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Abstract
Summarizing topological information from datasets and
maps defined on them is a central theme in topological data
analysis. Mapper, a tool for such summarization, takes as
input both a possibly high dimensional dataset and a map
defined on the data, and produces a summary of the data by
using a cover of the codomain of the map. This cover, via
a pullback operation to the domain, produces a simplicial
complex connecting the data points.

The resulting view of the data through a cover of the
codomain offers flexibility in analyzing the data. However,
it offers only a view at a fixed scale at which the cover is con-
structed. Inspired by the concept, we explore a notion of a
tower of covers which induces a tower of simplicial complexes
connected by simplicial maps, which we call multiscale map-
per. We study the resulting structure, and design practical
algorithms to compute its persistence diagrams efficiently.
Specifically, when the domain is a simplicial complex and
the map is a real-valued piecewise-linear function, the algo-
rithm can compute the exact persistence diagram only from
the 1-skeleton of the input complex. For general maps, we
present a combinatorial version of the algorithm that acts
only on vertex sets connected by the 1-skeleton graph, and
this algorithm approximates the exact persistence diagram
thanks to a stability result that we show to hold.

1 Introduction

Recent years have witnessed significant progress in ap-
plying topological ideas to analyzing complex and di-
verse data. Topological ideas can be particularly pow-
erful in deriving a succinct and meaningful summary of
input data. For example, the theory of persistent ho-
mology built upon [19, 20, 25] and other fundamental
developments [3, 4, 6, 10, 11, 12, 15, 27], has provided a
powerful and flexible framework for summarizing infor-
mation of an input space or a scalar field into a much
simpler object called the persistence diagram/barcode.

Modern data can be complex both in terms of the
domain where they come from and in terms of proper-
ties/observations associated with them which are often
modeled as maps. For example, we can have a set of
patients, where each patient is associated with multi-
ple biological markers, giving rise to a multivariate map
from the space of patients to an image domain that may
or may not be the Euclidean space. To this end, we
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need to develop theoretically justified methods to an-
alyze not only real-valued scalar fields, but also more
complex maps defined on a given domain, such as mul-
tivariate, circle valued, sphere valued maps, etc. There
has been interesting work in this direction, including
multidimensional persistence [4, 5] and persistent ho-
mology for circular valued maps [3]. However, summa-
rizing multivariate maps using these techniques appears
to be challenging. Our approach takes a different di-
rection, and is inspired by and based on the mapper
methodology, recently introduced by Singh et al. in
[26]. Taking an observation made in [26] regarding the
behavior of Mapper under a change in the covers as a
starting point, we study a multiscale version of mapper,
which we will henceforth refer to as multiscale mapper,
that is capable of producing a multiscale summary using
a cover of the codomain at different scales.

Given a map f : X → Z, Singh et al. proposed a
novel concept to create a topological metaphor, called
the mapper, for the structure behind f by pulling back
a cover of the space Z to a cover on X through f . This
mapper methodology is general: it can work with any
(reasonably tame) continuous maps between two topo-
logical spaces, and it converts complex maps and covers
of the target space, into simplicial complexes, which are
much easier to manipulate computationally. It is also
powerful and flexible– one can view the map f and a
finite cover of the space Z as the lens through which
the input data X is examined. By choosing different
maps and covers, the resulting mapper representation
captures different aspects of the input data. Indeed,
the mapper methodology has been successfully applied
to analyzing various types of data, see e.g. [22, 24],
and it is a main component behind the data analytics
platform developed by the company Ayasdi.

Contributions. Given an input map f : X → Z and
a finite cover U of Z, the induced mapper M(U , f) is a
simplicial complex encoding the structure of f through
the lens of Z. However, the simplicial complex M(U , f)
provides only one snapshot of X at a fixed scale as
determined by the scale of the cover U . Using the idea
of persistence homology, we study the evolution of the
mapper M(f,Uε) for a tower of covers U = {Uε}ε at
multiple scales (indexed by ε).



As an intuitive example, consider a real-valued
function f : X → R, and a cover Uε of R consisting of all
possible intervals of length ε. Intuitively, as ε tends to
0, the corresponding Mapper M(f,Uε) approaches the
Reeb graph of f . As ε increases, we look at the Reeb
graph at coarser and coarser resolution. The multiscale
mapper in this case roughly encodes this simplification
process.

The multiscale mapper MM(U, f), which we for-
mally define in §3, consists of a sequence of simplicial
complexes connected with simplicial maps. Upon pass-
ing to homology with fields coefficients, the information
in MM(U, f) can be further summarized in the corre-
sponding persistence diagram. In other words, we can
now summarize an input described by a multivariate (or
circle/sphere valued) map into a single persistence dia-
gram, much like in traditional persistence homology for
real-valued functions.

In §4, we discuss the stability of the multiscale
mapper, under changes in the input map and/or in
the tower of covers U. Stability is a highly desirable
property for a summary as it implies robustness to noise
in data and in measurements. Interestingly, analogous
to the case of homology versus persistence homology,
mapper does not satisfy a stability property, whereas
multiscale mapper does enjoy stability as we show in
this paper.

To facilitate the broader usage of mapper and
multiscale mapper as a data analysis tool, we develop
efficient algorithms for computing and approximating
mapper and multiscale mapper. In particular, even
for piecewise-linear functions defined on a simplicial
complex, the standard algorithm needs to determine for
each simplex the subset (partial simplex) on which the
function value falls within a certain range. In §5, we
show that for such an input, it is sufficient to consider
the restriction of the function to the 1-skeleton of the
complex for computing the mapper and the multiscale
mapper. Since the 1-skeleton (a graph) is typically
much smaller in size than the full complex, this helps
improving the time efficiency of computing the mapper
and multiscale mapper outputs.

In §6, we consider the more general case of a map
f : X → Z where X is a simplicial complex but Z
is not necessarily real-valued. We show that there is
an even simpler combinatorial version of the multiscale
mapper, which only acts on vertex sets of X with
connectivity given by the 1-skeleton graph of X 1.
The cost we pay here is that the resulting persistence
diagram approximates (instead of computing exactly)

1We note that a variant of this combinatorial version is what

is currently used in the publicly available software for mapper in

practice.

that of the standard multiscale mapper, and the tower
of covers of Z needs to satisfy a “goodness” condition.

We remark that the main text of this paper focuses
on providing an intuitive treatment of the multiscale
mapper, its properties and the description of algorithms.
Some technical details and proofs can be found in the
Appendix.

2 Topological background and motivation

In this section we recall several facts about topological
spaces and simplicial complexes [23]. Let K and L be
two finite simplicial complexes over the vertex sets VK
and VL, respectively. A set map φ : VK → VL is a
simplicial map if φ(σ) ∈ L for all σ ∈ K.

By an open cover of a topological space X we
mean a collection U = {Uα}α∈A of open sets such that⋃
α∈A Uα = X. In this paper, whenever referring to an

open cover, we will always assume that each Uα is path
connected.

Definition 1. (Nerve of a cover) Given a finite
cover U = {Uα}α∈A of a topological space X, we define
the nerve of the cover U to be the simplicial complex
N(U) whose vertex set is the index set A, and where a
subset {α0, α1, . . . , αk} ⊆ A spans a k-simplex in N(U)
if and only if Uα0 ∩ Uα1 ∩ . . . ∩ Uαk 6= ∅.

Suppose that we are given a topological space X
equipped with a continuous map f : X → Z into a
parameter space Z, where Z is equipped with an open
cover U = {Uα}α∈A for some finite index set A. Since
f is continuous, the sets {f−1(Uα), α ∈ A} form an
open cover of X. For each α, we can now consider the
decomposition of f−1(Uα) into its path connected com-
ponents, so we write f−1(Uα) =

⋃jα
i=1 Vα,i, where jα

is the number of path connected components Vα,i’s in
f−1(Uα). We write f∗(U) for the cover of X obtained
this way from the cover U of Z and refer to it as the
pullback cover of X induced by U via f .

Notice that there are pathological examples of f
where f−1(Uα) may shatter into infinitely many path
components. This motivates us to consider well-behaved
functions f : we require that for every path connected
open set U ⊆ Z, the preimage f−1(U) has finitely
many path connected components. An example of
well-behaved functions is given by piecewise-linear real
valued functions defined on finite simplicial complexes.
It follows that for any well-behaved function f : X → Z
and any finite open cover U of Z, the open cover f∗(U)
is also finite.

If not stated otherwise, all functions and all
covers are assumed to be well-behaved and



finite, respectively. Consequently, all nerves of
pullbacks of finite covers will also be finite.

Definition 2. (Mapper [26]) Let X and Z be topo-
logical spaces and let f : X → Z be a well-behaved and
continuous map. Let U = {Uα}α∈A be a finite open
cover of Z. The mapper construction arising from these
data is defined to be the nerve simplicial complex of the
pullback cover: M(U , f) := N(f∗(U)).

Remark 2.1. (For Definition 2) This construction
is quite general. It encompasses both the Reeb graph
and merge trees at once: consider X a topological space
and f : X → R. Then, consider the following two
options for U = {Uα}α∈A, the other ingredient of the
construction:

• Uα = (−∞, α) for α ∈ A = R. This corresponds to
sublevel sets which in turn lead to merge trees.

• Uα = (α − ε, α + ε) for α ∈ A = R, for some
fixed ε > 0. This corresponds to (ε-thick) level sets,
which induce a relaxed notion of Reeb graphs.

In these two examples, for simplicity of presentation, the
set A is allowed to have infinite cardinality. Also, note
one can take any open cover of R in this definition. This
may give rise to other constructions beyond merge trees
or Reeb graphs. For instance, one may choose any point
r ∈ R and let Uα = (r − α, r + α) for each α ∈ A = R
or other constructions.

Maps between covers. If we have two covers U =
{Uα}α∈A and V = {Vβ}β∈B of a space X, a map of
covers from U to V is a set map ξ : A → B so that
Uα ⊆ Vξ(α) for all α ∈ A. By an abuse of notation
we also use ξ to indicate the map U → V. Given such
a map of covers, there is an induced simplicial map
N(ξ) : N(U) → N(V), given on vertices by the map

ξ. Furthermore, if U ξ→ V ζ→ W are three different
covers of a topological space with the intervening maps
of covers between them, then N(ζ ◦ ξ) = N(ζ)◦N(ξ) as
well.

The following simple lemma will be very useful later
on (proof in Appendix A).

Lemma 2.1. (Induced maps are contiguous) Let
ζ, ξ : U → V be any two maps of covers. Then, the
simplicial maps N(ζ) and N(ξ) are contiguous.

Recall that two simplicial maps h1, h2 : K → L are
contiguous if for all σ ∈ K it holds that h1(σ)∪h2(σ) ∈
L. In particular, contiguous maps induce identical maps
at the homology level [23]. Lemma 2.1 implies that
the map H∗(N(U)) → H∗(N(V)) thus induced can be
deemed canonical.

Pullbacks. When we consider a spaceX equipped with
a continuous map f : X → Z to a topological space
Z, and we are given a map of covers ξ : U → V
between covers of Z, there is a corresponding map of
covers between the respective pullback covers of X:
f∗(ξ) : f∗(U) −→ f∗(V).

Indeed, we only need to note that if U ⊆ V ,
then f−1(U) ⊆ f−1(V ), and therefore it is clear that
each path connected component of f−1(U) is included
in exactly one path connected component of f−1(V ).
More precisely, let U = {Uα}α∈A, V = {Vβ}β∈B , with
Uα ⊆ Vξ(α) for α ∈ A. Let Ûα,i, i ∈ {1, . . . , nα}
denote the connected components of f−1(Uα) and V̂β,j ,
j ∈ {1, . . . ,mβ} denote the connected components of
f−1(Vβ). Then, the map of covers f∗(ξ) from f∗(U) to
f∗(V) is given by requiring that each set Ûα,i is sent to
the unique set of the form V̂ξ(α),j so that Ûα,i ⊆ V̂ξ(α),j .

Furthermore, if U ξ→ V ζ→ W are three different
covers of a topological space with the intervening maps
of covers between them, then f∗(ζ ◦ ξ) = f∗(ζ) ◦ f∗(ξ).

3 Multiscale Mapper

In the definition below, objects can be covers, simplicial
complexes, or vector spaces.

Definition 3. (Tower) A tower W with resolution
r ∈ R is any collection W =

{
Wε

}
ε≥r of objects Wε

together with maps wε,ε′ : Wε → Wε′ so that wε,ε = id
and wε′,ε′′ ◦ wε,ε′ = wε,ε′′ for all r ≤ ε ≤ ε′ ≤ ε′′.

Sometimes we write W =
{
Wε

wε,ε′−→ Wε′
}
r≤ε≤ε′ to

denote the collection with the maps. Given such a tower
W, res(W) refers to its resolution.

When W is a collection of finite covers equipped
with maps of covers between them, we call it a tower
of covers. When W is a collection of finite simplicial
complexes equipped with simplicial maps between them,
we call it a tower of simplicial complexes.

The notion of resolution, and the variable ε, intu-
itively specify the granularity of the covers and the sim-
plicial complexes induced by them.

The pullback properties described at the end of §2
make it possible to take the pullback of a given tower
of covers of a space via a given continuous function into
another space, so that we obtain:

Proposition 3.1. Let U be a tower of covers of Z and
f : X → Z be a continuous function. Then, f∗(U) is a
tower of covers of X.

In general, given a tower of covers W of a space X,
the nerve of each cover in W together with simplicial
maps induced by each map of W provides a tower of
simplicial complexes which we denote by N(W).



Definition 4. (Multiscale Mapper) Let X and Z
be topological spaces and f : X → Z be a continuous
map. Let U be a tower of covers of Z. Then, the
multiscale mapper is defined to be the tower of simplicial
complexes defined by the nerve of the pullback:

MM(U, f) := N(f∗(U)).

Consider for example a sequence res(U) ≤ ε1 <
ε2 < . . . < εn of n distinct real numbers. Then, the
definition of multiscale mapper MM(U, f) gives rise to
the following:

(3.1) N(f∗(Uε1))→ N(f∗(Uε2))→ · · · → N(f∗(Uεn))

which is a sequence of simplicial complexes connected
by simplicial maps. Applying to them the homology
functor Hk(·), k = 0, 1, 2, . . ., with coefficients in a field,
one obtains persistence modules [17]: tower of vector
spaces connected by linear maps for which efficient
persistence algorithm is known [15]:

(3.2) Hk

(
N(f∗(Uε1))

)
→ · · · → Hk

(
N(f∗(Uεn))

)
.

More importantly, the information contained in
a persistence module can be summarized by simple
descriptors: its associated persistence diagrams. As
pointed out in [6], a finiteness condition is required, but
given our assumptions that the covers are finite and
that the function f is well-behaved we obtain that the
homology groups of all nerves have finite dimensions.
Now one can summarize the persistence module with
a finite persistent diagram for the sequence MM(U, f),
denoted by DkMM(U, f) for each dimension k ∈ N (see
[17] for background on persistence diagrams).

4 Stability

To be useful in practice, the multiscale mapper should
be stable against the perturbations in the maps and
the covers. we show that such a stability is enjoyed
by the multiscale mapper under some natural condition
on the tower of covers. The notion of stability in the
context of topological data analysis has been recently
studied by many researchers, see e.g. [1, 2, 6, 7, 11].
In particular, Cohen-Steiner et al. [11] showed that
persistence diagrams are stable in the bottleneck distance
meaning that small perturbations to a map yield small
variations in the computed persistence diagrams. In [6],
stability is expressed directly at the (algebraic) level of
persistence modules (3.2) via a quantitative structural
condition called interleaving of pairs of persistence
modules. Before we state our stability results, we
identify compatible notions of interleaving for tower of
covers and tower of simplicial complexes, as a way to
measure the “closeness” between two tower of covers
(or two tower of simplicial complexes).

4.1 Interleaving of towers of covers and sim-
plicial complexes. In this section we consider towers
of covers and simplicial complexes indexed over R. In
practice, we often have towers indexed by a discrete set
in R. Any such tower can be extended to a tower of cov-
ers (or simplicial complexes) indexed over R by taking
the covers for any intermediate open interval (ε, ε′) ⊂ R
to be same as that at ε ∈ R.

Definition 5. (Interleaving of towers of covers)
Let U = {Uε} and V = {Vε} be two towers of covers of
a topological space X such that res(U) = res(V) = r.
Given η ≥ 0, we say that U and V are η-interleaved
if one can find maps of covers ζε : Uε → Vε+η and
ξε′ : Vε′ → Uε′+η for all ε, ε′ ≥ r.

Proposition 4.1. (i) If U and V are η1-interleaved
and V and W are η2-interleaved, then, U and W are
(η1 + η2)-interleaved. (ii) Let f : X → Z be a
continuous function and U and V be two η-interleaved
tower of covers of Z. Then, f∗(U) and f∗(V) are also
η-interleaved.

Definition 6. (Interleaving of simplicial towers)

Let S =
{
Sε

sε,ε′−→ Sε′
}
r≤ε≤ε′ and T =

{
Tε

tε,ε′−→
Tε′
}
r≤ε≤ε′ be two towers of simplicial complexes where

res(S) = res(T) = r. We say that they are η ≥ 0
interleaved if for each ε ≥ r one can find simplicial
maps ϕε : Sε → Tε+η and ψε : Tε → Sε+η so that:

(i) for all ε ≥ r, ψε+η ◦ϕε and sε,ε+2η are contiguous,

(ii) for all ε ≥ r, ϕε+η ◦ ψε and tε,ε+2η are contiguous,

(iii) for all ε′ ≥ ε ≥ r, ϕε′ ◦ sε,ε′ and tε+η,ε′+η ◦ ϕε are
contiguous,

(iv) for all ε′ ≥ ε ≥ r, sε+η,ε′+η ◦ ψε and ψε′ ◦ tε,ε′ are
contiguous.

These four conditions are summarized by requiring
that the four diagrams below commute up to contiguity:

Sε
ϕε

!!CC
CC

CC
CC

sε,ε+2η // Sε+2η

Tε+η

ψε+η
;;wwwwwwww

Sε+η
ϕε+η

##GGGGGGGG

Tε

ψε
=={{{{{{{{ tε,ε+2η // Tε+2η

(4.3)

Sε
ϕε

!!CC
CC

CC
CC

sε,ε′ // Sε′
ϕε′

""EE
EE

EE
EE

Tε+η
tε+η,ε′+η

// Tε′+η



Sε+η
sε+η,ε′+η // Sε′+η

Tε

ψε
=={{{{{{{{

tε,ε′
// Tε′

ψε′
<<yyyyyyyy

The proof of the following result is in Appendix B.

Proposition 4.2. Let U and V be two η-interleaved
towers of covers of X with res(U) = res(V). Then, N(U)
and N(V) are also η-interleaved.

From now on, for a finite tower of simplicial com-
plexes S and k ∈ N, we denote by DkS the k-th per-
sistence diagram of S with coefficients in a fixed field.
Notice that, since contiguous maps induce identity maps
at the homology level, applying the simplicial homology
functor with coefficients in a field to diagrams such as
those in (4.3) yields two persistence modules strongly
interleaved in the sense of [6]. Thus, we have a stabil-
ity result for DkMM(U, f) when f is kept fixed but the
tower of covers U is perturbed.

Corollary 4.1. For η ≥ 0, let U and V be two finite
towers of covers of Z with res(U) = res(V) > 0. Let f :
X → Z be well-behaved and U and V be η-interleaved.
Then, MM(U, f) and MM(V, f) are η-interleaved. In
particular, the bottleneck distance between the persis-
tence diagrams DkMM(U, f) and DkMM(V, f) is at
most η for all k ∈ N.

4.2 Stability of Multiscale Mapper. The fixed
simplicial complex produced by the standard mapper
may not admit a simple notion of stability. We elaborate
this point by an example in Appendix C. In this section,
we show that the multiscale mapper on the other
hand exhibits a stability property against perturbations
both in functions and in tower of covers (the latter of
which already discussed in Corollary 4.1). However, to
guarantee stability against changes in functions, it is
necessary to restrict the multiscale mapper to a special
class of towers of covers, called (c,s)-good tower of
covers. We justify the necessity of considering such
(c, s)-good tower of covers in Appendix D.1.

In what follows, we assume that the target compact
topological space Z is endowed with a metric dZ . For
a subset O ⊂ Z, let diam(O) denote its diameter, that
is, the number supz,z′∈O dZ(z, z′). For δ ≥ 0, let Oδ

denote the set {z ∈ Z| dZ(z,O) ≤ δ}.

Definition 7. (Good tower of covers) Let c ≥ 1
and s > 0. We say that a finite tower of covers
W = {Wε

wε,ε′−→ Wε′
}
ε≤ε′ for the compact metric space

(Z, dZ) is (c, s)-good if:

1. res(W) = s, and s ≤ diam(Z);

2. diam(W ) ≤ ε for all W ∈ Wε and all ε ≥ s; and

3. for all O ⊂ Z with diam(O) ≥ s, there exists
W ∈ Wc·diam(O) such that W ⊇ O. 2

Intuitively, in a (c, s)-good tower of covers, the
parameter ε of a cover Wε ∈ W is a scale parameter,
which specifies an upper-bound for the size / resolution
of cover elements in Wε. Condition-3 in the above
definition requires that any set O ⊂ Z should be covered
by an element from a cover of W whose resolution is
comparable to the size (diameter) of O. See Appendix
D for more discussions on the (c, s)-good tower of covers
and its properties. In particular, in Appendix D.1, we
show that such a tower of covers is somewhat necessary
to obtain a stability result. The (c, s)-good tower of
covers is also computationally feasible. In Appendix D.2
we provide an example of a construction of a tower of
covers for compact metric spaces with bounded doubling
dimension using ε-nets.

Now, we prove the main stability result, Theorem
4.2. In particular, in Section 4.3 we first inspect the
impact of function perturbation, and we prove the
general result in Section 4.4.

4.3 Stability against function perturbation.
Our study of stability against function perturbation in-
volves a reindexing of the involved towers of covers.

Definition 8. (Reindexing) Let W =
{
Wε

wε,ε′−→
Wε′

}
r≤ε≤ε′ be a tower of covers of Z with r = res(W) >

0 and φ : R+ → R+ be a monotonically increasing func-
tion. Consider the tower of covers Rφ(W) :=

{
Vε

vε,ε′−→
Vε′
}
φ(r)≤ε≤ε′ given by

• Vε :=Wφ−1(ε) for each ε ≥ φ(r) and

• vε,ε′ = wφ−1(ε),φ−1(ε′) for ε, ε′ such that φ(r) ≤ ε ≤
ε′.

We refer to Rφ(W) as a reindexed tower.

In our case, we will use the log function to reindex a
tower of covers W. We also need the following definition
in order to state the stability results.

Definition 9. Given a tower of covers U = {Uε} and
ε0 ≥ res(U), we define the ε0-truncation of U as the
tower Trε0(U) :=

{
Uε
}
ε0≤ε. Observe that, by definition

res(Trε0(U)) = ε0.

2This condition is related to the concept of Lebesgue number

for covers of metric spaces where metric balls instead of sets with
bounded diameter are used.



Proposition 4.3. Let X be a compact topological
space, (Z, dZ) be a compact path connected metric space,
and f, g : X → Z be two continuous functions such that
for some δ ≥ 0 one has that maxx∈X dZ(f(x), g(x)) = δ.
Let W be any (c, s)-good tower of covers of Z. Let ε0 =
max(1, s). Then, the log ε0-truncations of Rlog

(
f∗(W)

)
and Rlog

(
g∗(W)

)
are log

(
2cmax(δ, s) + c

)
-interleaved.

Proof. For notational convenience write η :=
log
(
2cmax(δ, s) + c

)
, {Ut} = U := f∗(W), and

{Vt} = V := g∗(W). With regards to satisfying Defini-
tion 6 for Rlog

(
U
)

and Rlog

(
V
)
, for each ε ≥ log ε0 we

need only exhibit maps of covers ζε : Uexp(ε) → Vexp(ε+η)

and ξε : Vexp(ε) → Uexp(ε+η). We first establish the
following.

Claim 1. For all O ⊂ Z, and all δ′ ≥ δ, f−1(O) ⊆
g−1(Oδ

′
).

Proof. Let x ∈ f−1(O), then dZ(f(x), O) = 0. Thus,
dZ(g(x), O) ≤ dZ(f(x), O) + dZ(g(x), f(x)) ≤ δ, which
implies the claim.

Now, pick any t ≥ ε0, any U ∈ Ut, and fix
δ′ := max(δ, s). Then, there exists W ∈ Wt such that
U ∈ cc(f−1(W )). The claim implies that f−1(W ) ⊆
g−1(W δ′). Since W is a (c, s)-good cover of the con-
nected space Z and s ≤ max(δ, s) ≤ diam(W δ′) ≤
2δ′ + t, there exists at least one set W ′ ∈ Wc(2δ′+t)

such that W δ′ ⊆ W ′. This means that U is contained
in some element of cc(g−1(W ′)) where W ′ ∈ Wc(2δ′+t).
But, also, since c(2δ′ + t) ≤ c(2δ′ + 1)t for t ≥ ε0 ≥ 1,
there exists W ′′ ∈ Wc(2δ′+1)t such that W ′ ⊆ W ′′.
This implies that U is contained in some element of
cc(g−1(W ′′)) where W ′′ ∈ Wc(2δ′+1)t. This process,
when applied to all U ∈ Ut, all t ≥ ε0, defines a
map of covers ζ̂t : Ut → V(2cδ′+c)t. Now, define for
each ε ≥ log(ε0) the map ζε := ζ̂exp(ε) and notice that
by construction this map has Uexp(ε) as domain, and
V(2δ′c+c) exp(ε) as codomain. A similar observation pro-
duces for each ε ≥ log(ε0) a map of covers ξε from
Vexp(ε) to V(2cδ′+c) exp(ε).

Notice that for each ε ≥ log(ε0) one may write
(2cδ′+c) exp(ε) = exp(ε+η). So we have in fact proved
that log ε0-truncations of Rlog

(
U
)

and Rlog

(
V
)

are η-
interleaved.

An application of Proposition 4.3 and the result
in [6] is (proof in Appendix E):

Corollary 4.2. Let W be any (c, s)-good tower of
covers of the compact connected metric space Z and
let f, g : X → Z be any two well-behaved continuous
functions such that maxx∈X dZ(f(x), g(x)) = δ. Then,
the bottleneck distance between the persistence diagrams

DkMM(Rlog

(
W), f

)
and DkMM

(
Rlog(W), g

)
is at most

log(2cmax(s, δ) + c) + max(0, log 1
s ) for all k ∈ N.

4.4 Stability in general. We now consider the more
general case which also allows changes in the tower of
covers inducing the multiscale mapper.

Theorem 4.1. Let U and V be any two η-interleaved
(c, s)-good towers of covers of the compact con-
nected metric space Z and let f, g : X → Z be
any two continuous well-behaved functions such that
maxx∈X dZ(f(x), g(x)) ≤ δ. Then, for ε0 = max(1, s),
the log ε0-truncation of Rlog

(
f∗(U)

)
and Rlog

(
g∗(V)

)
are log

(
2cmax(s, δ) + c+ η

)
-interleaved.

Proof. Write Trε0(V) = {Vε}ε≥ε0 and Trε0(U) =
{Uε}ε≥ε0 . Denote f∗(V) = {Vfε }ε≥ε0 , g∗(V) =
{Vgε }ε≥ε0 , and f∗(U) = {Ufε }ε≥ε0 , g∗(U) = {Ugε }ε≥ε0 .
By following the argument and using the notation in
Proposition 4.3, for each ε ≥ ε0 one can find maps of
covers Ugε → U

f
(2cδ′+c)ε and Vfε → V

g
(2cδ′+c)ε. Also, since

Uf and Vf are η-interleaved, for each ε ≥ ε0 there are
maps of covers Ufε → V

f
ε+η and Vgε → U

g
ε+η. Then, for

each ε ≥ ε0 one can form the following diagram

Ufε −→ U
g
ε(2cδ′+c) −→ V

g
ε(2cδ′+c)+η ↪→ V

g
ε(2cδ′+c+η),

where the last step follows because since ε ≥ ε0 ≥ 1,
then we have that ε(2cδ′+c)+η ≤ ε(2cδ′+c+η). Thus,
by composing the maps intervening in the diagram
above we have constructed for any ε ≥ ε0 a map of
covers Ufε −→ V

g
ε(2cδ′+c+η). In a similar manner one

can construct a map of covers Vgε −→ U
f
ε(2cδ′+c+η) for

each ε ≥ ε0.
This provides the maps Ufexp(ε) → V

g
(2cδ′+c+η) exp(ε)

and Vgexp(ε) → U
f
(2cδ′+c+η) exp(ε) for each ε ≥ ε0. Since

(2cδ′ + c + η) exp(ε) = exp(ε + log(2cδ′ + c + η)), by
reindexing by log we obtain that Rlog

(
f∗(Trε0(U))

)
and

Rlog

(
g∗(Trε0(V))

)
are log(2cδ′ + c+ η)-interleaved.

Similar to the derivation of Corollary 4.2 from Proposi-
tion 4.3, we get the following result from Theorem 4.1.

Theorem 4.2. Let U and V be any two η-interleaved,
(c, s)-good tower of covers of the compact path con-
nected metric space Z and let f, g : X → Z
be any two well-behaved continuous functions such
that maxx∈X dZ(f(x), g(x)) ≤ δ. Then, the
bottleneck distance between DkMM

(
Rlog(U), f

)
and

DkMM
(
Rlog(V), g

)
is bounded by log

(
2cmax(s, δ)+c+

η
)

+ max(0, log 1
s ) for all k ∈ N.



5 Exact Computation for PL-functions on
simplicial domains

The stability result in Theorem 4.2 further motivates us
to design efficient algorithms for constructing multiscale
mapper or its approximation in practice. We justify
the approximation algorithms using the stability results
discussed above.

One of the most common types of input in practice
is a real-valued piecewise-linear (PL) function f : |K| →
R defined on the underlying space |K| of a simplicial
complex K. That is, f is given at the vertex set V(K)
of K, and linearly interpolated within any other simplex
σ ∈ K. In what follows, we consider this PL setting, and
show that interestingly, if the input function satisfies
a mild “minimum diameter” condition, then we can
compute both mapper and multiscale mapper from
simply the 1-skeleton (graph structure) of K. This
makes the computation of the multiscale mapper from a
PL function significantly faster and simpler as its time
complexity depends on the size of the 1-skeleton of K,
which is typically orders of magnitude smaller than the
total number of simplices (such as triangles, tetrahedra,
etc) in K.

Given a simplicial complex K, let K1 denote the
1-skeleton of K: that is, K1 contains the set of vertices
and edges of K. Define f̃ : |K1| → R to be the
restriction of f to |K1|; that is, f̃ is the PL function
on |K1| induced by function values at vertices.

Condition 5.1. (Minimum diameter condition)
For a given tower of covers W of a compact connected
metric space (Z, dZ), let κ(W) := inf{diam(W ); W ∈
W ∈W} denote the minimum diameter of any element
of any cover of the tower W. Given a simplicial complex
K with a function f : |K| → Z and a tower of covers
W of the metric space Z, we say that (K, f,W) satisfies
the minimum diameter condition if diam(f(σ)) ≤ κ(W)
for every simplex σ ∈ K.

In our case, f is a PL function, and thus satisfying the
minimum diameter condition means that for every edge
e = (u, v) ∈ K1, |f(u)− f(v)| ≤ κ(W). In what follows
we assume that K is connected. We do not lose any
generality by this assumption because the arguments
below can be applied to each connected component of
K.

Definition 10. Two towers of simplicial complexes

S =
{
Sε

sε,ε′−→ Sε′
}

and T =
{
Tε

tε,ε′−→ Tε′
}

are
isomorphic, denoted S ∼= T, if res(S) = res(T), and
there exist simplicial isomorphisms ηε and ηε′ such that
the diagram below commutes for all res(S) ≤ ε ≤ ε′.

Sε
sε,ε′ //

ηε

Sε′

ηε′

Tε
tε,ε′ // Tε′

Our main result in this section is the following theorem
which enables us to compute the mapper, multiscale
mapper, as well as the persistence diagram for the
multiscale mapper of a PL function f from its restriction
f̃ to the 1-skeleton of the respective simplicial complex.

Theorem 5.1. Given a PL function f : |K| → R and
a tower of covers W of the image of f with (K, f,W)
satisfying the minimum diameter condition, one has
MM(W, f) ∼= MM(W, f̃).

We show in Proposition 5.1 that the two mapper
outputs M(W, f) and M(W, f̃) are identical up to a re-
labeling of their vertices (hence simplicially isomorphic)
for everyW ∈W. Also, since the simplicial maps in the
filtrations MM(W, f) and MM(W, f̃) are induced by the
pullback of the same tower of covers W, they are identi-
cal again up to the same relabeling of the vertices. This
then establishes the theorem.

In what follows, for clarity of exposition, we use X
and X1 to denote the underlying space |K| and |K1|
of K and K1, respectively. Also, we do not distinguish
between a simplex σ ∈ K and its image |σ| ⊆ X and
thus freely say σ ⊆ X when it actually means that
|σ| ⊆ X for a simplex σ ∈ K.

Proposition 5.1. If (K, f,W) satisfies the minimum
diameter condition, then for every W ∈W, M(W, f) is
identical to M(W, f̃) up to relabeling of the vertices.

Proof. Let U = f∗(W) and Ũ = f̃∗(W). By definition
of f̃ , each Ũ ∈ Ũ is a connected component of some
U ∩ X1 for some U ∈ U . In Proposition 5.2, we show
that U ∩ X1 is connected for every U ∈ U . Therefore,
for every element U ∈ U , there is a unique element
Ũ = U ∩ X1 in Ũ and vice versa. Claim 2 finishes the
proof.

Claim 2.
⋂k
i=1 Ui 6= ∅ if and only if

⋂k
i=1 Ũi 6= ∅.

Proof. Clearly, if
⋂k
i=1 Ũi 6= ∅, then

⋂k
i=1 Ui 6= ∅

because Ũi ⊆ Ui. For the converse, assume
⋂k
i=1 Ui 6= ∅

and pick any x ∈
⋂k
i=1 Ui. Let σ ⊆ X be a simplex

which contains x. Consider the level set L = f−1(f(x)).
Since f is PL, Lσ = L ∩ σ is connected and contains a
point y ∈ σ ∩X1. Then, y ∈ Ui for each i ∈ {1, . . . , k}
because x and y are connected by a path in Ui ∩ σ and
f(x) = f(y). Therefore, y ∈

⋂
i Ui. Since y ∈ X1 it

follows that y ∈
⋂
i Ũi.



Proposition 5.2. If (X, f,W) satisfies the minimum
diameter condition, then for every W ∈ W and every
U ∈ f∗(W), the set U ∩X1 is connected.

Proof. Fix U ∈ f∗(W). If U ∩ X1 is not connected,
let C1, . . . , Ck denote its k ≥ 2 connected components.
First, we show that each Ci contains at least one
vertex of X1. Let e = (u, v) be any edge of X1 that
intersects U . If both ends u and v lie outside U , then
|f(u) − f(v)| > |maxU f −minU f | ≥ κ(W). But, this
violates the minimum diameter condition. Thus, at
least one vertex of e is contained in U . It immediately
follows that Ci contains at least one vertex of X1.

Let ∆ be the set of all simplices σ ⊆ X so that
σ ∩U 6= ∅. Fix σ ∈ ∆ and let x be any point in σ ∩U .

Claim 3. There exists a point y in an edge of σ so that
f(x) = f(y).

Proof. We first observe that V+(σ) := {v ∈
V(σ)|f(v) ≥ f(x)} is non-empty. Otherwise f(v) <
f(x) for for all vertices v ∈ σ. In that case f(x′) < f(x)
for all points x′ ∈ σ contradicting that x belongs to
σ. Now, if V+(σ) = V(σ), there is an edge e ⊆ σ
so that x ∈ e and taking y = x serves the purpose.
If V+(σ) 6= V(σ), there is a vertex u ∈ V(σ) so that
f(u) < f(x). Taking a vertex v from the non-empty set
V+(σ), we get an edge e = (u, v) where f(u) < f(x)
and f(v) ≥ f(x). Since f is PL, it follows that e has a
point y so that f(y) = f(x).

Since σ contains an edge e that is intersected by U ,
it contains a vertex of e that is contained in U . This
means every simplex σ ∈ ∆ has a vertex contained in U .
For each i = 1, . . . , k let ∆i := {σ ⊆ X |V(σ)∩Ci 6= ∅.}
Since every simplex σ ∈ ∆ has a vertex contained in U ,
we have ∆ =

⋃
i ∆i. We argue that the sets ∆1, . . . ,∆k

are disjoint from each other. Otherwise, there exist
i 6= j and a simplex σ with a vertex u in ∆i and another
vertex v in ∆j . Then, the edge (u, v) must be in U
because f is PL. But, this contradicts that Ci and Cj are
disjoint. This establishes that each ∆i is disjoint from
each other and hence ∆ is not connected contradicting
that U is connected. Therefore, our initial assumption
that U ∩X1 is disconnected is wrong.

Real-valued functions on triangulable topolog-
ical space. We note that, by using PL functions to
approximate the continuous functions, the above result
also leads to an approximation of the multiscale mapper
for real-valued functions defined on triangulable topo-
logical spaces.

A PL function f : |K| → R δ-approximates a
continuous function g : X → R defined on a topological

space X if there exists a homeomorphism h : X →
|K| such that for any point y ∈ |K|, we have that
|f(y)−g◦h−1(y)| ≤ δ. The following result states that if
a PL function δ-approximates a continuous real-valued
function on X, then the persistence diagrams induced
by the respective multiscale mappers are also close.

Corollary 5.1. Let f : |K| → R be a piecewise-
linear function on K that δ-approximates a continu-
ous function g : X → R. Let W be a (c, s)-good
tower of covers of R. Then the bottleneck distance be-
tween the persistence diagrams DkMM

(
Rlog(W), f

)
and

DkMM
(
Rlog(W), g

)
is at most log

(
2cmax(s, δ) + c

)
+

max(0, log 1
s ) for all k ∈ N.

Proof. Let g̃ : |K| → R denote the push forward
of g : X → R by the homeomorphism h : X →
|K|. By the definition of δ-approximation, we know
that ‖f − g̃‖∞ ≤ δ. Hence by Corollary 4.2, the
bottleneck distance between the persistence diagrams
DkMM

(
Rlog(W), f

)
and DkMM

(
Rlog(W), g̃) is at most

log(2cmax(s, δ) + c) + max(0, log 1
s ) for all k ∈ N.

On the other hand, since h is homeomorphism,
it is easy to verify that the pullback of W via
g and via g̃ induce isomorphic persistence modules:
Hk(MM(Rlog(W), g))) ∼= Hk(MM(Rlog(W), g̃))). Com-
bining this with the discussion in previous paragraph,
the claim then follows.

6 Approximating multiscale mapper for
general maps

While results in the previous section concern real-valued
PL-functions, we now provide a significant generaliza-
tion for the case where f maps the underlying space ofK
into an arbitrary compact metric space Z. We present
a “combinatorial” version of the (multiscale) mapper
where each connected component of a pullback f−1(W )
for any coverW in the cover of Z consists of only vertices
of K. Hence, the construction of the Nerve complex for
this modified (multiscale) mapper is purely combinato-
rial, simpler, and more efficient to implement. But we
lose the “exactness”, that is, in contrast with the guar-
antees provided by Theorem 5.1, the simpler combina-
torial mapper only approximates the actual multiscale
mapper at the homology level. Also, it requires a (c, s)-
good tower of covers of Z. One more caveat is that the
towers of simplicial complexes arising in this case do not
interleave in the (strong) sense of Definition 6 but in a
weaker sense. This limitation worsens the approxima-
tion result by a factor of 3.

In what follows, cc(O) for a set O denotes the set
of all path connected components of O.

Given a map f : |K| → Z defined on the underlying
space |K| of a simplicial complex K, to construct the
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Figure 1: Partial thickened edges belong to the two
connected components in f−1(W ). Note that each set
in ccG(f−1(W ) contains only the set of vertices of a
component in cc(f−1(W )).

mapper and multiscale mapper, one needs to compute
the pullback cover f∗(W) for a cover W of the compact
metric space Z. Specifically, for any W ∈ W one needs
to compute the pre-image f−1(W ) ⊂ |K| and shatter it
into connected components. Even in the setting adopted
in §5, where we have a PL function f̃ : |K1| → R defined
on the 1-skeleton K1 of K, the connected components
in cc(f̃−1(W )) may contain vertices, edges, and also
partial edges: say for an edge e ∈ K1, its intersection
eW = e ∩ f−1(W ) ⊆ e, that is, f(eW ) = f(e) ∩W , is
a partial edge. See Figure 1 for an example. In general
for more complex maps, σ∩f−1(W ) for any k-simplex σ
may be partial triangles, tetrahedra, etc., which can be
nuisance for computations. The combinatorial version
of mapper and multiscale mapper sidesteps this problem
by ensuring that each connected component in the
pullback f−1(W ) consists of only vertices of K.

Combinatorial mapper and multiscale mapper.
Let G be a graph with vertex set V(G) and edge set
E(G). Suppose we are given a map f : V(G) → Z and
a finite open cover W = {Wα}α∈A of the metric space
(Z, dZ). For any Wα ∈ W, the pre-image f−1(Wα)
consists of a set of vertices which is shattered into
subsets by the connectivity of the graph G. These
subsets are taken as connected components. We now
formalize this:

Definition 11. Given a set of vertices O ⊆ V(G), the
set of connected components of O induced byG, denoted
by ccG(O), is the partition of O into a maximal subset
of vertices connected in GO ⊆ G, the subgraph spanned

Algorithm 1 Combinatorial Multiscale Mapper
Input: f : |K| → Z given by fV : V (K) → Z, a tower

of covers W = {W1, . . . ,Wt}
Output: Persistence diagram D∗(MM(W, f))

for i = 1, . . . , t do
compute VW ⊆ V (K) where f(VW ) = f(V (K)) ∩

W and {V jW }j = ccK1(VW ), for ∀W ∈ Wi;
compute Nerve complex Ni = N({V jW }j,W ).

end for
compute D∗({Ni→Ni+1, i ∈ [1, t− 1]}).

by vertices in O. We refer to each such maximal subset
of vertices as a G-induced connected component of O.
We define f∗G(W), the G-induced pull-back via the
function f , as the collection of all G-induced connected
components ccG(f−1(Wα)) for all α ∈ A.

Definition 12. (G-induced multiscale mapper) Simi-
lar to the mapper construction, we define the G-induced
mapper MG(W, f) as the nerve complex N(f∗G(W)).

Given a tower of covers W = {Wε} of Z, we define
the G-induced multiscale mapper MMG(W, f) as the
tower of G-induced nerve complexes {N(f∗G(Wε)) |
Wε ∈W}.

Advantage of combinatorial multiscale mapper.
Given a map f : |K| → Z defined on the underlying
space |K| of a simplicial complex K, let fV : V(K)→ R
denote the restriction of f to the vertices of K. Consider
the graph K1 as providing connectivity information for
vertices in V(K). Given any tower of covers W of
the metric space Z, the K1-induced multiscale mapper
MMK1(W, fV ) is called the combinatorial multiscale
mapper of f w.r.t. W.

A simple description of the computation of the
combinatorial mapper is in Algorithm 1. For the
simple PL example in Figure 1, f−1(W ) contains two
connected components, one consists of the set of white
dots, while the other consists of the set of black dots.
More generally, the construction of the pullback cover
needs to inspect only the 1-skeleton K1 of K, which is
typically of significantly smaller size. Furthermore, the
construction of the Nerve complex Ni as in Algorithm
1 is also much simpler: We simply remember, for
each vertex v ∈ V (K), the set Iv of ids of connected
components {V jW }j,W∈Wi

which contain it. Any subset
of Iv gives rise to a simplex in the Nerve complex Ni.

Let MM(W, f) denote the standard multiscale map-
per as introduced in §3. Our main result in this section
is that if W is a (c, s)-good tower of covers of Z, then the
resulting two towers of simplicial complexes, MM(W, f)
and MMK1(W, fV ), interleave in a sense which is weaker



than that of Definition 6 but still admits a bounded dis-
tance between their respective persistence diagrams as a
consequence of the weak interleaving result of [6]. This
weaker setting only worsens the approximation by a fac-
tor of 3.

Theorem 6.1. Assume that (Z, dZ) is a compact and
connected metric space. Given a map f : |K| → Z
defined on the underlying space of a simplicial complex
K, let fV : V(K) → Z be the restriction of f to
the vertex set V(K) of K. Given a (c, s)-good tower
of covers W of Z such that (K, f,W) satisfies the
minimum diameter condition (cf. Condition 5.1), the
bottleneck distance between the persistence diagrams
DkMM

(
Rlog(W), f

)
and DkMMK1

(
Rlog(W), fV

)
is at

most 3 log(3c) + 3 max(0, log 1
s ) for all k ∈ N.

The remainder of this section is devoted to proving
Theorem 6.1.

In what follows, the input tower of covers W ={
Wε

wε,ε′−→ Wε′
}
ε≤ε′ is (c, s)-good, and we set ρ = 3c.

For each ε ≥ s, let Mε denote the the nerve com-
plex N(f∗(Wε)) and MK1

ε denote the the combinatorial
mapper N(f∗K1

V (Wε)). Our goal is to show that there
exist maps φε and νε so that diagram-(A) below com-
mutes at the homology level, which then leads to a weak
log ρ-interleaving at log-scale of the persistence modules
arising from computing the homologies of MM(W, f)
and MMK1(W, fV ). This then proves Theorem 6.1.

(A)

Mε

φε
((QQQQQQQQQQQQQQQQ

θε,ρε // Mρε

MK1
ε

νε

OO

θK1
ε,ρε

// MK1
ρε

νρε

OO

(B)

Mε

φε
((

sε // Mρε

MK1
ε

νε

OO

tε
// MK1

ρε

νρε

OO

(6.4)

In the diagram above, the map θε,ε′ :=
N(f∗(wε,ε′)) : Mε → Mε′ is the simplicial map induced
by the pullback of the map of covers wε,ε′ :Wε →Wε′ .
Similarly, the map θK1

ε,ε′ := N(f∗K1
V (wε,ε′)) : MK1

ε →
MK1
ε′ is the simplicial map induced by the pullback of

the map of covers wε,ε′ :Wε →Wε′ .

The maps νε. Since connectivity in the 1-skeleton K1

implies connectivity in the underlying space of K, there
is a natural map from elements in ccK1(f−1

V (W )) to
cc(f−1(W )), which in turn leads to a simplicial map
νε : MK1

ε → Mε. The relatively simple details can be
found in Appendix F.

Auxiliary maps of covers µε. What remains is to
define the maps φε in diagram-(A). We first introduce
the following map of covers: µε : Wε → Wρε for any
ε ≥ s. Specifically, given any W ∈ Wε and s ≥ 0,
let W s = {x ∈ Z | dZ(x,W ) ≤ s}. Since W is (c, s)-
good, there exists at least one set W ′ ∈ Wρε such that
W s ⊆W ′. This is because for any ε ≥ s:

s ≤ diam(W s) ≤ diam(W ) + 2s = ε+ 2s ≤ 3ε,

so that then c · diam(W s) ≤ 3cε = ρε. We set µε(W ) =
W ′: There may be multiple choices of sets in Wρε that
contains W , we pick an arbitrary but fixed one. Let
sε : Mε → Mρε and tε : MK1

ε → MK1
ρε denote the

simplicial map induced by the pullbacks of the cover
map µε : Wε → Wρε via f and via fV , respectively. In
other words, sε = N(f∗(µε)) and tε = N(f∗K1

V (µε)).

The maps φε. We now define the map φε : Mε → MK1
ρε

with the help of diagram-(B) in (6.4). Fix W ∈ Wε.
Given any set U ∈ cc(f−1(W )), write {Vβ}β∈AU for the
preimage ν−1

ε (U) of U under the vertex map νε. Note
that Vβ ⊆ U for any β ∈ AU and

⋃
β∈AU Vβ = V(K)∩U.

We claim that tε(Vβ) = tε(Vβ′) for any β, β′ ∈ AU .
Indeed, since Vβ and Vβ′ are contained in the path
connected component U , let π(x, y) ⊆ U be any path
connecting a vertex x ∈ Vβ and y ∈ Vβ′ in U . Let
{σ1, . . . , σa} be the collection of simplices that inter-
sect π(x, y). By the minimum diameter condition (cf.
Condition 5.1) and the definition of the map µε, we
have that f(σj) ⊆ W s ⊆ µε(W ) ∈ Wρε, for any j ∈
{1, . . . , a}. Hence Vβ ∪ Vβ′ ∪ {σ1, . . . , σa} ⊆ sε(U) ∈
cc(f−1(µε(W ))). Furthermore, since the edges of sim-
plices {σ1, . . . , σa} connect x ∈ Vβ and y ∈ Vβ′ , vertices
in Vβ and Vβ′ are thus connected by edges in sε(U).
That is, there exists a K1-induced component (a sub-
set of vertices of K) V̂ ∈ ccK1(f−1

V (µε(W )))) such that
Vβ ∪ Vβ′ ⊆ V̂ for any β, β′ ∈ AU . Hence, all Vβs with
β ∈ AU have the same image V̂ in V(MK1

ρε ) under the
map tε, and we set φε(U) := V̂ to be this common im-
age. The proof of the following result is in Appendix
F.

Lemma 6.1. The vertex map φε introduced above in-
duces a simplicial map which we also denote by φε :
Mε → MK1

ρε .

Finally, by the construction of φε, the lower triangle
in diagram-(B) in (6.4) commutes. This fact, the com-
mutativity of the square in diagram-(B), and the defi-
nition of νε together imply that the top triangle com-
mutes. Furthermore, Lemma 2.1 states the two maps
of covers f∗(wε,ρε) and f∗(µε) induce contiguous sim-
plicial maps θε,ρε and sε. Similarly, θK1

ε,ρε is contiguous



to tε. Since contiguous maps induce the same map at
the homology level, it then follows that diagram-(A) in
(6.4) commutes at the homology level. At this point one
could apply the strong interleaving result of [6] had the
maps φε been defined for any Mε → MK1

ε′ . Nonetheless,
the Weak Stability Theorem of [6] can be applied even
in this case. This, together with an argument similar to
the proof of Corollary 4.2, provides Theorem 6.1.

7 Discussion

In this paper, we proposed, as well as studied theoretical
and computational aspects of multiscale mapper, a
construction which produces a multiscale summary of
a map on a domain using a cover of the codomain at
different scales.

Given that in practice, hidden domains are often
approximated by a set of discrete point samples, an
important future direction will be to investigate how to
approximate the multiscale mapper of a map f : X → Z
on the metric space X from a finite set of samples
P lying on or around X as well as function values
f : P → Z at points in P . It will be particularly
interesting to be able to handle noise both in point
samples P and in the observed values of the function
f .

We also note that the multiscale mapper framework
can be potentially extended to a zigzag-tower of covers,
which will further increase the information encoded
in the resulting summary. It will be interesting to
study the theoretical properties of such a zigzag version
of mapper. Its stability however appears challenging,
given that the theory of stability of zigzag persistence
modules is much less developed than that for standard
persistence modules. Another interesting question is
to understand the continuous object that the mapper
converges to as the scale of the cover tends to zero. In
particular, does the mapper converge to the Reeb space
[18]?

Finally, it seems of interest to understand the
features of a topological space which are captured by
Multiscale Mapper and its variants. Some related work
in this direction in the context of Reeb graphs has been
reported recently [13, 14].
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A Missing details from Section 2

Proof of lemma 2.1. Write U = {Uα}α∈A and V =
{Vβ}β∈B . Then, for all α ∈ A we have both

Uα ⊆ Vζ(α) and Uα ⊆ Vξ(α).

This means that Uα ⊆ Vζ(α) ∩ Vξ(α) for all α ∈ A.
Now take any σ ∈ N(U). We need to prove that
ζ(σ) ∪ ξ(σ) ∈ N(V). For this write

⋂
β∈ζ(σ)∪ξ(σ)

Vβ =

(⋂
α∈σ

Vζ(α)

)
∩

(⋂
α∈σ

Vξ(α)

)

=
⋂
α∈σ

(
Vζ(α) ∩ Vξ(α)

)
⊇
⋂
α∈σ

Uα 6= ∅,

where the last step follows from assuming that
σ ∈ N(U).

B Missing details from Section 4.1.

Proof of Proposition 4.2. Let r denote the common
resolution of U and V. Write U =

{
Uε

uε,ε′−→ Uε′
}
r≤ε≤ε′

and V =
{
Vε

vε,ε′−→ Vε′
}
r≤ε≤ε′ , and for each ε ≥ r let

ζε : Uε → Vε+η and ξε : Vε → Uε+η be given as in
Definition 6. For each diagram in (4.3) one can consider
a similar diagram at the level of covers involving covers

of the form Uε and Vε, and apply the nerve construction.
This operation will yield diagrams identical to those in
(4.3) where for each ε ≥ r:

• Sε := N(Uε), Tε := N(Vε),

• sε,ε′ := N(uε,ε′), for r ≤ ε ≤ ε′; tε,ε′ := N(vε,ε′),
for r ≤ ε ≤ ε′; ϕε := N(ζε), and ψε := N(ξε).

To satisfy Definition 6, it remains to verify conditions
(i) to (iv). We only verify (i), since the proof of the
others follows the same arguments. For this, notice
that both the composite map ξε+η ◦ ζε and uε,ε+2η are
maps of covers from Uε to Uε+2η. By Lemma 2.1 we
then have that N(ξε+η ◦ ζε) and N(uε,ε+2η) = sε,ε+2η

are contiguous. But, by the properties of the nerve
construction N(ξε+η◦ζε) = N(ξε+η)◦N(ζε) = ψε+η◦ϕε,
which completes the claim.

C The instability of Mapper

In this section we briefly discuss how one may perceive
that the simplicial complexes produced by Mapper may
not admit a simple notion of stability.

As an example consider the situation in Figure
2. Consider for each δ > 0 the domain Xδ shown
in the figure (a topological graph with one loop), and
the functions depicted in the figure: these are height
functions fδ and gδ which differ by δ, that is ‖fδ −
gδ‖∞ = δ. The open cover is shown in the middle of the
figure. Notice that the Mapper outputs for these two
functions w.r.t. the same open cover of the co-domain
R are different and that the situation can be replicated
for each δ > 0.

In contrast, one of the features of the Multiscale
Mapper construction is that it is amenable to a certain
type of stability under changes in the function and in
the tower of covers. This situation is not surprising and
is reminiscent of the pattern arising when comparing
standard homology (and Betti numbers) computed on
fixed simplicial complexes to persistent homology (and
Betti barcodes/persistent diagrams) on tower of simpli-
cial complexes (i.e. filtrations).

In what follows we will introduce a particular class
of towers of covers that will be used to express some
stability properties enjoyed by Multiscale Mapper.

D Good towers of covers

Remark D.1. We make the following remarks about
the notion of (c, s)-good towers of covers:

• The underlying intuition is that an “ideal” tower of
covers is one for which c = 1 and s = 0.

• A first example is given by the following construc-
tion: pick any s ∈ [0,diam(Z)] and for ε ≥ s let



δ

δ

Figure 2: A situation in which Mapper yields two
different answers for similar functions on the same
domain. The construction can be carried out for each
δ > 0.

Uε := {B(z, ε2 ), z ∈ Z}, i.e. the collection of all
ε-balls in Z. The maps wε,ε′ for ε′ ≥ ε are defined
in the obvious way: B(z, ε2 ) 7→ B(z, ε

′

2 ), all z ∈ Z.
Then, since any O ⊂ Z is contained in some ball
B(o,diam(O)) for some o ∈ O, this means that
{Uε}ε≥s is (2, s)-good. Of course whenever Z is
path connected and not a singleton, this tower of
covers is infinite. A related finite construction is
given next.

• A discrete set P ⊂ Z is called an ν-sample of
(Z, dZ) if for any point z ∈ Z, dZ(z, P ) ≤ ν.
Given a finite ν-sampling P of Z one can always
find a (3, 2ν)-good tower of covers of Z consisting,
for each scale ε ≥ 2ν, of all balls B(p, ε2 ), p ∈ P .
Details are given in Appendix D.2. This family
may not be space efficient. An example of how
to construct a space efficient (c, s)-good tower of
covers for a compact metric space (Z, dZ) can be
found in Appendix D.2.

• Conditions (1) and (2) mean that the tower begins
at resolution s, and the resolution parameter ε con-
trols the geometric characteristics of the elements
of the cover. Parameter s is clearly related to the
size/finiteness of U: if s is very small, then the
number of sets in Uε for ε larger than but close to s
has to be large. Also, requiring s to be smaller than
or equal to the diameter of Z ensures that condition
3 is not vacuously satisfied.

• Condition (3) controls the degree to which one can
inject a given set in Z inside an element of the
cover. The situation when c > 1 is consistent with
having finite covers for all ε. On the other hand,
c = 1 may require, for each ε, open covers with
infinitely many elements.

• If U is (c, s)-good, then it is (c′, s′)-good for all
c′ ≥ c and s′ ≥ s.

A priori the conditions defining a (c, s)-good tower
of covers do not guarantee that the sets O in Z with
diameter smaller than the resolution s can be covered
by some element W of some Wε, for some ε ≥ s. The
following proposition deals with this situation and is
used later.

Proposition D.1. If Z is path connected and U is a
(c, s)-good tower of covers of Z, then whenever O ⊂ Z
is s.t. diam(O) < s, there exists W ∈ Wc·(diam(O)+2s)

s.t. W ⊇ O.

Remark D.2. Note that for a small set O, diam(O) <
s, one obtains only that O ⊂ W for some W in
Wc·(diam(O)+2s). This is in contrast with what property
3 above guarantees for sets with diameter diam(O) ≥ s:
the existence of W ∈ Wc·diam(O) with O ⊂W.

Proof. Indeed, since Z is path connected then one has
that diam(Os) ≥ min{diam(Z), s} = s it follows by the
definition that ∃W ′ ∈ Wc·diam(Os) containing O. We
conclude since diam(Os) ≤ diam(O) + 2s, O ⊂ Os, and
since there exists W ∈ Wc(diam(O)+2s) containing W ′.

We will henceforth assume that (Z, dZ) is a compact
path connected metric space.

D.1 The necessity of (c, s)-good tower of covers.
In Section §4.2, we aim to obtain a stability result
for the multiscale mapper MM(U, f) with respect to
perturbations of f . First, notice that we need to bound
the resolution of an tower of covers from below by a
parameter s > 0 to ensure its finiteness. We explain now
why we need the second parameter c for the stability
result.

Specifically, in what follows, we provide an example
of a tower of covers of R which does not satisfy the con-
dition 3 in (c, s)-goodness. This causes the persistence
diagram D1MM(U, f) to be unstable with respect to
small perturbations of f .

Construction of a pathological tower of covers.
Given M > 0 let I := [−M,M ]. For each ε > 0 and
k ∈ Z let I(ε)

k := [k · 2blogε2c, (k + 1) · 2blogε2c]. Pick any
s ≥ 0 and consider the following tower W of covers of I
by closed intervals:

W =
{
Wε

wε,ε′−→ Wε′
}
s≤ε≤ε′ ;

where

Wε :=
{
I
(ε)
k | k ∈ Z s.t. I(ε)

k ∩ I 6= ∅
}
.



The maps of covers wε,ε′ : Wε → Wε′ are defined
below.

Claim 4. For any ε′ > ε, and each element I(ε)
k ∈ Wε,

there exists a unique k′ ∈ Z such that I(ε)
k ⊆ I(ε′)

k′ .

For each k ∈ Z we set wε,ε′(I
(ε)
k ) = I

(ε′)
k′ where k′ ∈ Z is

given the claim above.

Proof. (Proof of the claim) Write q = blogε2c and
q′ = blogε

′

2 c = q + n for some n ∈ N. We are going
to produce k′ ∈ Z such that k′ · 2q

′ ≤ k · 2q and
(k+ 1) ·2q ≤ (k′+ 1) ·2q′ , which will immediately imply
that I(ε)

k ⊆ I(ε′)
k′ .

Choose k′ to be the largest integer such that k′·2q′ ≤
k · 2q. This means that k′ ∈ Z is maximal amongst
integers for which k′ · 2n ≤ k. By maximality, we have
that (k′ + 1) · 2n ≥ k + 1. Then, this means that
(k′ + 1) · 2q′ ≥ (k + 1) · 2q, which implies that indeed
I
(ε)
k ⊆ I(ε′)

k′ .
In fact, I(ε′)

k′ is the unique interval in Wε′ that
contains I(ε)

k due to the fact that intervals in Wε′ have
disjoint interiors.

Remark D.3. By the argument in the proof of the
above claim, it also follows that for any s ≤ ε < ε′ < ε′′

and any I ∈ Wε, wε,ε′′(I) = wε′,ε′′(wε,ε′(I)); that
is, wε,ε′′ = wε′,ε′′ ◦ wε,ε′ . Hence the maps {wε,ε′ :
Wε → Wε′}s≤ε≤ε′ are valid maps of covers, satisfying
the conditions in Definition 3. Hence W is a tower of
(closed) covers.

Remark D.4. This natural tower of covers W is not
(c, s)-good for any constant c. Specifically, consider an
arbitrary small interval (−r, r) for any r > 0. Clearly,
there is no element in any Wε that contains this inter-
val. It turns out that the persistence diagram arising
from multiscale mapper is unstable w.r.t. perturbations
of the input function, as we will show by an example
shortly. Note that, in contrast, stability of the persis-
tence diagrams of multiscale mapper outputs is guaran-
teed for (c, s)-good tower of covers, as stated in Corol-
lary 4.2 and Theorem 4.1.

An example. We show how instability of multiscale
mapper may arise for some choices of W using the
following example which is similar to the one presented
in Figure 2. Let δ be any value larger than s, the
smallest scale of the tower of covers W. Suppose we are
given two functions defined on a graph G: f, g : G→ R,
as shown in Figure 3. It is clear that ‖f − g‖∞ = δ.

D1MM(W, f) consists of the point (s, 2δ), indicat-
ing that a non-null homologous loop exists at scale s

δ

0
δ

f g

Figure 3: f and g.

in the pullback nerve complex N(f∗(Ws)), but is killed
at scale 2δ in the nerve complex N(f∗(W2δ)) (specifi-
cally, the image of this loop under the simplicial map
f∗(ws,2δ) becomes null-homologous).

However, for the function g, there is a loop created
at the lowest scale s, but the homology class carried
by this loop is never killed under the simplicial maps
g∗(ws,ε′) : N(g∗(Ws)) → N(g∗(Wε′) for any ε′ > s.
Thus the persistence diagram D1MM(W, g) consists of
the point (s,∞). Hence the two persistence diagrams
D1MM(W, f) and D1MM(W, g) are not close under the
bottleneck distance (in fact, the bottleneck distance
between them is ∞), despite the fact that the functions
f and g are δ-close , that is ‖f − g‖∞ ≤ δ.

Remark D.5. We remark that for clarity of presen-
tation, in the above construction, each element in the
covering Wε is a closed interval. However, this ex-
ample can be easily extended to open covers: Specifi-
cally, let ν be a sufficiently small positive value such
that ν < s < δ. Then we can change each inter-
val I = [k · 2blog

ε
2c, (k + 1) · 2blog

ε
2c] ∈ Wε to Iν =

(k · 2blogε2c − ν, (k + 1) · 2blogε2c + ν). Note that for an
arbitrary small interval (−r, r) with r > ν, there is no
element in any Wε that contains it, so that the resulting
tower of covers is not (c, s)-good for any c ≥ 1. Hence
the example described in Figure 3 can be adapted when-
ever δ > ν; this leads to the following statement:

Proposition D.2. Fix s ≥ 0 and W > s. Then, for
each W

2 > δ > 0 there exist (1) a topological graph Gδ,
(2) two continuous functions fδ, gδ : Gδ → [−W,W ],
and (3) a tower of covers W of [−W,W ] satisfying the
following properties:

• ‖fδ − gδ‖∞ = δ,



• D1MM(W, fδ) = {(s, 2δ)} and D1MM(W, gδ) =
{(s,∞)}.

D.2 Constructing a good towers of covers. Sup-
pose we are given a compact metric space (Z, dZ) with
bounded doubling dimension. We assume that we can
obtain an ν-sample P of (Z, dZ), which is a discrete
set of points P ⊂ Z such that for any point z ∈ Z,
dZ(z, P ) ≤ ν. For example, if the input metric space
Z is a d-dimensional cube in the Euclidean space Rd,
we can simply choose P to be the set of vertices from a
d-dimensional lattice with edge length ν. For simplicity,
assume that ν ≤ 1 (otherwise, we can rescale the metric
to make this hold).

D.2.1 A simple (c, s)-good tower of covers. Con-
sider the following tower of covers W = {Wε | ε ≥ 2ν}
where Wε := {B ε

2
(u) | u ∈ P}. The associated maps

of covers wε,ε′ : Wε → Wε′ simply sends each element
B ε

2
(u) ∈ Wε to the corresponding set B ε′

2
(u) ∈ Wε′ . It

is easy to see that W is (3, 2ν)-good. Indeed, given any
O ⊆ Z with diameter R = diam(O) ≥ s = 2ν, pick
an arbitrary point o ∈ O and let u ∈ P be a nearest
neighbor of o in P . We then have that for any point
x ∈ O,

dZ(x, u) ≤ dZ(x, o) + dZ(o, u) ≤ R+ ν ≤ 3R
2
.

That is, O ⊂ B 3R
2

(u) ∈ W3R.
This tower of covers however has large size. In

particular, as the scale ε becomes large, the number
of elements in Wε remains the same, while intuitively,
a much smaller subset will be sufficient to cover Z. In
what follows, we describe a different construction of a
good tower of covers based on using the so-called nets.

D.2.2 A space-efficient (c, s)-good tower of cov-
ers. Following the notations used by Har-Peled and
Mendel in [21], we have the following:

Proposition D.3. ([21]) For any constant ρ ≥ 11,
and for any scale ` ∈ R+, one can compute a ρ`-net
N (`) ⊆ P in the sense that

(i) for any p ∈ P , dZ(p,N (`)) ≤ ρ`;
(ii) any two points u, v ∈ N (`), dZ(u, v) ≥ ρ`−1/16,

and

(iii) N (`′) ⊆ N (`) for any ` < `′; that is, the net at a
bigger scale is a subset of net at a smaller scale.

Each N (`) is referred to as a net at scale `.

From now on, we set εi := 4(ρ + 1)i for any
positive integer i ∈ Z+. Consider the collection of

nets {N (i) | i ∈ Z+} where N (i) is as described in
Proposition D.3.

Definition 13. We define a tower of covers U = {Uεi |
i ∈ Z+} where:
(D.1)
Uεi :=

{
B εi

2
(u) | u ∈ N (i)}, where εi = 4(ρ+ 1)i

}
.

The associated maps of covers uεi,εj : Uεi → Uεj ,
for any i, j ∈ Z+ with i 6= j, are defined as follows:

(1) uεi,εi+1 : Uεi → Uεi+1 : For any element U =
B εi

2
(u) ∈ Uεi , we find the nearest neighbor v ∈

N (i + 1) of u in N (i), and map U to V =
B εi+1

2
(v) ∈ Uεi+1 .

(2) For i < j − 1, we set uεi,εj as the concatenation
uεj−1,εj ◦ uεj−2,εj−1 ◦ · · · ◦ uεi,εi+1 .

Remark D.6. We note that the above tower of covers
U is discrete in the sense that we only consider covers
Uε for a discrete set of εs from {εi | i ∈ Z+}. However,
one can easily extend it to a tower of covers Uext =
{Uext

δ } which is defined for all δ ∈ R+ by declaring that
Uext
δ = Uεζ(δ) where ζ(δ) = max{i ∈ Z| εi ≤ δ}. One

may define the cover maps in Uext in a similar manner.
For simplicity of exposition, in what follows we use a
discrete tower of covers.

Claim 5. For any i ∈ Z+, Uεi forms a covering of the
metric space Z (where P are sampled from).

Proof. P is an ν-sampling of (Z, dZ) with ν ≤ 1. Hence
for any point x ∈ Z, there is a point px ∈ P such
that d(x, px) ≤ ε. By Property (i) of Definition D.3,
dZ(px,N (i)) ≤ ρi. Hence dZ(x,N (i)) ≤ dZ(x, px) +
dZ(px,N (i)) ≤ 1 + ρi ≤ (ρ + 1)i. As such, there
exists u ∈ N (i) such that dZ(x, u) ≤ (ρ + 1)i; that
is, x ∈ U = B εi

2
(u) ∈ Uεi .

Claim 6. For any i < j and any U ∈ Uεi , we have
U ⊆ uεi,εj (U).

Proof. We show that the claim holds true for j =
i + 1, and the claim then follows from this and the
construction of uεi,εj for i < j − 1.

Suppose U = B εi
2

(u) for u ∈ N (i), and let V =
uεi,εi+1(U). By construction, V = B εi+1

2
(v) is such that

v is the nearest neighbor of u in N (i+1). If u = v, then
clearly U ⊆ V .

If u 6= v, by Property (i) of Definition D.3,
dZ(u, v) ≤ ρi+1. At the same time, any point x ∈ U
is within εi

2 = 2(ρ+ 1)i distance to u. Hence

dZ(x, v) ≤ dZ(x, u)+dZ(u, v) ≤ 2(ρ+1)i+ρi+1 < 2(ρ+1)i+1.

It then follows that U ⊆ V .



Theorem D.1. U as constructed above is a (c, s)-good
tower of covers with c = s = 4(ρ+ 1).

Proof. First, note that by Claim 5, each Uε ∈ U is indeed
a cover for (Z, dZ). By Claim 6, the associated maps as
constructed in Definition 13 are valid maps of covers.
Hence U is indeed a tower of covers for (Z, dZ). We now
show that U is (c, s)-good.

First, by Eqn. D.1, each set U in Uεi obviously
has diameter at most εi. Also, U is s-truncated for
s = 4(ρ+1) since it starts with ε1 = s. Hence properties
1 and 2 of Definition 7 hold. What remains is to show
that property 3 of Definition 7 also holds.

Specifically, consider any O ⊂ Z such that
diam(O) ≥ s. Set R = diam(O) and let a be the unique
integer such that

(ρ+ 1)a−1 ≤ R < (ρ+ 1)a.

Let o ∈ O be any point in O, and p ∈ P the nearest
neighbor of o in P : By the sampling condition of P , we
have dZ(o, p) ≤ ν < 1. Let u ∈ N (a) be the nearest
neighbor of p in the net N (a). By Definition D.3 (i),
dZ(p, u) ≤ ρa. We thus have that, for any point x ∈ O,

dZ(x, u) ≤ dZ(x, o) + dZ(o, p) + dZ(p, u)
≤ R+ ε+ ρa

< (ρ+ 1)a + 1 + ρa

≤ 2(ρ+ 1)a.

In other words, O ⊆ B2(ρ+1)a(u) = B εa
2

(u) ∈ Uεa .
On the other hand, since R ≥ (ρ + 1)a−1, we have

that for c = 4(ρ+ 1),

εa = 4(ρ+ 1)a = c · (ρ+ 1)a−1 ≤ cR = c · diam(O).

Space-efficiency of U. In comparison with the simple
(3, 2ρ)-good tower of covers W that we introduced at
the beginning of this section, the main advantage of U
is its much more compact size. Intuitively, this comes
from property (ii) of Proposition 13, which states that
the points in the net N (i) are sparse and contain little
redundancy. In fact, consider the covering Uεi at scale
εi. It size (i.e, the cardinality of Uεi) is close to optimal
in the following sense:

For any ε, denote by V∗(ε) the smallest possible (in
terms of cardinality) covering of (Z, dZ) such that each
element V ∈ V∗(ε) has diameter at most ε. Now, let
s∗(ε) := |V∗(ε)| denote this optimal size for any covering
of (Z, dZ) by elements with diameter at most ε.

Proposition D.4. For any i ∈ Z+, s∗(εi) ≤ |Uεi | =
|N (i)| ≤ s∗( εi

16ρ ).

Proof. The left inequality follows from the definition of
s∗(εi). We now prove the right inequality. Specifically,
consider the smallest covering V∗ = V∗( εi

16ρ ) with
s∗( εi

16ρ ) = |V∗|. By property (ii) of Proposition 13, each
set V ∈ V∗ can contain at most one point from N (i)
since the diameter of V is at most εi

16ρ . At the same
time, we know that the union of all sets in V∗ will cover
all points in N (i). The right inequality then follows.

E Proof of Corollary 4.2 and remarks

Proof. We use the notation of Proposition 4.3. Let
U = f∗(W) and V = g∗(W). If max(1, s) = s,
then Rlog(U) and Rlog(V) are log(2cmax(s, δ) + c)-
interleaved by Proposition 4.3 which gives a bound on
the bottleneck distance of log(2cmax(s, δ) + c) between
the corresponding persistence diagrams [6]. In the case
when s < 1, the bottleneck distance remains the same
only for the 0-truncations of Rlog(U) and Rlog(V). By
shifting the starting point of the two families to the
left by at most | log s| can introduce barcodes of lengths
at most log 1

s or can stretch the existing barcodes to
the left by at most log 1

s for the respective persistence
modules. To see this, consider the persistence module
below where ε1 = log s:

Hk

(
N(f∗(Uε1))

)
→ Hk

(
N(f∗(Uε2))

)
→ · · ·

· · · → Hk

(
N(f∗(U0))

)
→ · · · → Hk

(
N(f∗(Uεn))

)
A homology class born at any index in the range
[log s, 0) either dies at or before the index 0 or is mapped
to a homology class of Hk

(
N(f∗(U0))

)
. In the first case

we have a bar code of length at most | log s| = log 1
s . In

the second case, a bar code of the persistence module

Hk

(
N(f∗(Uε1=0))

)
→ · · · → Hk

(
N(f∗(Uεn))

)
starting at index log 1 = 0 gets stretched to the

left by at most | log s| = log 1
s . The same conclusion

can be drawn for the persistence module induced by
Rlog(V). Therefore the bottleneck distance between
the respective persistence diagrams changes by at most
log 1

s .

Remark E.1. The proposition and corollary above are
in appearance somehow not satisfactory: imagine that
f = g, then δ = 0 but by invoking Proposition 4.3 in-
stead of a 0-interleaving one obtains a

(
log(c(2s+1))+

max(0, log 1
s )
)
-interleaving. Nevertheless, the claim of

the proposition is almost tight for δ > 0: in fact, by mod-
ifying the example in §D.1 for each δ > 0 we can find
a space Xδ, a (c, s)-good tower of covers U of a closed
interval I ⊂ R, and a pair of functions fδ, gδ : X → I
such that ‖fδ − gδ‖∞ = δ but such that the bottleneck



distance between the persistence diagrams of MM(U, fδ)
and MM(U, gδ) is at least max{log(cs), log c, log 1

s} =
Ω
(

log(c(2s+ 1)) + max(0, log 1
s )
)
.

F Missing details from Section 6

Construction of the maps νε. Now we define the
map νε : MK1

ε → Mε. Given a nerve complex
Mε (resp. MK1

ε ), we abuse the notation slightly and
identify a vertex in Mε with its corresponding connected
component in f∗(Wε) (resp. in f

∗K1
V (Wε)).

First, note that by construction of the com-
binatorial mapper, there is a natural map uW :
ccK1(f−1

V (W )) → cc(f−1(W )) for any W ∈ Wε: For
any V ∈ ccK1(f−1

V (W )), obviously, all vertices in V are
K1-connected in f−1(W ). Hence there exists a unique
set UV ∈ cc(f−1(W )) such that V ⊆ UV . We set
uW (V ) = UV for each V ∈ ccK1(f−1

V (W )). The amal-
gamation of such maps for all W ∈ Wε gives rise to
the map νε : f∗K1

V (Wε) → f∗(Wε), whose restriction
to each ccK1(f−1

V (W )) is simply uW as defined above.
Abusing notation slightly, we use νε : V(MK1

ε )→ V(Mε)
to denote the corresponding vertex map as well. Since
for any set of vertices V ∈ f

∗K1
V (Wε), we have that

V ⊆ νε(V ) ⊆ |K|. It then follows that non-empty inter-
sections of sets in f

∗K1
V (Wε) imply non-empty intersec-

tions of their images via νε in f∗(Wε). Hence this vertex
map induces a simplicial map which we still denote by
νε : MK1

ε → Mε.

Proof of Lemma 6.1. We have already proved in the
main text that for all β ∈ AU , tε(Vβ) has the same
image V̂ . Using the same notation as in the main text,
recall that

(∗) Vβ ⊆ U for any β ∈ AU , and
⋃

β∈AU
Vβ = V(K)∩U.

This implies that V(K) ∩ U ⊆ φε(U). In fact, a similar
argument can also be used to prove the following:

Claim 7. The vertices of any simplex that intersects U
will be contained in φε(U).

Now to prove Lemma 6.1, we need to show the
following: given a k-simplex τ = {p0, p1, . . . , pk} ∈ Mε,
where each vertex pj corresponds to set Uj ⊆ |K|, then
we have that

⋂k
j=0 φε(Uj) 6= ∅.

To prove this, take any point x ∈ |K| such that
x ∈

⋂k
j=0 Uj . Suppose x is contained in a simplex

σ ∈ K. By Claim 7, the vertices of σ are contained in
φε(Uj), that is, V(σ) ⊂ φε(Uj), for any j ∈ {0, . . . , k}.
Hence

⋂k
j=0 φε(Uj) ⊇ V(σ) 6= ∅. The lemma then

follows.
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