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Abstract

Recent research has advocated the use of a covariance

matrix of image features for tracking objects instead of

the conventional histogram object representation models

used in popular algorithms. In this paper we extend the

covariance tracker and propose efficient algorithms with

an emphasis on both improving the tracking accuracy and

reducing the execution time. The algorithms are com-

pared to a baseline covariance tracker and the popular

histogram-based mean shift tracker. Quantitative evalua-

tions on a publicly available dataset demonstrate the effi-

cacy of the presented methods. Our algorithms obtain sig-

nificant speedups factors up to 330 while reducing the track-

ing errors by 86 − 90% relative to the baseline approach.

1. Introduction

Object tracking, which is the task of finding the associa-

tion between object location from one frame to the next, has

been an important research area in computer vision. The

success of most practical vision applications is contingent

upon obtaining high quality tracking results in real-time.

The tracking problem is complicated due to several factors

including the large variability in scenes (indoor vs. outdoor,

lighting changes), changes in the target object (articulated,

complex dynamics), and unconstrained viewing directions.

Target representation and localization methods [7, 3] for

object tracking have been proposed in the literature. The

authors of [7] advocate the use of covariance features over

the histograms [3] to obtain a more robust algorithm, but at

the same time they employ an exhaustive image search for

target localization. This paper builds upon [7] and makes

the following contributions: (a) We present several efficient

algorithms, including a gradient descent based local opti-

mization tracker, to improve the performance and execution

time of the covariance tracker. (b) We further demonstrate
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the performance of these algorithms and compare them to

existing approaches by performing a quantitative evaluation

on a large publicly available dataset.

The remainder of the paper is organized as follows. We

present the related work in Sect. 2, review the covariance

tracking algorithm in Sect. 3, and describe our proposed

algorithms in Sect. 4. Section 5 presents an experimental

evaluation of the different tracking algorithms. Finally, we

summarize and give concluding remarks in Sect. 6.

2. Related Work

A detailed survey on object tracking can be found in [10].

Tracking algorithms can be broadly classified as either fil-

tering and data association or target representation and lo-

calization methods. Kalman and particle filters belong to

the former category. For high dimensional representations,

algorithms based on Monte Carlo integration (e.g., particle

filters) tend to be slow and become problematic due to is-

sues of sample degeneracy and impoverishment.

Within the class of localization-based tracking algo-

rithms mean shift tracking has gained popularity due to its

computational efficiency and ease of implementation. Mean

shift, a non-parametric density gradient estimator, is used

to track objects by finding the mode of the similarity sur-

face by comparing the appearance histogram of the target

model with the target candidate in [3]. Similarity between

the histograms is evaluated as the Bhattacharyya coefficient

between the two distributions. This algorithm performs a

local optimization on the search surface starting from the

previously known object location.

More recently, the use of covariance features for target

representation was proposed by [7]. The covariance matrix

of features extracted from an image patch enables a compact

representation of both the spatial and the statistical proper-

ties of the object. The tracker performs an exhaustive search

in the image by comparing the given covariance model to

the covariance matrix at each location using an appropri-

ately defined distance metric. The location which is most

similar to the target model is assigned to be the new target

position in the image.
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3. Covariance Tracking

For a given image, various features (e.g., location, in-

tensity/color, gradient) are extracted. The appearance of an

image patch is compactly represented by the covariance ma-

trix of the extracted features in that region. For tracking in

a new frame, an exhaustive scan is performed to find the lo-

cation that corresponds to the minimum covariance distance

from the model covariance. This is the estimated new loca-

tion of the object. To further improve the robustness of the

algorithm, the set of previous covariance matrices are used

to update the object model. We refer to this method as the

full scan (FS) covariance tracker.

The covariance matrix elegantly models the joint rela-

tionship between features and their spatial distribution, un-

like feature histograms used in mean shift tracking. How-

ever, the joint spatial-feature histograms can be employed

in mean shift tracking [9] at the cost of obtaining high-

dimensional models. It is evident that the covariance ma-

trix representation provides a natural way of fusing multi-

ple modalities/features without the need for normalizing the

individual dimensions while keeping the dimensionality of

the model low (O(D2) for D features).

Let the feature vector fk at pixel location (x, y), having

the color triple (r, g, b), and the x- and y- gradient values

(gx, gy), be denoted as fk=[x y r g b gx gy]. For a W × H
patch centered at pixel location r = (x0, y0) the covariance

matrix of its features fk, k = 1 . . . WH , is given by

Cr =
1

WH

WH
∑

i=1

(fi − µr)(fi − µr)
T (1)

where µr is the mean feature vector for the pixels in the

given image patch. The diagonal elements of the covariance

matrix denote the feature variance and the off-diagonal ele-

ments correspond to their respective covariance. The D×D
covariance is a symmetric positive definite (SPD) matrixand

lies on a connected Riemannian manifold of Sym+
D [6].

Furthermore, we can normalize the (i, j)th element of

Cr by the product of the standard deviations of the ith and

the jth feature dimension to obtain Yr (i.e., the matrix of

correlation coefficients). Matrix Yr still lies on the Sym+
D

manifold and has the additional advantage that all values in

the matrix ∈ [−1, 1]. In the rest of this paper, we employ

normalized covariance matrices for tracking objects.

To compare two covariance matrices M,Y ∈ Sym+
D,

corresponding to the target model and the target candidate,

respectively, the invariant Riemannian metric [4] can be

used such that the distance between them is given by

d2(M,Y) =

D
∑

k=1

log2 λk(M,Y) (2)

= tr
[

log2
(

M− 1

2 YM− 1

2

)]

(3)

where λi(M,Y) is the ith generalized eigenvalue of M and

Y, or equivalently, the ith eigenvalue of M− 1

2 YM− 1

2 , and

‘tr’ is the matrix trace operation.

4. Tracking Enhancements

The use of covariance features have shown to improve

the tracking output in [7] where tracking was performed by

scanning the entire image to find the target location. Inte-

gral histograms were used to reduce the computation and a

pseudo real-time tracker was obtained that required ∼ 600
msec to search a 320 × 240 image. This strategy of global

search to find the best matching image patch (to the model

covariance matrix) is slow for many real-time applications

and does not scale well to larger images and higher dimen-

sional lattices (e.g., 3D tracking). Moreover, searching the

entire image is prone to errors that can be caused by distrac-

tions from similar objects present in the scene.

It is not an uncommon assumption in tracking algorithms

to expect that the location of the tracked object from one

frame to the next changes gradually, or in other words the

prior of finding the subsequent object location is stronger

in the neighborhood of the previously known location [3].

We refer to this as the spatio-temporal locality assumption.

In the following, we propose three optimizations based on

the aforementioned assumption in order to obtain robust and

computationally efficient tracking algorithms based on co-

variance features.

4.1. Local Search (LS)

The first apparent optimization is to limit the region of

search to a local neighborhood (e.g., 2W × 2H) centered

around the previously known object location. A search

strategy similar to the one presented in Sect. 3 (this time

local) can be used to find the new object location by com-

paring the target model and candidate covariance matrices

per the metric given in Eqn. 2.

4.2. Mean Shift Optimization (MS-C)

The mean shift algorithm is a non-parametric kernel den-

sity estimator that can be used for finding the modes of a

distribution [2]. At each iteration, the offset (∆x) between

the previous location, x, and the new kernel-weighted av-

erage of the sample points is used to find the mean shift

vector that defines the path leading to a stationary point of

the estimated density. The mean shift vector is given by

∆x =

∑

y∈N (x) yk′(x − y)w(y)
∑

y∈N (x) k′(x − y)w(y)
− x , (4)

where k(·) is the profile of a smooth isotropic kernel, whose

derivative is k′(·), and w(·) is a weighting function. The

summation is performed in the neighborhood y ∈ N (x)



of the previous location [3]. The mean shift procedure is

an adaptive gradient descent method when the weights w(·)
are constant (i.e., independent of x) [2].

The weight of a sample point can be interpreted as the in-

fluence with which it attracts the new sample mean towards

itself. Hence, for the purpose of tracking, if we choose the

weights appropriately such that the mean shift vector points

in the direction of the search space that has the most similar

appearance to the given model, then the mode of the surface

will denote the new object location.

Here, we present a mean shift optimization approach to

track objects using covariance features. We can use Eqn. 4

to find the target location by setting the sample weights to

be equal to the inverse distance (Eqn. 2) between the model

covariance matrix and the covariance matrix at the given

sample point, i.e., w(y) = 1/d2(M,Yy). Using the pro-

posed mean shift optimization still requires the calculation

of the distance function (Eqn. 2) for different image loca-

tions, but a speedup will be achieved since only the weights

for the pixels that fall along the path from current location

to the density mode will be computed, as opposed to the en-

tire neighborhood. To further speed up the search, a lookup

table can be maintained to avoid re-computation of pixel

weights in subsequent mean shift iterations.

4.3. Gradient Descent Optimization (GD)

It will be more beneficial in terms of computation speed

if we can modify the previous tracking algorithm so that

it does not require the calculation of a distance metric for

various image locations. Tracking can be considered as the

problem of optimizing the distance function in the search

space of locations x. A steepest/gradient descent optimiza-

tion problem can be formulated which will only require the

calculation of the local gradient at the current location.

In this section, we present a new approach to efficiently

track objects using covariance features based on a gradi-

ent descent optimization technique. Let us reconsider the

distance metric in Eqn. 3 as a function of current location

x. We are interested in minimizing the following function

w.r.t. x = [x, y]T

f(x) = d2(M,Yx) = tr
[

log2
(

M− 1

2 YxM
− 1

2

)]

(5)

where Yx is the covariance matrix at location x. Let

P (x) =
(

M− 1

2 YxM
− 1

2

)

. The gradient of the function

f(x) is given by

∇f(x) = [∂xf(x), ∂yf(x)]T (6)

where,

∂xf(x) = ∂xd2(M,Yx)

= ∂xtr
[

log2 P (x)
]

= tr
[

∂x log2 P (x)
]

(7)

= tr
[

2 log P (x)P (x)−1∂xP (x)
]

(8)

∂yf(x) = tr
[

2 log P (x)P (x)−1∂yP (x)
]

(9)

such that,

∂xP (x) = ∂x

(

M− 1

2 YxM
− 1

2

)

(10)

=
(

M− 1

2 ⊗ M−T
2

)

vec(∂xYx) (11)

= M− 1

2 (∂xYx)M− 1

2 (12)

where ⊗ denotes the Kronecker matrix product and vec(V)
is the vectorization operator that produces the long column

vector formed by concatenating the columns of V. The

reader is referred to [5] for the derivation of Eqn. 8 from

Eqn. 7.

The partials (∂xYx) and (∂yYx) can be estimated from

discrete data by letting dx = dy = 1 such that

∂xYx ≈ (Yx|x+dx,y − Yx|x−dx,y)/2dx (13)

∂yYx ≈ (Yx|x,y+dy − Yx|x,y−dy)/2dy (14)

However, since Yx ∈ Sym+
D, the vector space subtrac-

tion operator in Eqn. 13 and Eqn. 14 should be replaced by

the equivalent operations on the Riemannian manifold [6]

(please refer to the Appendix)

∂xYx ≈ 0.5 logY
x|x−dx,y

(Yx|x+dx,y)/dx (15)

∂yYx ≈ 0.5 logY
x|x,y−dy

(Yx|x,y+dy)/dy (16)

Therefore once we can estimate the gradient of the objec-

tive function (Eqn. 6) as described above, we can formulate

a gradient descent algorithm to optimize Eqn. 5 where the

new lattice location at iteration i + 1 is obtained as

xi+1 = xi − ηi∇f(xi) (17)

where ηi is the learning rate which follows an annealing

schedule such that the ith iteration learning rate is given by

ηi = η0(1− i/N), where N is determined empirically. The

algorithm iterates until convergence, which occurs when

||ηi∇f(xi)|| < tconv. Finally, the model update strategy

of [7] can be employed to deal with appearance changes.

5. Experiments

We now report our evaluation of the original covariance

tracking algorithm (Sect. 3) and the proposed enhancements

(Sect. 4) in comparison to the standard histogram-based



Figure 1. Representative images from the CHIL dataset. The speaker can be seen in several different poses and illumination conditions.

The background is cluttered with distractions from similar objects (faces/heads).

mean shift tracker [3]. The algorithms are compared for

both accuracy and computational efficiency.

For a fair comparison to the features used in covariance

trackers, we used a joint histogram of color-gradient fea-

tures extracted from the image for the mean shift tracker.

At each pixel, a five dimensional feature (r, g, b, gx, gy) vec-

tor is extracted to form the (nhist)
5
-dimensional quantized

histogram. We refer to this tracker as MS-H.

5.1. Database and Experimental Paradigm

We evaluated the tracking algorithms on a number of

“interactive seminar” video sequences recorded and an-

notated as part of the CHIL (“Computers in Human In-

teraction Loop”) project [1]. The dataset consists of 22

video sequences recorded inside a smart room. Each se-

quence depicts a speaker giving a lecture to a small au-

dience. Each video segment contains approximately 4500

frames recorded at 15 Hz. Images are captured at 640×480

pixel resolution. The ground truth is annotated at every 15

frames. Figure 1 shows some representative images from

the dataset.

The goal of these experiments is to track the speaker’s

face/head through each sequence. We used the video se-

quences from one of the four cameras that had the best view

of the main speaker’s face/head. Around 100k frames were

tracked in each experiment. We evaluated the various algo-

rithms in terms of how their output differs from the anno-

tated ground truth locations (the error is reported in pixel

units).

For our experiments to be unbiased, we provided the

same initial conditions for all the trackers. We initialized the

trackers based on the ground truth data. In addition, tracker

drift detection was achieved by comparing the tracking re-

sults to the ground truth. In particular, we introduced a drift

threshold T (=30 pixels), identical to all trackers. Whenever

the tracking error was higher than this predefined threshold,

we re-initialized the target model for the respective tracking

algorithm. The number of re-initializations required per se-

quence is hence another metric useful to tracking algorithm

evaluation.

A superior tracking method is expected to have (1) lower

error rates, (2) fewer number of re-initializations, and (3)

faster execution time than competing approaches.

5.2. Performance of Various Algorithms

First we compared the tracking performance of the base-

line full scan (FS) covariance algorithm (Sect. 3), local scan

(LS) covariance algorithm (Sect. 4.1), mean shift covari-

ance (MS-C) tracker (Sect. 4.2), gradient descent (GD) co-

variance tracker (Sect. 4.3), and the mean shift histogram

(MS-H) tracker [3]. Figure 2 shows the overall tracking

results (in pixel error) produced by each algorithm on the

entire dataset. Tracking results averaged over different set

of parameters are displayed for the MS-H, the MS-C, and

the GD algorithms.

The full scan (FS) algorithm does not exploit the spatio-

temporal locality assumption and hence gets distracted due

to similar objects (faces) in the smart room, thus result-

ing in high tracking errors (100.9 pixels). The local scan

(LS) algorithm on the other hand results in low tracking er-

rors (10.4 pixels) by exploiting the above mentioned spatio-

temporal locality constraint. This algorithm demonstrates

good tracking performance since it performs an exhaustive

search within the local neighborhood. The three optimiza-

tion algorithms (MS-C, MS-H, GD) produced 14.6, 12.6,

and 10.2 pixel errors, respectively. These algorithms exploit

the locality constraint along with specific heuristic search-

ing techniques (resulting in faster algorithms) to produce

results comparable to the LS method. These optimization-

based tracking algorithms achieve 86−90% error reduction

relative to the baseline FS method.

Within the class of optimization-based algorithms, we

compared their relative tracking performance for different

set of algorithmic parameters. The performance of the two

mean shift trackers (MS-C and MS-H) depend on the bin

quantization nhist and the kernel bandwidth (or window
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Figure 2. Overall tracking results for the various algorithms.
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Figure 3. Comparison of (a) the overall tracking error and (b) the number of re-initializations required by the histogram-based mean shift

(MS-H) tracker and the gradient descent (GD) covariance tracker for different parameters values. The x-axis labels correspond to various

parameter combinations and not their respective values.

size) hwidth. Similarly, the learning rate (η) can influence

the performance of the gradient descent (GD) algorithm.

The MS-C tracker produced errors in the range of 12.91−
15.82 pixels (average 14.57 pixels) for various parameter

values. Since the MS-H and GD algorithms produced lower

average tracking errors compared to the MS-C method, we

investigated the former two trackers in more detail.

Plots in Fig. 3(a) present the overall tracking errors on

the CHIL dataset for different parameter settings of the MS-

H and GD trackers. The horizontal line drawn in red is pro-

vided for reference and corresponds to the minimum error

of 9.69 pixels obtained by the GD covariance tracker with

learning rate of η = 1. Clearly, the GD covariance tracker

outperforms the MS-H tracker, irrespective of the algorith-

mic parameters. Errors of the GD method were in the range

of 9.68 − 10.95 pixels (average 10.21 pixels) compared to

10.88 − 15.56 pixels (average 12.61 pixels) for MS-H al-

gorithm. This translates to a 19% reduction in the average

error relative to the MS-H algorithm.

A similar trend is seen in Fig. 3(b) that reports the num-

ber of re-initializations required by the MS-H and GD algo-

rithms. Again, the red line, corresponding to 7.05 restarts

required by the GD tracker per sequence, is drawn for ref-

erence. The MS-H algorithm needs to be restarted 14 times

per sequence (i.e., every 21.5 secs) in comparison to 8.5

restarts required by the GD tracker per sequences (i.e., ev-

ery 35.3 secs).

5.3. Speedup

Computational efficiency of a tracking algorithm is

equally important to its performance. In addition to the high

tracking accuracy, we desire the proposed algorithms to be

computationally efficient. Comparing the execution times

for different algorithms becomes difficult without having

access to their respective original implementations. In order

to facilitate a comparison of computational requirements

between the various covariance trackers, we implemented

Algorithm Speedup Execution time

per frame (msec)

LS 7.31 82.04

MS-C 24.95 24.04

GD (Worst Case) 101.50 5.91

GD (Avg. Case) 137.88 4.35

GD (Best Case) 331.07 1.81
Table 1. Speedup and estimated execution time per frame for dif-

ferent covariance trackers. Speedup is calculated with respect to

the FS algorithm (Sect. 3). Execution time per frame is normalized

with respected to the 600 msec scanning speed (for 320× 240 im-

ages) obtained by [7] using the FS algorithm.

our own version of the full scan algorithm described in [7].

The baseline full scan algorithm can now be used to calcu-

late the speedup obtained by the enhanced algorithms. We

define speedup as the ratio of the execution time of the full

scan algorithm to that of the given algorithm.

Moreover, [7] claims to obtain tracking times of ∼ 600
msec per frame for 320 × 240 images using various opti-

mizations including integral histograms. Using this infor-

mation and the relative speedup factors we can estimate the

running times per frame for each covariance-based tracking

algorithm . The execution time per 320×240 frame is given

by (600÷speedup) msec.

Table 1 reports the speedup factors (relative to the FS

algorithm) and the estimated execution times per frame ob-

tained by other covariance tracking algorithms. We report

the best, worst, and average case speedups obtained by the

GD algorithms for different parameter settings. The pro-

posed enhancements to the covariance tracker (Sect. 4) re-

sult in significant speedups resulting in up to 330 times

faster algorithms. High speedup factors translate to low exe-

cution times per frame and thus fast real-time tracking sys-

tems. Amongst the various covariance trackers proposed,

the GD optimization-based tracker is the most computation-

ally efficient method in all cases.



5.4. Discussion

Experimental results presented in this section demon-

strate the inadequacy of the baseline FS covariance tracking

algorithm, both in terms of performance and computation.

Tracking algorithms that exploit the spatio-temporal local-

ity assumption have demonstrated improved tracking accu-

racy. The proposed enhancements including the LS, MS-C,

and the GD trackers produce lower error rates while capable

of tracking objects at high frame rates.

Amongst the local search based algorithms presented in

Sect. 4, the gradient descent optimization-based covariance

tracker (GD) achieves the lowest tracking errors while re-

quiring a lower number of re-initializations (Sect. 5.2) in

comparison to the other covariance trackers and the stan-

dard histogram-based mean shift tracker. Moreover, the GD

tracker is also very computationally efficient as can be seen

from the speedup results of Sect. 5.3. The encouraging re-

sults obtained by the gradient descent method (in both ac-

curacy and efficiency) makes it a promising real-time algo-

rithm for tracking objects in video sequences.

5.4.1 Extension to 3D

Finally, we would like to emphasize that none of the covari-

ance tracking algorithms, except the GD tracker, are easily

scalable to 3D tracking since the number of lattice locations

increase exponentially with the addition of another dimen-

sion. Nevertheless, the gradient descent algorithm can be

elegantly extended to 3D tracking by optimizing the objec-

tive function (Eqn. 5) on the 3D lattice X∈ [x, y, z]T . The

covariance matrix at a lattice location X can be used to fuse

information from multiple cameras by extracting features

using the technique described in [8]. The gradient (Eqn. 6)

in 3D is given by ∇f(x) = [∂xf(x), ∂yf(x), ∂zf(x)]T ,

where ∂zf(x) can be obtained similarly to Eqns. 15-16.

The extension of the GD tracker to 3D is a work-in-progress

and will be examined in future research.

6. Summary and Conclusion

We presented efficient algorithms to track objects in

video sequences using covariance features. These algo-

rithms were compared in terms of their tracking accuracy

(pixel error and number of re-initializations) and compu-

tational requirements to the recently presented covariance

tracker as the baseline. A local scan version of the base-

line algorithm, a mean shift covariance tracker, and a gradi-

ent descent search based covariance tracker were described.

These algorithms exploit the well known spatio-temporal

locality assumption, often used in tracking algorithms, to

improve tracking results and reduce execution times. A rel-

ative reduction of 86− 90% in error and speedup factors up

to 330 were obtained in comparison to the baseline. In con-

clusion we recommend the gradient descent algorithm to be

the tracker of choice since it provides a good combination

of accuracy and efficiency. This algorithm is also found to

be superior when compared to the popular histogram based

mean shift tracker. In future work, we plan to extend the

proposed GD tracker to higher spatial (3D) dimensions and

evaluate its performance.
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Appendix: Manifold Operations

On the Sym+
D manifold, the exponential and logarithmic

maps are respectively given by [6],

expY(∆) = Y1/2 exp(Y−1/2∆Y−1/2)Y1/2 (18)

logY(X) = Y1/2 log(Y−1/2XY−1/2)Y1/2 (19)

for X,Y ∈ Sym+
D and the tangent vector ∆ ∈ SymD. The

exp and log on r.h.s. of the above equations denote the stan-

dard matrix operations. The manifold exponential operator

(Eqn. 18) is defined on the space of all symmetric matri-

ces (not only SPD) and maps the tangent vector ∆ at Y to

the location on the manifold reached in a unit time by the

geodesic starting at Y in the tangent direction. Its inverse,

the logarithmic operator (Eqn. 19) maps the geodesic from

Y to X to the equivalent tangent vector (with the smallest

norm) at Y.


