly has smaller triangles around the throughholes of

the surface. In both datasets, there are triangles of arbitrary

skinniness in the MARCHING CUBES output, while in the

output of our Delaunay refinement the aspect ratios are kept

bounded.

Figure 2. FUEL isosurfaces. Left: MARCHING

CUBES output. Right: DELISO output.

2.2. Restricted Delaunay Refinement

Our goal is to avoid using the 3D Delaunay triangulation

for the bulk of the insertions in a Delaunay refinement while

maintaining the restricted Delaunay triangulation. For fur-

ther discussion, we require the following formal definitions.

2.2.1. Definitions

Let S ⊂ R
3 be a finite point set which satisfies general po-

sition. We define the Voronoi cell, Vp, of a point p ∈ S to

be the set {x ∈ R
3 | ∀q ∈ S, ‖p− x‖ ≤ ‖q − x‖}. Voronoi

cells are convex polyhedron, and for any p, q ∈ S, if Vp∩Vq

is nonempty then it is the set of points which are equidistant

from p and q. For 2 ≤ j ≤ 4, the intersection of j Voronoi

cells is called a (4−j)-dimensional Voronoi face. The 0-,

1-, and 2-dimensional Voronoi faces are called Voronoi ver-

tices, edges, and facets, respectively. The Voronoi diagram

of S, Vor S, is the collection of all Voronoi faces.

The convex hull of j ≤ 4 points in S is a (j − 1)-
dimensional Delaunay simplex, σ, if the vertices of σ de-

fine a (4−j)-dimensional Voronoi face, Vσ, in Vor S. We

call σ and Vσ the dual of each other. The 1-, 2-, and 3-

dimensional Delaunay simplices are called Delaunay edges,

triangles, and tetrahedra, respectively. The Delaunay sim-

plices decompose the convex hull of S into the Delaunay

triangulation of S, denoted Del S.

Let S be a point set on a surface Σ. For any Voronoi

face Vσ ∈ Vor S, the intersection Vσ ∩ Σ is called a re-

stricted Voronoi face. The restricted Delaunay triangu-

lation, Del S|Σ, consists of the dual Delaunay simplices

of the restricted Voronoi faces, that is, Del S|Σ = {σ ∈
Del S | Vσ ∩ Σ 6= ∅}.

A Voronoi diagram satisfies the topological ball property

if each k dimensional Voronoi face either does not intersect

the surface or intersects it in a (k−1)-ball. We know that

if a point sample S of a surface Σ is sufficiently dense then

Vor S satisfies the topological ball property [1, 10]. Edels-

brunner and Shah’s theorem [12] says that if Vor S satisfies

the topological ball property then DelS|Σ is homeomorphic

to Σ. Together, these facts provide the basis for the topolog-

ical guarantee of our Delaunay refinement algorithm. By in-

serting points until the topological ball property is satisfied,

we have that Σ and Del S|Σ are topologically equivalent.

When the topological ball property is satisfied, each

Voronoi edge Vσ that intersects the surface does so in a sin-

gle point x. A ball Bσ centered at x and circumscribing σ
is called the Voronoi ball of σ. We say that a triangle σ is

encroached by a point p if Bσ contains p in the interior.

We will use the notion of poles defined by Amenta and

Bern [1] for estimating the scale of the local features as was

done in Dey et al. [11]. The positive pole for a point q is

the furthest Voronoi vertex in Vq. The negative pole is the

furthest Voronoi vertex of Vq in the opposite direction. The

pole height, hq, for q is the distance from q to its negative

pole.

2.2.2. Avoiding 3D Delaunay

The principal computational bottleneck in working with the

restricted Delaunay triangulation is computing and main-

taining the three dimensional Delaunay triangulation under

point insertions. Our algorithm overcomes this difficulty by

splitting the Delaunay refinement algorithm into two stages,

where after the first we discard the Delaunay triangulation.

For this strategy to work, one needs to have inserted suffi-

ciently many points in the first stage so that the restricted

Delaunay triangulation remains homeomorphic to the sur-

face with further insertions. Although we cannot determine

this point precisely in the algorithm, we remain satisfied by

assuming that the first stage has fulfilled this condition af-

ter inserting enough points specified by some user defined

parameters. These parameters are chosen experimentally.

Consider an insertion step in Stage 2. Let p be a new

point to be inserted in the existing point set S. We know that

Del(S∪{p})|Σ is homeomorphic to Σ. Thus Del(S∪{p})|Σ
is a piecewise linear manifold, so the union of all triangles

incident to any point in Del (S ∪ {p})|Σ is a topological

disk. Let D be the set of triangles incident on p whose un-

derlying space is ∪D. The set D consists of the triangles

that are in Del (S ∪ {p})|Σ but not in Del S|Σ. This simple

observation is crucial for determining the new triangles that

are needed to update the restricted Delaunay triangulation

upon inserting p.

First we determine the triangles that should be deleted

from Del S|Σ as a result of inserting p. Let E be the set of

triangles with underlying space ∪E—E is the set of trian-

gles which are encroached by p. We know the boundary of

∪E must be same as that of ∪D. Since ∪D is a topological

disk, its boundary must be a single cycle implying that ∪E
is also a topological disk. Once we determine E, comput-

ing D is trivial as its triangles are computed by connecting

p to the boundary edges of E. Therefore, the main task in

updating Del S|Σ reduces to computing the set E. Figure 3

illustrates the technique we use.

Del S |

E D

Figure 3. After Stage 1, we can insert points

in DelS|Σ without DelS. Left: We refine a trian-
gle σ (shaded) by inserting the center of Bσ.
Center: This point encroaches a topological

disk E. Right: We replace E with D by con-
necting the boundary of E to the point.

Since ∪E is a topological disk, we can compute its trian-

gles by a walk in the adjacency structure of Del S|Σ. Sup-

pose that we have computed a connected set E′ ⊆ E. For

each triangle σ ∈ Del S|Σ not in E′ but sharing an edge

with a triangle in E′, we check if σ is encroached by p. If

so, we add σ to E′ and then walk to its neighbors.

To check if a restricted Delaunay triangle σ is en-

croached we need to compute the Voronoi ball Bσ and thus

the intersection point between Σ and the dual Voronoi edge,

Vσ , of σ. We first compute the geometric dual of σ, a line

ℓσ passing through the circumcenter of σ and perpendicular

to the plane of σ. Since the line ℓσ contains Vσ , we can use

it to find the intersection of Vσ and Σ. Let x be the clos-

est point to the circumcenter of σ where ℓσ intersects the

surface Σ. Since after Stage 1 the triangles in Del S|Σ ap-

proximate the surface to a reasonable level, the intersection

of Vσ and Σ lies close to σ meaning that x is the intersec-

tion point between Vσ and Σ as well. Therefore, the ball

centered at x which circumscribes σ is Bσ . If p lies in the

ball Bσ , the triangle σ is encroached and does not belong to

Del (S ∪ {p})|Σ. For improving future checks to determine

if σ is encroached, we keep the point x stored with σ when

σ is created.

The final piece needed to compute E is an initial triangle

in E′. In general, this computation would require a point

location test. Fortunately, in our case the point p to be in-

serted is always the center of the Voronoi ball Bσ of some

triangle σ ∈ DelS|Σ. The insertion of p certainly eliminates

σ from the restricted Delaunay triangulation. Therefore, we

can initialize E′ with σ and then walk through adjacent tri-

angles to determine E.

2.2.3. Intersection Search

It is clear that one of the core computations required is the

intersection between an arbitrary line or ray and the sur-

face Σ. By partitioning the volume dataset into voxels we

accomplish this task by first collecting the voxels that inter-

sect the line and then determining if the line intersects the

surface in each of these voxels. We elaborate on the actual

computation of the intersection later in §4.

For the second stage of our algorithm, we seek the clos-

est intersection point of ℓσ with Σ for a triangle σ. To im-

prove this computation, we start traversing voxels at the cir-

cumcenter of σ and step in both directions along ℓσ . By

searching in this manner we find the intersection point after

traversing only a few voxels.

2.2.4. Timing comparisons

Before describing the algorithm, we provide some exam-

ples to illustrate how DELISO improves the computational

cost over the standard Delaunay refinement involving full

3D structures. For our experiments, we used a variety of

volume datasets generated at various isovalues κ, Table 1

gives a list of each dataset, the isovalue at which we gener-

ated the surface, and the dimensions of the dataset.

Dataset κ Dimensions

FUEL 70.1 64 × 64 × 64

ATOM 20.1 128×128×128

ENGINE 40.1 256×256×256

LEG 22.1 341×341× 93

TOOTH 146.9 256×256×161

CHEST 82.7 384×384×240

BABY1 35.8 256×256× 98

BABY2 131.6 256×256× 98

MONKEY 40.1 256×256× 62

ANEURISM 124.6 256×256×256

PIG 120.1 512×512×134

Table 1. Volume datasets.

Table 2 shows a timing comparison. This table indicates

that a significant amount of processing time can be saved

by using our technique. The first column of timings were

generated by running the first stage of DELISO to a particu-

lar threshold (described in the next section) and the second

was generated by running DELISO in a two stage form to

the same threshold.

Dataset 3D DELISO Speedup

ATOM 16.39 5.85 2.80

FUEL 17.73 5.18 3.43

ENGINE 311.84 101.10 3.08

LEG 441.11 165.23 2.67

TOOTH 76.90 34.35 2.24

CHEST 1033.56 657.34 1.57

BABY1 485.58 204.44 2.38

BABY2 1134.87 468.93 2.42

MONKEY 2570.14 791.46 3.25

ANEURISM 663.65 262.05 2.53

PIG 614.19 288.83 2.13

Table 2. Delaunay refinement time compar-
isons: using a 3D Delaunay triangulation for

the entire refinement (3D) vs. our algorithm
(DELISO). Times are in seconds.

3. Algorithm Details

Recall that in our two-stage algorithm, we first create a

3D Delaunay triangulation whose restricted Delaunay trian-

gulation is assumed to satisfy the topological ball property

with respect to the isosurface in question. Intuitively, af-

ter the first stage we have recovered a “rough” version of

the surface, but have not satisfied the geometric constraints

desired. We next extract the restricted Delaunay triangula-

tion into a polygonal mesh data structure. The second stage

uses only this mesh to continue refinement of the restricted

Delaunay triangulation until it is geometrically close to the

isosurface.

1 DELISO (f̂ , κ) {
2 Del S0 ← InitTriangulation ()

3 Del S1 ← Recover(Del S0)

4 TS2
← Refine (Del S1)

5 return TS2
.

6 } / / end DelIso ()

Figure 4. DELISO algorithm.

In Figure 4 we give pseudocode for our two stage algo-

rithm to mesh the isosurface Σ at isovalue κ defined by the

volume dataset f̂ . This algorithm assumes that we have a

primitive operation that, given a volume dataset f̂ and iso-

value κ, will compute the set of intersection points between

a line segment r and Σ. InitTriangulation() creates a Delau-

nay triangulation with a small (random) sample of points

S0 on Σ. In the first stage, Recover(), we take the set S0

and produce a new set S1 whose restricted Delaunay trian-

gulation satisfies the topological ball property. Next, in the

second stage, Refine(), we extract Del S1|Σ into a polyg-

onal mesh data structure, TS1
, and further refine it by in-

serting additional points to form the set S2 whose restricted

Delaunay triangulation (stored in TS2
) is both topologically

correct and geometrically close to Σ.

3.1. Isosurface Recovery (Stage 1)

In Figure 5 we show the pseudocode for the Recover()

stage. Each step requires some further explanation.

1 Recover(Del S) {
2 Del S ← MultiIntersect (Del S)

3 Del S ← ExtractManifold (Del S)

4 Del S ← ApproximateGeom(Del S , ε , λ , rmin)

5 Del S ← ExtractManifold (Del S)

6 return Del S .

7 } / / end Recover ()

Figure 5. Recover() algorithm.

MultiIntersect() takes a Delaunay triangulation of a set

S and computes the restricted Voronoi face Vσ ∩ Σ of each

Delaunay 2-simplex σ ∈ Del S. The set Vσ ∩ Σ is simply

a set of points. If this set has multiple elements, the point

furthest from σ is inserted. This process is repeated until

no 2-simplices in Del S have restricted Voronoi faces with

more than one element.

Figure 6. ENGINE isosurface. Left: Final out-

put of DELISO. Right: Output after Recover().

ExtractManifold() takes a Delaunay triangulation of a

set S and considers the set of Delaunay 2-simplices in

the restricted Delaunay triangulation of S which are ad-

jacent to each 0-simplex q ∈ S. It checks that this set

Dq = {σ ∈ Del S|Σ | σ ∩ q 6= ∅} forms a topological

disk. If it does not, the vertex Vσ ∩Σ which is furthest from

q is inserted. This process is repeated until for each q ∈ S
the set Dq forms a topological disk.

After ExtractManifold() returns, Del S|Σ becomes a

manifold, but the topological ball property may still not

hold. Luckily, only a minor amount of geometric refine-

ment is typically needed before we safely discard the De-

launay triangulation in our second stage.

ApproximateGeom() takes a Delaunay triangulation of a

set S and checks that each 2-simplex σ ∈ Del S|Σ satisfies

certain geometric constraints. Let r be the circumradius of

σ, h be the distance from the circumcenter of σ to the point

in Vσ ∩Σ, and l be the shortest edge length of σ. We check

that:

1. h/r > ε,

2. r/l > λ, and

3. r > rmin.

If r is not too small (condition 3) and either of conditions

1 or 2 holds, we insert the intersection point Vσ ∩ Σ. This

process is repeated until there is no such 2-simplex σ with

r > rmin for which condition 1 or 2 holds. The three pa-

rameters ε, λ, and rmin are user inputs. Typical values for

each are ε = 0.2, λ = 2.0, and rmin = 0.001 ∗ b where b
is the smallest dimension of the bounding box. These val-

ues are scale independent and work well for all models we

tested.

Figure 7. LEG isosurface. Left: Final output
of DELISO. Right: Output after Recover().

Each condition is motivated for different reasons. Con-

dition 1 causes the insertion of points which create 2-

simplices in Del S|Σ respecting the features of Σ. Dey et

al. [11] originally checked the ratio r/hq, the radius over

the pole height for a 0-simplex q, for capturing geometric

features. Instead we use the ratio h/r as it is significantly

easier to compute. Condition 2 checks the aspect ratio of

each 2-simplex, fixing 2-simplices which are not close to

equilateral. Finally, condition 3 prevents triangles from be-

coming too small—which can cause numeric precision er-

rors.

Figure 8. TOOTH isosurface, drawn with a clip-
ping plane to see the inside component of the

surface. Left: Final output of DELISO. Right:
Output after Recover().

In Figures 6, 7, and 8 we show the output meshes for

three datasets, ENGINE, LEG, and TOOTH. In each of these

figures the resulting restricted Delaunay triangulation after

the Recover() stage is shown on the right while the final

output surface is drawn on the left. We observe that the

mesh is topologically correct after Recover(), but still needs

further refinement to capture the features appropriately.

3.2. Isosurface Refinement (Stage 2)

In the second stage of our algorithm, we extract DelS1|Σ
from the result of the first stage into a polygonal mesh struc-

ture which is independent from DelS1. We continue our De-

launay refinement algorithm, but we will no longer require

the 3D Delaunay triangulation to compute the restricted De-

launay triangulation.

For a point set S, define TS = (S, F) to be the triangular

mesh structure where

F ⊆ {{a, b, c} | a, b, c ∈ S}

is the set of facets in TS . We store adjacency information

within the facets as well—each facet f ∈ F knows the three

facets which share an edge with f . This data structure is

satisfactory for representing 2-manifolds (potentially with

boundary) as triangular meshes. As discussed in §2, for

each f ∈ F we also store the nearest intersection point x
to f between Σ and the dual line of f to improve future

encroachment checks on point insertions.

In Figure 9 we show pseudocode for the second stage of

our algorithm. We first compute the pole heights for each

vertex in Del S1. These pole heights are used as refinement

criteria later in the Refine() step. Next, BuildTriMesh() cre-

ates the polygonal mesh structure using Del S1, the output

of the first stage. Finally, by using RefineGeom() we refine

TS1
to TS2

.

1 Refine (Del S1) {
2 ComputePoles(Del S1)

3 TS1
← BuildTriMesh(Del S1)

4 TS2
← RefineGeom(TS1

, ε1 , ε2 , λ , rmin)

5 return TS2
.

6 } / / end Refine ()

Figure 9. Refine() algorithm.

With the exception of BuildTriMesh(), the other steps of

this stage require some additional clarifications:

ComputePoles() takes as input the Delaunay triangula-

tion, Del S1, and computes the pole height, hq, for each

0-simplex q ∈ Del S1. For any q, we know that Vq ∩ Σ
is a topological disk at this stage since ExtractManifold()

guarantees this property. Moreover, this disk separates Vq

into exactly two subsets, denoted V +
q and V −

q , on either

side of the disk. Let q+ and q− be the points which are

furthest from q in V +
q and V −

q , respectively. q+ and q−

are similar to poles defined for smooth surfaces. We define

hq = min{‖q − q+‖, ‖q − q−‖}.
RefineGeom() takes as input the triangular mesh TS1

out-

put by BuildTriMesh() and generates a new mesh TS2
by

refining each triangle σ. Let hσ be the pole height of a tri-

angle σ defined by averaging the pole heights at the vertices

of σ. We check the following criteria:

1. h/r > ε1,

2. r/hσ > ε2,

3. r/l > λ, and

4. r > rmin.

Similar to ApproximateGeom(), we have three types of

criteria. First, conditions 1 and 2 are used to capture the

features of Σ. Condition 3 keeps the aspect ratio of the tri-

angles bounded, and condition 4 prevents triangles from be-

coming too small. If any of conditions 1, 2, or 3 holds, and

condition 4 is satisfied, we insert the point Vσ∩Σ. When in-

serting, we first compute the disk consisting of encroached

facets as described in §2, remove it, and then fill it by con-

necting its boundary to the vertex we insert. In our experi-

ments, we use the same values for λ and rmin as before. We

pick ε1 = 0.1, a reduction from ε = 0.2 in the first stage,

and ε2 = 0.2.

Figure 10. DELISO output for CHEST. Back:
External component. Front: By clipping the

front we see the mesh for the lungs, trachea,
and bronchi.

In practice, we have seen that the value r/hσ is more

desirable than h/r as a criterion for geometric refinement.

However, pole computations are fairly expensive and re-

quire Del S1, so we use h/r in the first stage. Then at the

start of Refine() we compute them once before discarding

Del S1. When a new point is inserted we estimate its pole

height by averaging the pole heights of its adjacent vertices.

At this stage since TS2
is close to Σ, nearby points have

similar pole heights. The averaging step is an effective ap-

proximation that allows us to use r/hσ for refinement.

Figures 10 and 11 show some results for two additional

datasets (CHEST and BABY). Both show the adaptivity

of DELISO by capturing the small features densely and

smoothly transitioning to larger triangles in flatter regions.

The inner features of CHEST and the tube, mouth, and dou-

ble sheet of BABY are meshed densely as a result.

Table 3 gives timing results showing the amount of time

saved for insertions. For each dataset, we calculate the

average insertion times during the Recover() and Refine()

stages. In all instances, insertion during Refine() is approx-

imately two orders of magnitude faster. Not shown in this

table is where most of the insertion time is spent. For the

Recover() stage the majority (80-85%) is spent determin-

ing which new Delaunay simplices are restricted Delaunay.

The remaining portion is used to compute the new Delaunay

triangulation and identify new Delaunay simplices.

Figure 11. DELISO output for BABY. Back: Iso-
surface for BABY2. Front: Mesh of isosurface
for BABY1.

4. Intersection Search

We have deferred discussion of how to compute the in-

tersection points between a ray and a volume dataset to this

section. Let the line segment r = a0a1, be parameterized

by r(t) = a+bt for t ∈ [0, 1] where a = a0 and b = a1−a0.

Given a volume dataset f̂ , an isovalue κ, and r, we compute

the set of all points in r∩Σ in two steps, shown as the Inter-

sect() algorithm in Figure 12. In Intersect() we first identify

which voxels of the volume dataset are potential candidates

for intersection and then compute the intersection points in

those cells.

1 In tersect (f̂ , κ , r) {
2 V ← CollectVoxels ()

3 X ← FindIntersections (V)

4 return X .

5 } / / end Intersect ()

Figure 12. INTERSECT algorithm.

4.1. kd-tree Searches

There are a number of different techniques for ray trac-

ing isosurfaces based on kd-tree data structures. The goal

of these approaches is to rapidly identify which primitive

elements (in our case, voxels) are candidates for a more ex-

pensive intersection check.

We modify one approach in Havran [13] using a method

similar to Wald et al. [21] and adapt it to our needs. First,

we construct a kd-tree on the voxels where at each level we

Dataset tRC nRC tRF nRF

FUEL 1.54e-03 1345 1.36e-05 2936

ATOM 1.36e-03 554 1.79e-05 1788

ENGINE 1.53e-03 23291 1.56e-05 84942

LEG 1.66e-03 38889 1.70e-05 82185

TOOTH 1.58e-03 5416 1.54e-05 14242

CHEST 1.82e-03 76887 1.78e-05 280953

BABY1 1.56e-03 50886 1.67e-05 217031

BABY2 1.71e-03 120637 1.74e-05 392150

MONKEY 1.60e-03 155304 1.63e-05 423557

ANEURISM 1.71e-03 74173 1.57e-05 140557

PIG 1.62e-03 52240 1.60e-05 314368

Table 3. Average insertion times tRC and
tRF (in seconds) for inserting nRC and nRF

points in the Recover() (RC) and Refine()

(RF) stages, respectively.

split the set of voxels in half along voxel boundaries in the

dimension of the split. At each node we store the maximum

and minimum function values (κmin and κmax) defined over

the portion of the volume represented by that node. These

values are computed in a recursive manner.

r

Figure 13. A kd-tree facilitates ray-isosurface
intersections. Left: Isosurface Σ, ray r, and

the kd-tree. Center: Using only the tree and
r we identify a set of candidate voxels (in
green). Right: Using κmin and κmax we can

prune the magenta cells.

Once we have a kd-tree where each node stores this max-

imum and minimum information, we can collect the set of

candidate voxels where r intersects Σ in an efficient man-

ner. Figure 13 illustrates this technique in two dimensions.

The recursive traversal of Havran begins at the root of the

tree and checks if r crosses the split plane, if so it traverses

both sides, otherwise it checks whichever side r lies on

and continues into the tree. In this manner we prune away

just those voxels that the ray does not intersect. However,

we can prune additional voxels by checking if Σ is within

those voxels too. Using the maximum and minimum iso-

values, we do an additional check to ensure that the sub-

tree we are traversing has the isosurface in it by checking

κmin ≤ κ ≤ κmax. If not, we prune that region even though

the r intersects it.

4.2. Voxel-Ray Intersection

Once we have collected the set V of candidate voxels

in which Σ may intersect r, we compute the intersection

points. We are most interested in finding these intersections

exactly, so we solve the system defined by the equations

for r and the trilinear surface specified by the eight sample

points at the corner of each voxel. This technique is given

by Parker et al. [16] and reduces to solving the roots of (at

most) a cubic polynomial. To solve this polynomial, we use

the algorithm of Schwarze [17].

One important enhancement is used here during the sec-

ond stage, Refine(). As discussed in §2, we can improve

searching for the intersection point of ℓσ and Σ by stepping

along the voxels from the circumcenter of σ. Since we are

searching for the closest intersection point to σ, we search

by starting with a small segment along the dual line of σ
centered at σ’s circumcenter. We then perform an intersec-

tion check. If we find an intersection we are done, otherwise

we increase the size of our segment and repeat, skipping

voxels we have already searched. In this manner, we check

the closest voxels first—the result is an intersection search

with fewer voxel-ray intersection computations.

In Table 4 we show a comparison of the number of voxel-

ray intersection computations versus the number of searches

at each stage of the algorithm. Since the voxel-ray intersec-

tion requires solving a potentially cubic system, this compu-

tation is expensive and one would like to minimize it. This

table shows that on average we only do one per search, but

for those searches where we actually do find an intersection

point, we tend to do more. However, in the Refine() stage,

we minimize the number of computations by searching for

intersection points incrementally along the dual line of each

triangle.

5. Boundary Issues

One assumption for our algorithm is that the isosurface

does not have any boundary. For volume datasets, it is com-

mon to have isosurfaces with boundaries since the surface

is often truncated by the bounding volume of the dataset.

For example, in our experiments only ATOM, ENGINE, and

TOOTH did not have boundary curves at the isovalues cho-

sen. Special treatment is required in the Disk() test to handle

boundaries, since points on the boundary cannot satisfy this

condition.

We make two modifications to adapt the original algo-

rithm to isosurfaces with boundary. First, we precompute

the boundary curves and insert them into the initial sample.

Dataset CPIRC CPI∗RC CPIRF CPI∗RF

FUEL 1.00 3.25 1.08 1.16

ATOM 0.72 3.41 1.30 1.45

ENGINE 0.86 3.38 1.16 1.25

LEG 1.06 2.91 1.07 1.17

TOOTH 0.76 3.10 1.13 1.27

CHEST 1.13 2.58 1.08 1.13

BABY1 1.04 2.96 1.06 1.11

BABY2 1.08 2.72 1.05 1.11

MONKEY 1.06 2.83 1.06 1.14

ANEURISM 0.86 2.85 1.06 1.13

PIG 1.25 3.96 1.11 1.21

Table 4. Comparison of the number of tri-

linear computations versus the number of
searches for the Recover() (RC) and Refine()
(RF) stages. Shown are the average num-

ber of computations per intersection search
(CPIRC and CPIRF) and the CPI’s during

only those searches which returned intersec-
tion points (CPI∗RC and CPI∗RF).

Second, we modify the Disk() test to allow half disks for

points on the boundary.

The insertion of the boundary points is done at the end

of the InitTriangulation() step. After computing the ran-

dom sample of points and inserting them, we next compute

the set of boundary curves and insert those. For simplicity,

this is done using MARCHING SQUARES on each of the six

boundary faces. Upon insertion, we mark these points and

allow the Disk() test to be satisfied for these points by ei-

ther a complete topological disk or a topological half disk.

In this manner, we relax the constraints of the algorithm,

but only at known boundary points.

6. Conclusions and Future Work

We have presented an algorithm, DELISO, for meshing

isosurfaces with Delaunay triangles. This algorithm works

on the principle of Delaunay refinement with the topolog-

ical ball property. Although a three dimensional Delaunay

triangulation is at the core of this refinement paradigm, we

show how the bulk of the computations can be carried out

without maintaining the full 3D structure. This improve-

ment eases the computational burden without sacrificing

any quality guarantees.

Research is still necessary to make further enhancements

to this algorithm. Clearly, the earlier we switch to Refine(),

the less time will be required for meshing. However, a cer-

tain sampling density is necessary to guarantee the topolog-

ical ball property at this stage. One would like to understand

the precise point where the surface can be extracted with a

provable guarantee that we can continue to update Del S|Σ
without Del S. Computing ray-volume intersections is also

an active field of research which could also improve the im-

plementation of this algorithm.

Acknowledgements

We acknowledge the support of NSF grants

CCF-0430735 and CCF-0635008. All datasets

used in this paper are freely available at well

known sites, including http://www.volvis.org and

http://www9.cs.fau.de/Persons/Roettger/library/. The

authors would also like to thank Jason Bryan for assistance

using VOLSUITE to generate the MARCHING CUBES

isosurfaces.

References

[1] N. Amenta and M. Bern. Surface reconstruction by Voronoi

filtering. Discrete and Computational Geometry, 22:481–

504, 1999.

[2] P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurface con-

struction in any dimension using convex hulls. IEEE Trans-

action on Visualization and Computer Graphics, 10:130–

141, 2004.

[3] J.-D. Boissonnat, D. Cohen-Steiner, and G. Vegter. Isotopic

implicit surface meshing. In STOC ’04: Proceedings of the

36th ACM Symposium on Theory of Computing, pages 301–

309. ACM Press, 2004.

[4] J. D. Boissonnat and S. Oudot. Provably good surface sam-

pling and approximation. In SGP ’03: Proceedings of the

2003 Eurographics/ACM SIGGRAPH Symposium on Ge-

ometry Processing, pages 9–18. Eurographics Association,

2003.

[5] S.-W. Cheng, T. K. Dey, and E. A. Ramos. Delaunay re-

finement for piecewise smooth complexes. In SODA ’07:

Proceedings of the 18th Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 1096–1105. ACM Press, 2007.

[6] S.-W. Cheng, T. K. Dey, E. A. Ramos, and T. Ray. Qual-

ity meshing for polyhedra with small angles. In SCG ’04:

Proceedings of the 20th Symposium on Computational Ge-

ometry, pages 290–299. ACM Press, 2004.

[7] S.-W. Cheng, T. K. Dey, E. A. Ramos, and T. Ray. Sam-

pling and meshing a surface with guaranteed topology and

geometry. In SCG ’04: Proceedings of the 20th Symposium

on Computational Geometry, pages 280–289. ACM Press,

2004.

[8] E. Chernyaev. Marching cubes 33: Construction of topolog-

ically correct isosurfaces, 1995.

[9] L. P. Chew. Guaranteed-quality mesh generation for curved

surfaces. In SCG ’93: Proceedings of the 9th Symposium

on Computational Geometry, pages 274–280. ACM Press,

1993.

[10] T. K. Dey. Curve and surface reconstruction: algorithms

with mathematical analysis. Cambridge University Press,

New York, 2006.

[11] T. K. Dey, G. Li, and T. Ray. Polygonal surface remesh-

ing with Delaunay refinement. In Proceedings of the 14th

International Meshing Roundtable, pages 343–361, 2005.

[12] H. Edelsbrunner and N. R. Shah. Triangulating topological

spaces. In SCG ’94: Proceedings of the 10th Symposium

on Computational Geometry, pages 285–292. ACM Press,

1994.

[13] V. Havran. Heuristic Ray Shooting Algorithms. PhD the-

sis, Department of Computer Science and Engineering, Fac-

ulty of Electrical Engineering, Czech Technical University

in Prague, 2000.

[14] W. E. Lorensen and H. E. Cline. Marching cubes: A high

resolution 3d surface construction algorithm. In SIGGRAPH

’87: Proceedings of the 14th Conference on Computer

Graphics and Interactive Techniques, volume 21, pages

163–169. ACM Press, Jul 1987.

[15] S. Oudot, L. Rineau, and M. Yvinec. Meshing volumes

bounded by smooth surfaces. In Proceedings of the 14th

International Meshing Roundtable, pages 203–219, 2005.

[16] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan.

Interactive ray tracing for isosurface rendering. In VIS ’98:

Proceedings of the Conference on Visualization, pages 233–

238. IEEE Computer Society Press, 1998.

[17] J. Schwarze. Cubic and quartic roots. In A. Glassner, edi-

tor, Graphics gems, pages 404–407. Academic Press Profes-

sional, Inc., San Diego, CA, 1990.

[18] J. R. Shewchuk. Tetrahedral mesh generation by delaunay

refinement. In SCG ’98: Proceedings of the 14th Symposium

on Computational Geometry, pages 86–95, 1998.

[19] B. T. Stander and J. C. Hart. Guaranteeing the topology of

an implicit surface polygonization for interactive modeling.

In SIGGRAPH ’97: Proceedings of the 24th Conference on

Computer Graphics and Interactive Techniques, pages 279–

286. ACM Press/Addison-Wesley Publishing Co., 1997.

[20] G. Varadhan, S. Krishnan, T. V. N. Sriram, and D. Manocha.

Topology preserving surface extraction using adaptive sub-

division. In Eurographics Symposium on Geometry Process-

ing, pages 241–250, 2004.

[21] I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H.-P.

Seidel. Faster isosurface ray tracing using implicit kd-trees.

IEEE Transactions on Visualization and Computer Graph-

ics, 11(5):562–572, 2005.

[22] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for

soft objects. The Visual Computer, 2(4):227–234, February

1986.

