
A Context-Based Tracker Switching Framework∗

Ambrish Tyagi James W. Davis

Dept. of Computer Science and Engineering

Ohio State University, Columbus, OH, USA

{tyagia,jwdavis}@cse.ohio-state.edu

Abstract

We present a robust framework for tracking people in

crowded outdoor environments monitored by multiple cam-

eras with a goal of real-time performance. Since no sin-

gle algorithm is perfect for the task of object tracking in

all cases, we instead take an alternate approach. Our

algorithm dynamically switches between several available

trackers on-the-fly by evaluating the current state/context of

the scene. Autonomous agents that make the switching deci-

sions are assigned to each object in the scene. Initialization

of new agents and the handoff between various tracking al-

gorithms are completely automated. The collaboration be-

tween different trackers is shown to improve performance

compared to the individual methods in terms of both com-

putation and reliability. The tracker switching framework

is evaluated on a multi-camera dataset and both qualitative

and quantitative results are presented.

1. Introduction

Tracking multiple objects in a scene is a prerequisite for

most higher-level dynamic computer vision tasks. A good

tracking system should be able to run for long periods of

time with the automatic capability to initialize new trackers,

identify and replace failed trackers, and most importantly,

operate efficiently.

Many algorithms exist for tracking objects in a scene,

each possessing different performance characteristics. The

usual approach in this situation is to manually select the al-

gorithm which has the best average performance. However,

this strategy has drawbacks since the selected algorithm

may not be optimal as the scene evolves. The lack of exis-

tence of the perfect tracker motivates us to design a frame-

work that switches between multiple component trackers

to harnesses their robustness in particular contexts, while

adhering to the goal of real-time tracking. The result is a

∗This research was supported in part by the National Science Founda-

tion under grant No. 0236653. Appears in IEEE Workshop on Motion and

Video Computing (WMVC) 2008.

Figure 1. A busy outdoor scene monitored by three cameras. Peo-

ple seen in all camera views are tracked by agents that switch

between available tracking methods based on the scene context.

Numbers in yellow denote the unique agent IDs.

net improvement in the fidelity of object tracking, even for

complex, cluttered scenes with multiple people and occlu-

sions.

Our approach is to employ multiple trackers that have

complimentary modes of success (when in context) and fail-

ures (when out of context). Also, these tracking algorithms

range from simple to complex in terms of computation. We

do not always need to deploy the most expensive tracker

in all cases. The simplest of these trackers is a Euclidean

tracker that associates observations based only on the posi-

tional information. A predictive tracker additionally makes

use of the object dynamics (e.g., velocity) on top of the po-

sitional information. Finally a kernel-based tracker employs

position, velocity, and appearance cues to track objects. The

framework switches between these trackers based on the

scene context.

In this paper we propose to switch between various track-

ing algorithms, as opposed to fusing the output of multiple

algorithms. Firstly switching, i.e., dynamically selecting

1

the appropriate algorithm, is a more computationally ef-

ficient approach of combining different tracking methods.

Secondly, a fusion technique requires additional capabili-

ties as part of the tracker to quantify/assess the tracker per-

formance for (weighted) combination.

The proposed tracker switching framework is applica-

ble to single view 2D tracking, but in this paper we will

demonstrate its effectiveness for 3D tracking of low reso-

lution people targets in a typical surveillance environment

monitored by multiple synchronized cameras with overlap-

ping views. In addition to the robustness afforded by multi-

ple cameras, a calibrated system provides 3D trajectories of

the people in the scene, which is desired in many applica-

tions (e.g., 3D site monitoring).

The remainder of the paper is organized as follows. We

review related work in Sect. 2. We present the main al-

gorithm in Sect. 3 with details on features used for 3D

tracking, the component trackers, and the tracker switching

framework. An experimental evaluation of the framework is

presented in Sect. 4 and we summarize and give concluding

remarks in Sect. 5.

2. Related Work

Many 2D tracking algorithms have been proposed in the

past (see survey in [14]). More recently there has been a

surge of interest in 3D tracking algorithms [1, 4, 8, 13]. The

idea of combining tracker outputs for robustness has been

previously proposed (e.g., [6, 10, 11]). In [6], the tracker

outputs are fused in a probabilistic framework. An alter-

nate fusion technique is proposed in [11] where the main

tracking module consists of four parts including motion de-

tection, region tracker, head detector and an Active Shape

Tracker. All these modules are required to be executed as

they assist each other to improve the tracker output. Simi-

larly [10] combines the result of a region based correlation

tracker with an adaptive contour tracker.

3. Algorithm

Our approach to object tracking is based on the idea of

switching between various available tracking methods as

needed. For a complex scene we can conceive tracking

agents assigned to each object of interest that can switch

between the various available tracking methods based on

the current context of the scene. These agents evaluate the

global scene context by making decisions locally (addition-

ally affording a parallel implementation).

We select three component trackers to demonstrate the

context-based switching framework. These tracking meth-

ods have complimentary success and failure modes. The

simplest of the three uses only the positional information

(of features) to track an object. This method is useful to

track objects that exist in isolation. The second tracker adds

Figure 2. Three camera views of a person (left) and the resulting

point cloud using VH reconstruction (right).

another layer of complexity by additionally using the infor-

mation about object dynamics. This tracker is applicable

in situations with limited object interactions and it can also

handle missing observations. Finally, an appearance tracker

is introduced to disambiguate between targets involved in

more complex interactions (e.g., groups). Evidently, the

computation requirements also increase as we move from

a simpler to a more complex tracker.

The following description assumes that we have a met-

ric calibration of the space observed by the cameras. The

ground plane is assumed to be known and the 3D coordinate

system is oriented such that the normal to the ground plane

is aligned with the Z-axis. Notation-wise, lowercase letters

like x represent points in 2D space and capital letters like X

represent points in 3D space. Homogeneous coordinates in

either space are represented with a tilde (i.e., x̃). Matrices

Pi are used to project 3D points into the image plane (i.e.,

x̃i = PiX̃). Operator || • || denotes the L2 norm.

3.1. Object Representation

Typical 2D point correspondence tracking algorithms ex-

tract foreground blobs and use the blob centroids as features

to associate over time. Further analysis is done in order to

deal with complex situations including blob merges, splits,

and occlusions [7]. Similarly, for 3D tracking we extract

3D blobs and derive useful features to track. For a track-

ing application, the precise shape of an object is not im-

portant. Therefore instead of employing costly 3D match-

ing/reconstruction methods to extract precise 3D shapes, we

prefer to use a simple visual hull reconstruction method that

gives us a coarse shape and location of objects present in the

scene.

Visual hulls (VH) are a geometric entity that are often

used in dealing with silhouette-based image understand-

ing [5]. Here we will use VH to generate 3D point clouds of

people to track. We begin by obtaining foreground silhou-

ette images for each camera view using background sub-

traction [3]. Then, we voxelize the 3D space viewed by the

multiple cameras. Let this voxelization be a 3D indexed ar-

ray denoted by H. The center of each voxel is projected

into each foreground silhouette image. The number of cam-

eras viewing a projected voxel center (indexed by u, v, w)

is stored in H(u, v, w). Finally, we threshold H to obtain

the voxels that are viewed by all the cameras. The advan-

tage of using VH is that the operation is constant time in the

number of voxels. To speed up the point cloud generation,

we do a two level coarse-to-fine VH reconstruction. First a

coarse point cloud is generated using bigger voxels and then

the result is refined by densely sampling the neighborhood

of each 3D point obtained from the previous stage.

In Fig. 2 we show the result of VH reconstruction (right)

obtained from the three views of a person (left). As seen

in the figure, the shadow projected on the ground is also re-

constructed. Given the 3D calibrated space and the knowl-

edge of the ground plane, we can effectively deal with the

shadow artifact by simply disregarding all points below a

certain height.

The foreground reconstruction gives us the 3D point

clouds of all the objects in the scene. In order to separate

different objects we need to run a connected component al-

gorithm to identify individual clusters. We create an undi-

rected forest of graphs where nodes are the 2D projections

of the point clouds on the ground plane (obtained by simply

dropping the Z coordinate). Two nodes are connected by

an edge if the Euclidean distance between them is less than

dg . Finally we use the depth first search algorithm to find

the connected components in this forest. These connected

components correspond to point cloud clusters of individ-

ual objects or groups of objects that are very close to each

other. We store the clustering result and the corresponding

cluster centers denoted by Ct
c, where c ∈ 1 . . . Nt and Nt is

the number of clusters, at time t.

3.2. Component Trackers

We employ three trackers that range from simple to com-

plex in terms of their tracking capabilities and computation.

3.2.1 Euclidean Tracker (E-tracker)

The simplest of the three trackers is a Euclidean (E) tracker

that finds the association between the past location and new

observation based only on the Euclidean distance. This

tracker is efficient and it does not make assumptions about

the object’s dynamical model or appearance, although it as-

sumes that an observation is always present. This is suited

for situations where the objects being tracked are well sep-

arated and are not involved in any interactions with other

objects or groups. Such simplicity obviously comes at a

cost of fragility as the failure modes for this tracker arise

due to object interactions, feature/observation noise, occlu-

sions, merges and splits of VH results, etc.

The active context for the E-tracker requires the object

detections (VH results) to be “reasonably” far away from

each other. Let Xt
i denote the 3D location of object i at

time t. The new location for object i at time t + 1 is given

by, Xt+1
i = Ct+1

j , where Ct+1
j is the observation (cluster

center) closest to the object’s previous location. The obser-

vation Ct+1
j is marked as “accounted” for later analysis.

3.2.2 Predictive Tracker (P-tracker)

The Predictive (P) tracker layers another level of complex-

ity to the previous tracker by employing the dynamics of

the object in addition to its location. The additional infor-

mation about the object dynamics can be used for target

disambiguation in cases of “medium level” interaction be-

tween objects and predict object location in times of occlu-

sions/missing observations. For our experiments we used

a simple weighted averaged velocity model to predict tar-

get locations. More sophisticated predictive frameworks

(e.g., Kalman filter) can be used if desired. Therefore, our

P-tracker is an E-tracker that additionally keeps a running

weighted average of the object velocity, Vt
i , for the last k

frames,

Vt
i =

∑t−k+2
p=t p ∗ (Xp

i − X
p−1
i)

∑t−k+2
p=t p

(1)

The active context for P-tracker includes scenarios

where the tracking agent has other interacting objects in its

proximity and the cases of missing observations. The new

location of object i at time t + 1 is given by,

Xt+1
i =

{

X̃t+1
i , if missing observation

Ct+1
j , otherwise

(2)

where X̃t+1
i = Xt

i+Vt
i is the predicted object location, and

Ct+1
j is nearest observation (if available) to X̃t+1

i that can

be assimilated (Sect. 3.3). The observation Ct+1
j is marked

as “accounted” if it is used by the P-tracker. Finally, the

object velocity is updated at the end of the tracking itera-

tion. In our framework, we only update the x− and y−
component of velocity.

3.2.3 Appearance Tracker (K-tracker)

Occasionally, objects being tracked come extremely close

to each other due to interaction or high crowd density. In

these situations simple position and motion cues are not

sufficient to robustly track these objects and hence an ad-

ditional layer of complexity (e.g., appearance) is desired.

We propose to use a Kernel (K) based appearance tracker

to track objects based on the color features in addition to

position and velocity. An example of 2D kernel tracking is

the popular mean-shift algorithm [2].

The basic 2D mean shift tracking algorithm can be ex-

tended to track a given object directly in the 3D space [13].

The new 3D location, Xt+1, given the current position Xt,

can be estimated recursively from

Xt+1 =

∑

Y∈S(Xt) Yk′(Xt − Y)w(Y)
∑

Y∈S(Xt) k′(Xt − Y)w(Y)
, (3)

where k(·) is the profile of a smooth isotropic kernel, whose

derivative is k′(·), and w(·) is a weighting function. The

summation is performed in the 3D neighborhood of Xt, i.e.,

Y ∈ S(Xt). A proper sampling rate, s3d, needs to be se-

lected to discretize the 3D space. The choice of s3d depends

on how fine the features are spread in the 3D space.

Probability density functions q̂ = {q̂u}u=1,...,m and

p̂(X) = {p̂u(X)}u=1,...,m of m-features are defined for the

given target model and the target candidate at location X,

respectively. Target representations from 2D are modified

to combine features from N sensors as

q̂u = C

N
∑

i=1

∑

Y∗∈S(0)

R(PiỸ∗, u)k(Y∗) , (4)

p̂u(X) = D

N
∑

i=1

∑

Y∈S(X)

R(PiỸ, u)k(Y − X) , (5)

where C and D are constants chosen such that
∑m

u=1 q̂u =
1 and

∑m

u=1 p̂u(X) = 1, respectively. For our experiments

m = 512 as we use joint color histograms with 8 bins per

channel. Furthermore, R(x̃, u) = δ [b(x) − u]V(x), where

the function b : R2 → {1, . . . ,m} associates the pixel at

location x to its corresponding bin b(x) in the quantized

feature space, δ is the Kronecker delta function, and V(x)
is a boolean function that evaluates to 1 if the point coordi-

nates x are valid (i.e., the point lies within the image view).

The weight function, w(Y), is modified accordingly to

accommodate contributions from all N camera views. A

popular choice for the kernel function k(·) is the Epanech-

nikov kernel due to its simplicity and guarantee of conver-

gence. The kernel bandwidth relates to the volume of the

object being tracked. During initialization, a 3D volume

defining the object of interest is selected. Since the real

size of the object (such as a person) does not change over

time, the volume containing it remains constant. This au-

tomatically solves the scale selection problem plaguing the

standard 2D trackers since projection of this volume to in-

dividual views automatically selects the appropriate regions

in the images. Also, the feature fusion is invariant to view

changes, feature corruption, and occlusions, and the uni-

fied 3D tracker does not need to solve for object correspon-

dence [13].

The K-tracker like any other kernel tracker is good for

short term target disambiguation, but, if used for long du-

rations it is likely to drift off the object as the appearance

models tend to change. Therefore, the active context in

which this tracker should be used is when the object inter-

acts closely with one or more objects, where the position

and motion cues alone are not sufficient for tracking.

At each invocation of the K-tracker, the local search is

seeded from both the previous and the current predicted lo-

cations of the object. Of the two results, the one that is a

better match in terms of the Bhattacharyya coefficient be-

tween the model and target location is selected. Finally, the

obtained result is validated against the VH clusters by eval-

uating the volume overlap between the object kernel and the

nearest cluster. If a sufficient overlap is found then the cor-

responding cluster observations is marked as “accounted”.

3.3. Tracker Switching Framework

We assign a tracking “agent” to each object in the

scene. These agents are expected to operate under au-

tonomous control, perceive their environment, and adapt to

the changes by making rational decisions so as to achieve

the best tracking outcome. In this section we describe

the factors on which these agents base their actions about

switching between available trackers. The tracking meth-

ods described in Sect. 3.2 have varying levels of complex-

ity, therefore, the agents need to be able to make decisions

on-the-fly about which of these methods are sufficient to

track a particular object given the current scene configura-

tion. When a simple tracker can suffice and produce robust

tracking results then there is no need to invoke more com-

plicated methods.

3.3.1 Local Context

We describe our tracker switching framework in context of

the multi-camera outdoor surveillance domain. People and

groups that traverse the scene constitute the objects of inter-

est for tracking. An advantage of the calibrated 3D space is

that we can get an estimate about the rough extent/size of

the objects we are interested in tracking. With this knowl-

edge we can define local “spheres of influence” centered

on each person. Each person can be envisioned to have

an imaginary inner and an outer sphere, or zone, of in-

fluence. The inner zone of influence is essentially the 3D

extent of the person. The outer zone specifies the bound-

ary outside which all non-interacting (thus unimportant) ob-

jects may exist. Let r and R denote the radius of inner

and outer spheres, respectively. The outer zone of influ-

ence of an agent i is said to interact with another agent j if

||Xi − Xj || ≤ 2R and similarly the inner zone interacts if

||Xi − Xj || ≤ 2r.

In Fig. 3(a) we show some possible configurations that

may arise due to agent interaction. The 2D projection of the

agent’s zones of influence on the ground plane are shown.

The E-tracker is suitable to be used when the outer zone of

influence of an agent does not interact with another agent

(e.g., object 1 in Fig. 3(a)). A P-tracker is deemed more

appropriate in case of a missing observation or if the outer

zone (but not the inner) of an agent interacts with another

agent (e.g., objects 2 and 3 in Fig. 3(a)). Finally, if the agent

gets too close to another agent, i.e., their inner zone of in-

fluence overlap, then a K-tracker should be used in order

1

2
3

4 5

E P K

(a) (b)
Figure 3. (a) Possible agent configurations. The spheres of influ-

ence are projected on the ground plane. (b) Finite state automaton

representing the proposed tracker switching framework.

to avoid confusions by using the position, velocity, and ap-

pearance features jointly (e.g., objects 4 and 5 in Fig. 3(a)).

Thus, an agent can switch between the three trackers de-

pending on the level of interaction it is involved in. Our

tracker switching framework can be viewed as a finite state

automaton as shown in Fig. 3(b). We assume that an object

can move a maximum distance of 2r between two consec-

utive frames. This is a reasonable assumption for various

motions observed in the surveillance environment, includ-

ing people riding bikes. Moreover, if this were not the case

(e.g., due to slower frame rate) then we can simply increase

the extent of both inner and outer zones. Therefore, if we

stipulate the condition, R > 2r, then an object outside the

zones of influence of an agent cannot move too quickly as to

penetrate the inner zone of this agent from one time instant

to the next. Hence the transition from/to E-tracker to/from

K-tracker is not expected to occur at a high video frame rate

(hence shown as dashed arrows in Fig. 3(b)).

3.3.2 Switching Conditions

Subscribing to the aforementioned concepts, the conditions

for switching from one tracker to another are as follows.

Switching from E-tracker: For an agent i if the cur-

rent method is E-tracker and its outer zone interacts with

another agent then a handover to P-tracker is required. For

the E-tracker to successfully track an object we also need

to ensure that a proper observation is always available since

this method cannot deal with missing or ambiguous obser-

vations. We can imagine the observations in a new frame

(at t+1) to have their own zones of influence. An observa-

tion whose inner zone interacts with the agent can be con-

sidered for assimilation (by that agent). Therefore, another

precondition for E-tracker is the presence of exactly one ob-

servation that can be assimilated by the agent, and it should

also be the only observation whose outer zone interacts with

the agent. Failure of this condition results in a switch to P-

tracker. The handoff process estimates the weighted aver-

age velocity from the history of previous tracked locations.

Switching from P-tracker: If an agent currently em-

ploys P-tracker then a potential handoff to either E-tracker

or K-tracker is possible. The condition for switching back

to the E-tracker requires that no other agent’s outer zone

interacts with the given agent and also there is exactly one

observation present in the agent’s outer zone of influence

that can be assimilated by the agent. In addition, the P-

tracker should have assimilated an observation in the previ-

ous frame, i.e., it should not be doing predictive-only track-

ing (without assimilating any observations). On the other

hand, if the given agent approaches near another agent such

that their inner zones overlap then the agent should han-

dover the tracking task to K-tracker. Moreover, a handover

to K-tracker is also imperative if P-tracker does predictive-

only tracking for last TP frames. During the handoff to the

K-tracker, the appearance model is learned from the last

frame where an observation was successfully assimilated.

Hence, we need to keep a short buffer of previous video

frames.

Switching from K-tracker: Finally if the current agent

state is set to use the K-tracker then it may switch back to

P-tracker. The handover back to P-tracker is contingent on

the condition that the agent’s inner zone does not interact

with any other agent. The handover to P-tracker is not pos-

sible if the output of K-tracker is not validated (i.e., the out-

put does not overlap with any VH cluster) and the previous

transition from P-tracker to K-tracker was due to P-tracker

timeout (i.e., predictive-only tracking for TP frames).

3.3.3 Agent Initialization and Termination

A tracking agent is initialized for each cluster found in the

VH results of the initial scene. For each subsequent time

step we evaluate the local context of an agent and switch

trackers, if required. The assigned tracker is used to de-

tect the object’s new location and the state of the corre-

sponding agent is appropriately updated. Finally, the scene

is re-analyzed, and new temporary agents are assigned for

all “unaccounted” observations. The temporary agents that

have survived for at least TS frames are made permanent.

New objects are only initialized when seen in all camera

views.

During the tracking iteration if a temporary agent misses

any observation, or attempts to assimilate an already ac-

counted observation, then it is scheduled to terminate. Ad-

ditionally, if a permanent agent seeks to assimilate an ob-

servation already claimed by a temporary agent, then the

observation is assigned to the former and the temporary

agent is terminated. Furthermore, we stop tracking an agent

once it goes out of any camera view. Also, an agent do-

ing predictive-only tracking using a P-tracker (i.e., case of

missing observation) is terminated if they are closer to the

edge of a camera view with their velocity vector pointing in

the direction of the edge. Finally, for a permanent agent, if

the output of K-tracker is not validated for last TK frames

then the agent is scheduled to terminate.

4. Experiments

We recorded 30 different sequences from various loca-

tions of a busy University campus area monitored by three

synchronized cameras (e.g., Fig. 1). Each camera recorded

320× 240 color images at 30Hz. The sequence lengths var-

ied between 550–650 frames each. The auto-calibration ap-

proach of [9] was used to obtain a metric calibration space

and derive the camera matrices Pi. Ground truth was gener-

ated by manually annotating all trajectories of people in half

of these sequences. People locations in all three views were

marked at every 15 frames. The 2D image coordinates were

triangulated to obtain the 3D coordinates and were interpo-

lated to obtain the 3D ground truth object locations at each

frame. We annotated ∼200 trajectories in this endeavor.

The goal of these experiments is to track the 3D loca-

tion of all people in the scene, and to compare the pro-

posed algorithm with individual tracking methods in terms

of the tracking error w.r.t. the ground truth. The dataset con-

tains several natural instances of crowding, occlusions, view

changes, group interactions, etc. The typical person size in

these images varied between 7 × 14 to 20 × 40 pixels.

For our experiments, the timeout durations were set to

TP = TK = TS = 10 frames. The radius of inner spheres,

r, was set to 1.1 or 0.8 (for different locations), R = 2.5r,

and dg = r/5 (for clustering). For the K-tracker, the band-

width was automatically selected for each object using the

point cloud clusters, and the corresponding sampling rate

s3d was selected to produce 20 samples in each dimension.

Currently, we do not conduct detailed timing tests (algo-

rithm prototypes implemented in Matlab). The intent of this

study is to evaluate the tracking performance of our pro-

posed approach and demonstrate the efficacy of switching.

4.1. Qualitative Results

Fig. 1 shows a snapshot of the tracking results of the

automatic context-based switching framework on one of

the sequences. Individual objects are tracked by agents

that switch between the available component trackers. The

schematic on the right-bottom shows the top-down view

of the agents interacting with each other, overlaid by their

unique ID and the current tracking method in use. The

red and the blue disks are the projections of the agent’s in-

ner and outer zones of influence, respectively. The trans-

parency of the disks correspond to the level of interaction

(e.g., agents extremely close to each other have high trans-

parency).

In Fig. 4 we compare the output of our tracking system

to the ground truth trajectories of the tracked objects. The

projection of 3D trajectories on the ground plane are shown.

These examples demonstrate the effectiveness of the track-

ing results generated by the framework.

Lastly, in Fig. 5 we show an example of interaction be-

Figure 4. Output of the tracking framework (red) overlaid on top

of the ground truth trajectories (thick, gray)

1 2

Figure 5. Switching between component trackers due to agent in-

teraction. Segments shown in dark green, light green, and yellow

denote the use of E , P , and K-trackers, respectively.

tween two agents. Projection of the trajectories on the

ground plane are shown. The colors of each segment rep-

resent the different tracking method being used. Agents 1

and 2 start moving in opposite directions (shown by red ar-

rows). Initially, when they are isolated, they both employ

the E-tracker (briefly, agent 2 uses P-tracker due to inter-

action with another agent not shown). As they move closer

and their outer zones interact, both agents switch to the P-

tracker. Eventually the agents come in close proximity and

their inner zones interact, thus requiring them to use the

K-tracker. Finally, they both move away from each other,

switching back to P-tracker and then the E-tracker.

4.2. Evaluation Metrics

To evaluate our multi-object tracker framework we use

nine metrics proposed in [12] that capture the notion of

configuration (i.e., the number and location of objects and

trackers in the scene) and identification (i.e., the consistent

labeling of objects over a long period of time). A good

tracking system should track all objects by detecting their

correct locations in each frame, and also should track indi-

vidual objects consistently over long periods of time.

In this section, the 3D ground truth locations of the ob-

jects and the agent/tracker outputs are denoted by G and T ,

respectively. A ground truth location Gi at time t is said

t

FN

FIO

FIT

MO

MT

FP

1
2
3
4

Trackers

Ga

Gb

Gc

Figure 6. Representative errors in multi-object tracking. Ground

truth objects Ga,b,c are tracked by trackers T1...4. All error in-

stances are not marked on the time-line. (Fig. looks good in color)

to be associated with the tracker output Tj at time t if the

Euclidean distance ||Gi − Tj || ≤ r.

To demonstrate the various kinds of tracker errors that

can occur in multiple object tracking we present a simple

schematic in Fig. 6 where the three objects Ga,b,c are tracked

by four trackers T1...4. A track T identifies the G it spends

the most time tracking, and a G is identified by the T that

tracks it for the longest duration. Hence, trackers T1, T2,

T3, and T4 identify ground truth objects Ga, Gb, Gb, and Gc,

respectively. In the other direction, objects Ga, Gb, and Gc

are identified by trackers T1, T2, and T4, respectively.

Trackers that do not associate with any ground truth ob-

jects result in false positive (FP) errors. Ground truth seg-

ments that are not tracked by any tracker contribute to false

negative (FN) errors. Multiple tracker (MT) and multiple

object (MO) errors occur when there are many-to-many as-

sociations between Gs and T s. Notice how T2 is simul-

taneously associated with two objects Ga and Gb for some

time duration, thus resulting in MO errors. Also, at one

time both T1 and T2 are tracking Gb, thus resulting in MT

errors. A G tracked by some T , which is not its identify-

ing tracker results in a falsely identified tracker (FIT) error.

Similarly, falsely identified object (FIO) error occurs when

a T tracks some G that is not identified by this tracker. The

FIT and FIO metrics capture the track fragmentation (mul-

tiple trackers for one object) and track merge (one tracker

for multiple objects) errors, respectively.

Tracker purity (TP) and object purity (OP) measure the

proportion of time for which a T tracks the identified G,

and the time for which a G is tracked by the identifying T ,

respectively. Finally, configuration distance (CD) keeps a

count of difference between the number of T s and Gs at

each frame.

Like any other error metric, it is desirable to have a low

FP, FN, MT, MO, CD, FIT and FIO errors, whereas, the pu-

rity measures, TP and OP, should be high for a good track-

ing system. All errors are normalized (at each frame) by

max
(

N t
G , 1

)

, where N t
G is the number of Gs in frame t. It

should be noted that some of the errors metrics are corre-

lated, e.g., a tracker that is not associated with any ground

truth object will contribute to FP errors and also reduce the

average TP.

4.3. Quantitative Results

To evaluate the performance of the proposed tracker

switching framework we compared it with other possible

tracker combinations that can be conceived from the given

component trackers. Selecting two out of three trackers re-

sulted in methods E+P (i.e., an agent can switch between

an E-tracker and a P-tracker) and P+K. By construction

since the switching between an E-tracker and a K-tracker

is unexpected, we do not consider their combination in this

comparison. Finally the three trackers can be used indepen-

dently thus resulting in three more methods, namely E , P ,

and K. Our proposed tracker switching method is denoted

by E+P+K.

We compared the aforementioned methods against each

other based on the metrics (defined earlier) computed for all

sequences for which ground truth is available. The results

are shown in graphs of Fig. 7. Each bar shows the metric

value averaged over all the frames of sequences used. The

results for method E are omitted from the graphs since this

simple tracker produced very high errors and low purity val-

ues, as expected. As seen from the plots, methods E+P+K
and P+K demonstrate better overall tracking performance

compared to other methods.

Method K performs poorly on the FP, FN, FIT, TP, and

OP metrics. The reason for its poor performance can be

attributed to the susceptibility of the kernel tracker to drift

over time. K-tracker is robust for short term track disam-

biguation but, if used alone, it will drift off the object even-

tually, resulting in high FP/FN errors. This also leads to

track fragmentation since multiple trackers are required to

track a single ground truth object, and hence a higher FIT

error. K-trackers are mostly active for short durations and

hence there is a lesser chance of track merges, thus a low

FIO error is obtained.

Methods P and E+P lack in performance primarily for

the MT, MO, CD, FIT, and FIO metrics. Due to the miss-

ing K-tracker in these methods, they fail to disambiguate

objects as they become part of group interactions (3D blobs

merges). Thus multiple trackers latch onto single clusters

(group) and new trackers need to be started as the objects

get separated eventually. The multiple trackers from before

still incorrectly track single objects after blob splits. This

also results in a higher number of agents in the scene. The

tracker/object mismatch in crowded scenes therefore results

in high value of these error metrics.

Finally, both the P+K and E+P+K methods perform

FP FN
0

0.05

0.1

0.15

0.2

(a)

N
o
rm

a
liz

e
d
 E

rr
o
r

E+P+K
E+P
P+K
P
K

MT MO CD
0

0.05

0.1

0.15

0.2

(b)
FIT FIO

0

0.05

0.1

0.15

0.2

0.25

(c)
TP OP

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 P

u
ri
ty

(d)

Figure 7. Comparison of tracking methods evaluated on metrics: (a) FP/FN (b) MT/MO/CD (c) FIT/FIO (d) TP/OP. A good tracker should

have low errors for (a), (b), and (c), and high purity for (d). The legend shown in (a) holds for all the graphs.

E+P+K E+P P+K P K

E 21348 23805 - - -

P 6714 10923 28068 34728 -

K 3772 - 3766 - 30914

Table 1. The number of times each individual tracker (rows) is

invoked by various methods (columns).

similarly on all metrics. This begs the question: What ben-

efit, if any, is achieved by using the E-tracker? The primary

advantage is the saving in computation time obtained by us-

ing this simple tracker in the situations when it is applica-

ble. To quantify the computational savings we estimated

the ratio of average times spent in one iteration of each of

the E ,P ,K-trackers, which turned out to be 1 : 3 : 60. The

number of times each of the three trackers were invoked by

each method is shown in Table 1. From this information we

obtain a relative improvement of 13.66% in terms of com-

putation time (e.g., it translates to a running time of 13 sec

for E+P+K vs. 15 sec for P+K). Furthermore, the E-tracker

is additionally robust in situations when a fast moving iso-

lated object suddenly changes its motion direction, and the

P-tracker fails due to incorrect velocity prediction.

5. Summary and Conclusion

We presented a context-based tracker switching frame-

work that robustly tracks objects in a busy scene. A switch-

ing framework provides a practical way to combine multiple

tracking algorithms. The framework draws upon the robust

and salient properties of each component tracker by dynam-

ically selecting the appropriate method based on the current

scene context. We demonstrated our approach for tracking

people in 3D using multiple cameras. The proposed algo-

rithm was compared to individual component trackers and

found to be more reliable and computationally efficient. In

the future work, we plan to formally compare our switching

framework to alternate techniques for tracker combination,

such as fusion (both decision and feature fusion).

References

[1] J. Black and T. J. Ellis. Multi camera image tracking. Image

and Vision Comp., 24(11):1256–1267, 2006.

[2] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based ob-

ject tracking. IEEE Trans. Patt. Analy. and Mach. Intell.,

25(5):564–577, May 2003.

[3] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis.

Real-time foreground-background segmentation using code-

book model. Elsevier Real-Time Imaging, 11(3):172–185,

June 2005.

[4] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and

S. Shafer. Multi-camera multi-person tracking for EasyLiv-

ing. In Proc. Work. Vis. Surveillance, pages 3–10, 2000.

[5] A. Laurentini. How far 3D shapes can be understood from

2D silhouettes. IEEE Trans. Patt. Analy. and Mach. Intell.,

17(2):188–195, 1995.

[6] I. Leichter, M. Lindenbaum, and E. Rivlin. A general frame-

work for combining visual trackers – the “Black Boxes” ap-

proach. Int. J. of Comp. Vis., 67(3):343–363, 2006.

[7] O. Masoud and N. Papanikolopoulos. A novel method for

tracking and counting pedestrians in real-time using a single

camera. IEEE Trans. on Vehicular Tech., 50(5):1267–1278,

2001.

[8] A. Mittal and L. Davis. M2Tracker: A multi-view approach

to segmenting and tracking people in a cluttered scene using

region-based stereo. In Proc. European Conf. Comp. Vis.,

pages 18–36, 2002.

[9] M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cor-

nelis, J. Tops, and R. Koch. Visual modeling with a hand-

held camera. Int. J. of Comp. Vis., 59(3):207–232, 2004.

[10] K. Shearer, S. Venkatesh, and K. Wong. Combining multi-

ple tracking algorithms for improved general performance.

Pattern Recognition, 34(6):1257–1269, 2001.

[11] N. Siebel and S.Maybank. Fusion of multiple tracking algo-

rithms for robust people tracking. In Proc. European Conf.

Comp. Vis., pages 373 – 387, 2002.

[12] K. Smith, D. Gatica-Perez, J. Odobez, and S. Ba. Evaluating

multi-object tracking. In Wkshp. on Empirical Evaluation

Methods in Comp. Vis., volume 3, pages 36–36, 2005.

[13] A. Tyagi, G. Potamianos, J. Davis, and S. Chu. Fusion of

multiple camera views for kernel-based 3D tracking. In Proc.

Wkshp. Motion and Video Computing, pages 1–8, 2007.

[14] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A sur-

vey. ACM Comput. Surv., 38(4), 2006.

