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Abstract

We propose an efficient active camera model to map im-
age coordinates to the camera’s pan-tilt orientations in con-
stant time. The model is based on the elliptical locus of the
projections of a fixed point on the original image plane of
a moving camera. The parametric location of this point
along the ellipse defines the change in camera orientation.
This model does not require any knowledge of camera pa-
rameters other than the focal length. Using synthetic and
real data, we show the accuracy of the model by generat-
ing seamless spherical panoramas from a set of images and
demonstrate the applicability of the model with a real-time
active tracking application.

1. Introduction

Pan-tilt (and sometimes zoom) cameras are extensively
used for wide-area surveillance. Tracking and activity anal-
ysis in such environments requires continual coverage of
the entire area by the cameras. While these cameras cannot
adequately cover the entire space in a single view, they can
be directed to look at changing areas of interest using pan
and tilt controls. For example, an automatic system could
be developed to continually track a person while keeping
the person centered in the image. Therefore, when process-
ing images captured by these cameras, there is a need to
map the image pixel coordinates from tracking to their cor-
responding pan-tilt orientations in world space (to move the
camera to a new location corresponding to the centroid of
the target in the current image). Therefore, understanding
this mapping is a fundamental tool which aids active cam-
era applications.

Complex camera models have been suggested to address
this problem [4, 6]. However, we propose a simple, yet re-
liable, model which given the current pan-tilt value of the
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camera, computes in constant time, the pan-tilt location of
any other arbitrary pixel in the given image. All that is re-
quired for this model is an estimate of the focal length (in
pixels) of the camera. There is no need to know any other
camera or scene-specific parameters. The principal idea be-
hind this model is that the locus of a point on a fixed image
plane, as the camera rotates, forms an ellipse from which
the pan and tilt can be computed. In this paper, we address
cameras mounted on pan-tilt heads (zoom will be addressed
in future work).

In Sect. 2, we discuss previous approaches to active
camera modeling. Section 3 describes the proposed model
in detail. Section 4 covers the experiments which involve
panorama generation and an application of the model to ac-
tive tracking. We conclude with a summary in Sect. 5.

2. Related Work

Most existing camera models assume idealized mechan-
ics where the optical center and geometric center of the
camera are collocated, and the rotation axes are aligned [1,
3, 5, 9]. However, this is not true with most commercially
available cameras where the pan-tilt motor center does not
coincide with optical center of the camera. Extending the
ideal model, [4] accounts for rotations around arbitrary axis
in space. This results in a great deal of additional data hav-
ing to be collected to robustly calibrate all camera parame-
ters, which they do using LED marker data. Moreover, this
technique employs an iterative minimization technique that
is computationally expensive. In [6], they propose a more
complex model where they employ a highly non-linear rela-
tionship between image coordinates and world coordinates
which is then linearized. They solve for a closed-form so-
lution by iterating until convergence. In [2], a “correction
matrix” is used to continuously update the camera param-
eters with the latest pan and tilt information as the camera
moves. However, this information is not precise enough for
pixel-level mapping.
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Figure 1. Camera Geometry. (a) Overall geometry of the camera model. (b) Calculation of change in panδθ. (c) Calculation of minor axis
b (c0 is a circle of radiusb centered atC and parallel to the ground plane).

3. Framework

We present a simple model to map the image coordinates
(x, y) to the world camera orientations(pan, tilt). The
main idea behind this mapping is that the locus of a point
on afixed(the original) image plane, as the camera rotates,
is an ellipse. The goal is to find the change in pan and tilt
along this ellipse to center the point(x, y) in the new im-
age (after applying the new pan-tilt rotations). The change
in pan is essentially a function of coordinates(x, y), the fo-
cal length, and the major axis of the ellipse. This change
is pan is further used to compute the location of the point
along the ellipse, in terms of a parametric equation. This
parameter value, together with the focal length, is then em-
ployed in the calculation of the change in tilt. We describe
the geometry of this model in the following section.

3.1. Geometry

Figure 1 provides the main geometric relationships de-
scribed in this section. The pointO represents the optical
center (nodal point) of the camera, which is currently tilted
down at angleφ from the horizon. The rayON is the princi-
pal axis and when the camera pans a complete360 degrees
at tilt φ, a cone carved out. The image planeI is perpendic-
ular to the principal axisON and intersectsON at pointR,
which is the principal point, at a distance equal to the focal
lengthf . For any arbitrary pointP on the image planeI,
we wish to understand its locus onthis image plane as the
camera pans through some arbitrary angle.

Consider the principal pointR. As the camera pans, the
projections of successive principal fociR1, R2, R3, ... onto

theoriginal image planeI form an ellipse. This is evident
from the fact that the intersection of a plane with a cone is
an ellipse. Therefore, the locus of projections of theRi onto
I is the ellipse (e1) centered atC. Similarly, the locus of an
arbitrary pointP on I as the camera pans is also an ellipse
(e2). This ellipse intersects theY axis on the image plane
at pointP ′. Knowing the camera’s current(pan, tilt) loca-
tion, our goal is to mapP ’s image coordinates(x, y) to a
change in pan (δθ) and a change in tilt (δφ) that would cen-
ter the pointP in the new image (after panning and tilting),
thus makingP = R in the new image.

Change in Pan:First we compute the change in panδθ.
Consider a plane parallel to the ground plane and passing
through the pointP (see Fig. 1(b)). Suppose this plane in-
tersects lineOC at M . Therefore,△PMQ is parallel to
the ground plane. The desired change in panδθ is the angle
between planesMPC andMQC. The angle between two
planes is the measured along a plane which is perpendicular
to both planes. In our case, this plane is△PMQ and hence,
the desired angleδθ is ∠PMQ.

This angle is computed as follows

δθ = tan−1

(

x

(y + a) · sin φ

)

(1)

wherea is the length of major axis of the inner ellipsee1

and is given as (see Fig. 1(a))

a =
f

tan φ
(2)

Substituting the value ofa from Eqn. (2) in Eqn. (1), we



get

δθ = tan−1

(

x

y · sinφ + f · cos φ

)

(3)

Additionally, the length of the minor axis (b) of e1 is given
as (see Fig. 1(c))

b =
a

sin φ
(4)

Change in Tilt: Next, to compute the change in tiltδφ,
we need to find∠P ′OR (see Fig. 1(a)). Let lineCP inter-
sect the inner ellipsee1 at pointE. In terms of the para-
metric equation of an ellipse, we can represent pointE as
(a cos(t), b sin(t)). Since the two ellipsese1 ande2 are con-
centric, the values of this parametert at E (for e1) and at
P (for e2) are equal. IfA and B are the major and mi-
nor axes of the outer ellipsee2 (of which the arcPP ′ is
a part), we can represent pointP as (A cos(t), B sin(t)).
From Fig. 1(a) we see that

A · cos(t) = y + a (5)

B · sin(t) = x (6)

Also sinceA
B

= a
b
, we can now compute the value oft as

t = tan−1

(

a

b
·

x

y + a

)

(7)

Using the parametric equation forP , along with Eqn. (7),
we can find the length (A) of the major axis ofe2 as

A =
y + a

cos
(

tan−1(a
b
·

x
y+a

)
) (8)

We can now find∠P ′OR (i.e.,δφ) as

δφ = tan−1

(

A − a

f

)

(9)

Using these equations, we get the desired changes in pan
and tilt angles necessary to center pointP in the image
plane.

3.2. Focal Length

The focal lengthf (in pixels) is the only camera param-
eter needed by the model. We learn the focal lengthf us-
ing several points whose pan-tilt locations are known in the
scene. We start by pointing the camera to an area rich in fea-
tures/structure and then select several key point locations in
the image. Next, we move/center the camera to those loca-
tions and store the corresponding pan and tilt changes from
the initial orientation. Using the changes (δθi, δφi) for each
of the locations (xi, yi) and the initial/base tilt (φ) value,

we employ a least-squares formulation based on Eqn. (3) to
learn the value off
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(10)

We note that this model assumes perspective projections,
and hence radial distortion correction can be employed if
needed.

3.3. Advantages

An important advantage of the proposed model is that it
requires no knowledge of the field-of-view or camera pa-
rameters other than the focal length. Also, previous mod-
els [4, 6] have proposed approaches for the problem of mis-
alignment of the pan and tilt axes and the issue of the op-
tical and geometric center of the camera not being collo-
cated. These problems are observed in most commercially
available cameras. However, our model is independent of
these problems since it “simulates” a virtual camera located
at the optical centerO. As we do not model the actual cam-
era field-of-view, the images could be considered to have
been taken from this virtual camera centered atO. Hence
the complete pan-tilt space is oriented with respect to this
virtual camera atO, not the actual camera geometric center.
Even though the geometric center is displaced, the varia-
tion of pan and tilt of this virtual camera at any instant is
always consistent with the pan and tilt of the real camera.
Also, our model is much simpler as compared to existing
approaches which use either an expensive table-lookup pro-
cess [10] or iterative convergence methods to get closed-
form solutions [4, 6]. Our model is also faster since the
algorithm computes the necessary values in constant time.

4. Experiments

The proposed model enables the mapping of the(x, y)
coordinates of any image pixel to its corresponding
(pan, tilt) camera orientation in world space. To examine
and test this model, we performed multiple experiments us-
ing synthetic and real data. The first experiment tests the
accuracy of the model over a wide field-of-view by captur-
ing images across an entire scene, mapping the individual
pixels to their corresponding location in pan-tilt, and lastly
generating panoramic images. If the model is sufficient, the
individual images should register correctly and the resulting
panoramas should be seamless. We also demonstrate a real-
time active camera system, using the proposed model and
an established tracking algorithm to automatically move the
camera such that the subject being tracked is always cen-
tered in the image.
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Figure 2. Synthetic data experiment. (a) Top-down view of the virtual environment showing location of the camera. (b) Resulting panorama.

4.1. Panorama generation

Initially, we tested our model using a virtual environ-
ment synthetically generated in Maya. The environment
consisted of multiple 3D geometric objects placed at ran-
dom locations in the scene (see Fig. 2(a)). A virtual pan-
tilt camera was positioned near the center of these objects,
above the scene. By orienting the camera to a set of pre-
configured pan-tilt locations, we collected images such that
they cover the complete pan-tilt space. For the zoom level
employed, a total of76 images (of640 × 480 resolution)
were required to cover the scene with minimal overlap. Af-
ter estimating the focal length (Sect. 3.3), we mapped each
pixel of every image to its corresponding pan-tilt orienta-
tion in the360 × 90 space (at a resolution of0.1 degree).
The pan-tilt RGB data were plotted on a polar coordinate
system where the radius varies linearly with tilt and the an-
gle represents the pan. No smoothing or blending of data
was employed other than using linear interpolation to fill
any missing pixels in the final panorama. The result is a
spherical panorama as shown in Fig. 2(b)1. As shown, the
3D objects register correctly and the alignments are proper
across changes in pan and tilt.

Next, we used real pan-tilt cameras to test the proposed
model. We employed Pelco Spectra III SE surveillance
cameras which pan a complete 360 degrees and have a tilt
range of 0 to 90 degrees2. Similar to the experiment with
the synthetic data, the same number of images were cap-
tured such that they cover the entire scene. For each im-
age, the pixel locations were mapped to their corresponding
(pan, tilt) values and the panorama was generated.

1A “true” spherical panorama could be created by varying the radius
with the cosine of the tilt.

2We observed that the camera’s tilt encoder was off by +2 degrees, so
the tilt values were adjusted in the code.

Since the automatic gain control (AGC) could not be dis-
abled as the camera moved to new locations, there were il-
lumination differences in the scene and consequently these
differences are reflected in the panorama (see Fig. 3(a)).
To overcome this brightness change problem, we used the
technique of deriving intrinsic images [8] to compute a
reflectance-only panoramic image. By shifting the pre-
configured pan and tilt coverage locations in 5 and 1 degree
intervals respectively, we generated multiple panoramas of
the same scene at different times of the day (thus having
different illuminations). While generating the intrinsic im-
ages, we separated the luminance and chrominance chan-
nels from the RGB panoramas by changing the color space
from RGB to YIQ. Next, we ran the intrinsic algorithm on
only the Y channel, then combined the result with the mean
I and Q channels of the image set, and lastly converted back
from YIQ to the RGB color space. The result provides a
more uniform panorama, as shown in Fig. 3(b).

The above experiment was tested on multiple cameras
mounted at varying heights (on 2, 4, and 8 story buildings).
The results after intrinsic image generation are shown in
Fig. 4. These experiments demonstrate the applicability of
the model to real cameras at different heights.

4.2. Active Camera Tracking

Using the proposed model, we next developed an active
camera application to test the ability to track people in real-
time using wide-area surveillance cameras. The active cam-
era system moves the camera such that, at all stages during
tracking, the target being tracked is centered in the image.

The tracking algorithm used in this system is the Covari-
ance Tracker proposed by [7]. This algorithm models the
target using a covariance of spatial and color features and
performs template-based matching in successive frames to
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Figure 3. Brightness differences removal. (a) Panorama showing illumination differences before intrinsic image generation. (b) Final
panorama.

track the target. To model the target, we selected the fea-
ture vectorfk = [x y I(x, y) Ix(x, y) Iy(x, y)]. The tar-
get window was represented as a covariance matrix of these
features. This captures not only their spatial and statistical
properties, but also their correlation within the same repre-
sentation. The advantage of the covariance matrix is that
its dimensionality is small and it adapts well to temporal
changes in the model. The distance metric used to compute
dissimilarity between matrices was the sum of the squared
logarithms of their generalized eigenvalues. A model up-
date method was employed by keeping a set of recent co-
variance matrices and computing their mean over the Rie-
mannian manifold. In our system, we restricted our search
for the best match to a local search window (40 × 40).

The tracker is initialized manually and as the target
moves, the best match is found by the tracker in succes-
sive frames. Using the proposed model, the(x, y) center
coordinates of the best matching patch are converted to the
required change in pan and tilt angles required to center the
target. While moving the camera, the system polls the mo-
tor to see if it has reached the desired pan-tilt location. Once
it has, the next frame is grabbed and the best match is again
found, and the process repeats.

Figure 5 shows the results of active camera tracking
from two different cameras. The image chips of the targets
tracked at different times are shown on the left. The target’s
raw (not smoothed) track is overlaid on the panorama and
the chips shown are marked on the tracks. In Fig. 5(a), track
1 starts off with the camera at a low tilt angle, moves to-
wards increasing tilt values reaching almost the maximum
tilt by coming directly under the camera, moves left and
then enters the building. Track 2 shows a large variation in
pan angles with the tilt angles varying slightly. Figure 5(b)

shows a camera at a low height. Track 1 shows a person
walk across the scene where the pan varies continuously
across a large range. Track 2 shows a person start at a low
tilt angle, walk randomly around the sidewalk, such that
there are large variations in both pan and tilt.

The tracking results are obtained from two cameras at
different heights, and the results demonstrate the robustness
of the proposed model and its applicability to real-time ac-
tive tracking.

5. Summary

We proposed a novel camera model to map image coor-
dinates to pan-tilt orientations in constant time. This fast
model requires no knowledge of the scene structure or cam-
era parameters other than the focal length. The model is
based on the observation that the locus of a point on a fixed
image plane, as the camera rotates, is an ellipse. There-
fore, using the parametric location of the point along the el-
lipse, we solve for the desired change in pan and tilt angles
needed to center the point. We tested the model by mapping
images to their pan-tilt orientations and generating accurate
panoramas. We also demonstrated an active camera track-
ing application which used the proposed model to maintain
a centered target at all times. In future work, we plan to in-
corporate the variation of focal length with changes in zoom
so that the camera can choose to zoom in or out on a target
as needed.
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Figure 4. Resulting panoramas from three different cameras located on (a) 2, (b) 4, and (c) 8 story buildings.
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Figure 5. Active camera tracking. (a) Camera located 4 stories high. (b) Camera located 2 stories high. Dots along the track are locations
shown in the image chips.


