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Abstract

We present a method for the simultaneous detection and
segmentation of objects from static images. We employ low-
level contour features that enable us to learn the coarse ob-
ject shape using a simple training phase requiring no man-
ual segmentation. Based on the observation that most inter-
esting objects (e.g., people) have regular and closed bound-
aries, we exploit relations between these features to extract
mid-level cues, such as continuity and closure. For segmen-
tation, we employ a Markov Random Field that combines
these cues with information learned from training. The al-
gorithm is evaluated for extracting person silhouettes from
surveillance images, and quantitative results are presented.

1. Introduction

Detecting instances of a particular object class from a
single image is a challenging problem, and remains the
attention of much research. An important application of
such research is person detection from surveillance im-
agery. Several popular detection approaches [11, 3] use
bounding boxes to indicate the location and extent of the
person. While useful, such a result does not provide any
information regarding the person shape. Though acquiring
the target object shape is traditionally viewed as a segmenta-
tion task, most segmentation approaches extract boundaries
(or silhouettes) given that the image already contains only a
single instance of the object [1].

In this paper we present a method that attempts to simul-
taneously detectand segment people in static images. The
approach is applicable to any object category, and is based
on the simple observation that most natural and interesting
object classes (e.g, people, vehicles, etc.) have shapes with
regular and closed boundaries. Unlike related techniques
[6, 10], our algorithm relies on a simple training phase and
does not require any manual segmentation.
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We introduce low-level contour features that enable us to
learn the coarse object shape from weakly labeled training
data. The relations between the features are exploited to ex-
tract mid-level cues such as contour continuity (local) and
closure (global) that capture our expectation regarding ob-
ject boundaries. We then employ a Markov Random Field
(MRF), defined over the contour features, to obtain a con-
tour segmentation by combining the local and global mid-
level cues with likelihoods obtained during training. The
approach is evaluated for the detection and segmentation of
people from surveillance images.

2. Related Work

Several algorithms, such as [11, 3], generate satisfac-
tory detection results, but provide no shape information of
the object. In [5] a template based method was presented
that matched an object with the most similar template from
a database. The method required a large training dataset
of fully segmented images. Recently, constellation mod-
els (e.g., implicit shape models [6]) have been used for the
combined detection and segmentation of objects. However,
this class of techniques also requires training sets with man-
ually segmented foreground regions. In a related approach
[8], boundary fragments (instead of regions) were used to
learn the object geometry. Another approach using object
boundaries was proposed in [10]. Both these methods em-
ployed a boosting technique during training and required
some amount of segmentation during training (object cen-
troids in [8], complete shape in [10]). Work such as [1]
focus only on object segmentation, and discuss neither ob-
ject detection, nor how the method works when the object
is not present in the image.

3. Contour Features

The importance of first-order gradient information in
estimating the shape and appearance of an object is well
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Figure 1. Contour features. (a) Input image.
(b) Contours features extracted from object
boundary. (c) Relative affinity between the
marked contour (circles) and contours ex-
tracted from the entire image.

known [3, 7, 10]. We exploit this information by extracting
contour-based features that capture the location, orientation,
and magnitude of image gradients, and provide a simple
means to describe object shape.

We extract short, nearly linear contour fragments based
on changes in gradient direction. To ensure contour frag-
ments of reasonable size, the edge orientations are initially
quantized into a smaller number of bins. We represent
a contour fragment,c, by a compact feature vectorf =
[ep1, ep2, Emag], whereep1 andep2 are the coordinates of
the two end-points and capture information regarding the
orientation, extent, and location of the object gradients. The
mean edge magnitude along the contour is represented by
Emag. We show an image region containing a person in
Fig. 1(a), and in Fig. 1(b) we show the contour features
extracted from along the person boundary. Each feature is
denoted by a line segment with a thickness proportional to
Emag. The set of all contour features,F = {f1, . . . fn},
extracted from the object gradients, forms a compact repre-
sentation that implicitly captures object shape.

3.1. Contour Affinity

In order to capture the notion that objects have smooth,
regular boundaries, we rely on the “affinity” between con-
tours. Used in several computational figure completion
methods [9], affinity measures how likely it is that two edge
elements belong to the same underlying edge structure.

Given two contoursc1 and c2, consider the simplest
(lowest change in curvature) curve connecting an end-point
of c1 to an end-point ofc2. Based on [9], the affinity for this
curve joiningc1 andc2 is defined as

A = e(−r/σr) · e(−β/σt) · e(−∆/σe) (1)

where r is distance between the end-points, and∆ =
|Ec1

mag − Ec2
mag| (the absolute difference in contour inten-

sity). The termβ = θ2
1 + θ2

2 − θ1 · θ2, whereθ1 denotes the
angle between the tangent vector at the end-point ofc1 and
the line joining the end-points ofc1 andc2. The angleθ2,
formed at the end-point ofc2, is analogous toθ1. The nor-
malization factorsσr, σt, andσe are written asσr = R/w1,

S = 1.9 S = 1.8 S = 1.2 S = 1.1
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Figure 2. Contour closure. (a) Input image.
(b) Examples of cycles. (c) R magnitudes
computed for each contour.

σt = T/w2, andσe = E/w3, whereR, T , andE equal the
maximum possible value ofr, β, and∆, and (w1, w2, w3)
are weights that can be used to change the relative influ-
ence of each term in the affinity calculation. Sincec1 and
c2 have two end-points each, there are four curves connect-
ing the contours depending on which pair of end-points are
connected. We define the contour affinity,Aff(c1, c2), be-
tween contoursc1 andc2 as the maximum affinity over the
four possible curves.

We compute pairwise affinities between all the contour
features extracted from an image. Features lying in close
proximity along a common edge structure often align well,
and have similar intensities and hence obtain high affinity
values. In Fig. 1(c) we show the relative affinity values
between the marked (in circles) contour and the rest of the
contours extracted from the image. The figure clearly shows
that in spite of the large number of contours in close prox-
imity, the neighboring contoursalong the person boundary
have the highest affinity.

3.2. Contour Closure

Apart from having smooth boundaries, a mid-level cue
common to most object classes is that they have a finite ex-
tent bounded by a closed boundary. To capture this notion,
using a method similar to [4], we determine if each contour
belongs to a sequence of contours forming a closed loop.

We treat the contour features as nodes in a weighted, di-
rected graph, where the weights on the arcs correspond to
the affinity between the nodes. In order to create a sparse
graph, we limit the out-degree of each node. Consider-
ing each node in turn, we compute the mean and standard-
deviation of its affinity values with every other node. We
then preserve only those arcs that have affinity values with
a Mahalanobis distance greater than a threshold,t. We use
a value oft = 1 for all the results reported here. The arcs
of the graph are then assigned weights equal to the negative
log of the affinity values (high affinity corresponds to low
arc weight). This enables us to find the most likely cycle
passing through a pair of contours using standard and effi-
cient shortest-path algorithms (e.g., Dijkstra’s algorithm).

If a cycleCij exists between a pair of contours,ci and
cj , it is assigned a score,S, equal to the product of the area
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of the cycle and the affinity of the arc with the maximum
weight (minimum affinity) in the cycle. Thus, large cycles,
formed by chains of high affinity contour features, are as-
signed better scores. Each contour is then assigned a value,
R, equal to the average score of the cycles passing through
it and every other contour

R(ci) =

∑
cj∈F S(Cij)

n
(2)

wheren is the number of contours in the image. In Fig.
2(b) we show examples of cycles, in descending order of
S, extracted from the contour features of the image shown
in Fig. 2(a). In Fig. 2(c) we show the contour features
weighted byR. Note that object contours generally have
higherR values than background contours.

We propose to use this notion of closure as aprior, en-
forced using an MRF (Sect. 5). We choose not to includeR
in the feature descriptorf due to two reasons. First, com-
puting cycles passing through every pair of contours in an
image is computationally intensive. Second, while object
contours generally have highR values, we observe that it
is possible for background contours also to have similarly
high values (see small background contour in Fig. 2(c)).

4. Training Procedure

Using the features defined in Sect. 3, we employ a sim-
ple training procedure to learn a rough estimate of the shape
of the target object class (e.g., person). The weakly labeled
training data consists of separate sets of positive (with ob-
ject), and negative (without object) cropped images. No
manual annotation in the form of segmented object regions
or marked object centroids is required.

We first extract features,f , as described in Sect. 3 from
each image patch. These features populate a 5D space,
where the dimensions represent the x and y coordinates of
contour end-points (ep1 andep2) and the edge magnitude
(Emag). In this 5D space, we create probability density
functions (pdf) for the positive and negative features us-
ing normalized histograms. Other density estimation tech-
niques could also be employed.

The modes of the positive pdf correspond to contour fea-
tures common to most instances of the object class as seen
in the training set. Given a new feature, the positive and
negative pdfs are used to provide a likelihood measure of
the feature belonging to the object or the background.

5. Contour labeling using MRF

Given that the positive and negative pdfs have been com-
puted, we now describe how an input image is analyzed. We
begin by extracting contour featuresF = {f1, f2, . . . fn}

from the input image, and aim to obtain a segmentation by
assigning each feature a label from the setL = {lo, lb},
corresponding to the “object” or “background” class.

Let B denote a configuration of labels such that{f1 =
b1, f2 = b2, . . . fn = bn}, wherebi ∈ L. We formulate
the search for the optimal label configurationB as a max-
imum a posteriori (MAP) problem. If we assume that the
likelihood of a configuration of labels can be written as a
product of the individual likelihoods, the MAP estimate is
equivalent to minimizing the free energy [2]

E(B) = −
∑

i

log(p(fi|bi))− log(p(B)) (3)

The first term corresponds to the likelihood of each con-
tour feature belonging to the positive (object) or the nega-
tive (background) class. These likelihoods are learned dur-
ing the training procedure, and capture the coarse shape of
the specific object category. The second term corresponds
to the prior probability of a shape, as defined by a given
configuration of contour labels. As described in Sect. 3.1
and 3.2, the object classes of interest have regular, smooth
shapes, and are bounded by a closed contour. In what fol-
lows we describe a MRF used to enforce these mid-level
cues, while minimizing Eqn. 3.

We model the prior by employing a MRF defined over
the set of contour features. In order to establish a neighbor-
hood system for the MRF, we make use of contour affinity
(see Eqn. 1). For each contour feature,cp, we obtain the
affinity value to all other features, and compute the mean
and standard deviation of these values. Then, as described
in Sect. 3.2, the features having affinity values greater than
t standard deviations from the mean are included inNp, the
neighborhood ofcp.

Following the Hammersley-Clifford theorem, we de-
fine the probability of a configurationP (B) ∝
exp(−∑

k Vk(B)), whereVk denotes the clique potential
defined over cliquesk. We employ the generalized Potts
model to define pairwise clique potentials as

V(p,q)(bp, bq) = u(p,q)(1− δ(bp − bq)) (4)

wherep andq are neighboring sites in the field, which in
this case denote contour features. The quantityu(p,q) can
be considered to be the cost of assigning different labels to
p andq. In most applications, the MRF is defined over a
regular lattice (e.g., pixels) and the neighborhood of a site
is formed by its 4- or 8-connected neighbors. In such cases,
u(p,q) is often defined as a constant (well potential) giving a
homogeneous MRF with isotropic clique potentials.

However, in contrast to most previous applications, the
MRF described here is defined on contour features (not
arranged in a regular grid). Further, the MRF is non-
homogeneous, in that the clique potential across neighbor-
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ing sites (contour features) depends on the properties of the
sites. Instead of defining radially symmetric clique poten-
tials, we wish to enforce a directional smoothness to the
label configuration, such that if a contour feature has a pos-
itive (object) label, neighboring contours are assigned the
same label only if they exhibit good continuity (high affin-
ity) and closure (belong to a closed chain of contours).

We first identify a setF ′ of candidatecontours that are
likely to belong to the object class using the thresholded
log-likelihood ratio

fi ∈ F ′, if ln
(

p(fi|lo)
p(fi|lb)

)
> T (5)

Then, using the technique described in Sect. 3.2, we search
for cycles connecting pairs of contours taken fromF ′. As
we find cycles,Cij , connecting contourci with other con-
tours cj in F ′, we increment a pairwise interaction term,
Cyc(i, k), for all contoursck included in those cycles

Cyc(i, k) = Cyc(i, k) +
{

S(Cij) ck ∈ Cij

0 otherwise
(6)

The value ofCyc(i, k) is normalized by the number of con-
tours inF ′. Thus, a high value ofCyc(i, k) suggests that,
among cycles computed between contours inF ′, many high
scoring cycles passed throughci andck.

We combine bothAff and Cyc in order to define the
penalty termu(p,q) in Eqn. 4 as

u(p,q) =
{

Aff(p, q) · e(−σc/Cyc(p,q)) cp ∈ F ′

Aff(p, q) otherwise
(7)

whereσc is a normalization constant. Thus, the cost of label
discontinuity is greater for contour pairs with high affinity
values. Furthermore, if a contour is inF ′, this cost is greater
for those pairs that have a high affinity and are likely to
belong to a closed contour cycle.

Figure 3 shows an example illustrating the effect ofAff
andCyc on the clique potential. In Fig. 3(a) we show the
original image and in Fig. 3 (b) we show, in white, the set
of candidate contoursF ′. In Fig. 3(c) we show the rela-
tive strength ofu(p,q) between the marked contour (in cir-
cles), and the contours in its neighborhood computed using
only Aff. In Fig. 3(d) we see how combiningCycwith Aff
changes the distribution ofu(p,q). Notice that the poten-
tial along the person boundary has been magnified, and the
other values have been reduced nearly to zero.

As shown in [2], minimizing the energy functionE(f)
in Eqn. 3 is equivalent to solving the mincut problem on an
appropriately constructed graph. Following [2], the graph is
composed of two types of vertices, the c-vertices (contour
features) and the l-vertices (labels,lo and lp). Among the

(a) (b) (c) (d)

Figure 3. Clique potential. (a) Input image. (b)
Candidate contours. (c) Relative magnitude
of u(p,q) using only Aff. (d) Relative magnitude
of u(p,q) using Aff and Cyc (Eqn. 7).

c-vertices, ifq is in the neighborhood ofp, thenp andq are
connected by an arc with weightw(p,q) = 2u(p,q). Each
c-vertex also has an incoming directed arc fromlo (source)
and an outgoing directed arc tolb (sink) with a weight

wl
p = (ln(P (fp|l)) + K) +

∑

q∈Np

w(p,q) (8)

wherel ∈ L andK is a constant ensuring that the weights
are positive. The min-cut of this graph ensures that each
contour feature is connected to only one of the l-vertices,lo
or lb, and provides the required contour labeling.

6. Experiments

In this section we evaluate the performance of the algo-
rithm for the extraction of person silhouettes from surveil-
lance images. In all our experiments we used images pro-
duced by 6 different outdoor, roof-mounted, pan-tilt-zoom
color cameras encompassing several different backgrounds,
and view angles.

We first evaluated the ability of our algorithm to detect
and segment person contours from cropped image regions.
To train our system, we manually generated 2034 30x40
image patches (after left-right reflection) containing people
in a wide variety of poses and orientation. For the nega-
tive training set, we randomly selected 5000 30x40 image
patches from a collection of similar images not containing
people. To test our algorithm we generated an additional
200 positive, and 1000 negative image patches from images
not seen during training. In Fig. 5(a) we show examples
from the positive test set. In Fig. 5(b) we show an inter-
mediate result from the algorithm. The extracted contours
are shown in dark gray, and the initial candidate contour
fragments (see Eqn. 5) are shown in light gray. The fi-
nal contour segmentation is shown in Fig. 5(c). These ex-
amples illustrate the ability of the algorithm to extract per-
son contours in various scenarios, including different poses,
background structure, and proximity to other people. Com-
paring Fig. 5(b) and (c) we also see the clear improvement
achieved by enforcing shape priors (Sect. 5). The last row
of Fig. 5 shows an instance of a negative example.
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Figure 4. ROC curve obtained by varying the
threshold on label coherence.

In order to quantitatively evaluate the algorithm, we
manually segmented the images in the test set by labeling
the contours in each image. For each image in the positive
set, we computed Precision and Recall values in terms of the
number of correctly labeled pixels. Over the 200 positive
images tested, the segmentation produced by the algorithm
had an average F-measure (harmonic mean of Precision and
Recall) of 0.87. For the negative set, we computed for each
image the ratio of the number of false positives (pixels la-
beled as belonging to an object contour) to the total num-
ber of contour pixels. For the 1000 images in the negative
set, the algorithm generated an average false positive ratio
of 0.014. These results suggest that while the algorithm is
adept at segmenting the object when it is present in the im-
age, it also generates very few (if at all) false positive labels
when no object is present.

A simple measure of the coherence of the generated con-
tours labels can be very effective at classifying an image
patch as containing an object or not. In this case, we com-
pute the average of the best cycle score and the median pos-
itive likelihood of the object contours as the measure of co-
herence. In Fig. 4 we show a ROC curve generated by
varying the threshold on this coherence measure in order to
separate the positive and negative test images. As can be
seen, an appropriately chosen threshold can result in a very
small percentage of mis-classifications.

Apart from measuring the accuracy of the contour seg-
mentation, we also evaluate the quality of the silhouettes
generated from these contours. In order to form silhouettes,
we search for cycles formed by the positively labeled con-
tours, and score them as described in Sect. 3.2. This pro-
cess does not impose large computational overhead since
the pairwise contour affinities are already computed, and
the graph is sparse, consisting only of the positively la-
beled contours. The end-points of the contours belonging
to the highest scoring cycle are then simply joined using
straight lines giving a complete, closed outline. This out-
line is flood-filled to generate the final silhouette.

For the same positive test set used earlier, we generate

silhouettes from the positively labeled contours and com-
pared these with manually formed silhouettes (created by
connecting together the hand-labeled contours). The aver-
age F-measure of the silhouettes generated by the algorithm
for the 200 positive images was 0.93. This shows that we
were able to generate silhouettes that were reasonably close
to the actual shape of the objects. In Fig. 5(d) we show ex-
amples of silhouettes created by the algorithm, and in Fig.
5(e) the manually created silhouettes.

Next, we evaluated the performance of our algorithm
using different combinations of features. We modified
the MRF (see Sect. 5) to only enforce the affinity-based
smoothness prior, without utilizing contour closure (Eqn.
7). The features extracted to learn the likelihoods were
then varied to yield 4 different combinations as follows,
f1 = [ep1, ep2] (position only),f2 = [ep1, ep2,R] (posi-
tion and closure),f3 = [ep1, ep2, Emag,R] (position, edge
intensity, and closure), andf4 = [ep1, ep2, Emag] (position
and edge intensity). The performance of the algorithm us-
ing these different features was compared based on the 200
positive and 1000 negative test images used earlier.

In Table 1 we show the average F-measure obtained by
each feature set (f1-f4) for the contour and silhouette seg-
mentation of the positive test images. For comparison, the
table also shows the results obtained using the proposed
formulation (f∗), where featuref4 is used during train-
ing, and both contour affinityand closure are enforced as
priors. The corresponding F-measures computed using the
candidate contours (prior to using the MRF) are shown in
parenthesis. Comparing results off3 andf4 againstf1 and
f2, we find that edge intensity combined with position pro-
vides pertinent information during training. As predicted
(Sect. 4), comparingf3 andf4 we see that includingR
(computed overall contours) in the feature vector does not
provide any improvement in performance. However, com-
paring these results withf∗, we see that including closure as
a prior, along with contour affinity, does provide a distinct
performance boost.

Table 2 shows the false positive rates for the 1000 nega-
tive images using the different feature combinations. Com-
paring the results we once again see that the proposed
method,f∗, provides the best results. Further, in each of
the settings, the final contour labels are found to be more
accurate than the results generated before application of the
prior (shown in brackets).

7. Summary and Future work

We presented a method to detect and segment people
from static images. The algorithm utilizes low-level contour
features, and relies on a simple training phase to first obtain
a rough estimate of the target object shape. Based on the ob-
servation that objects (people) have regular, closed bound-
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f1 f2 f3 f4 f∗

Contour 0 0.15 0.79 0.80 0.87
(0.34) (0.39) (0.64) (0.70) (0.70)

Silhouette 0.00 0.07 0.72 0.84 0.94

Table 1. F-measures for positive examples.

f1 f2 f3 f4 f∗

Contour 0.008 0.010 0.029 0.020 0.014
(0.015) (0.039) (0.091) (0.045) (0.045)

Table 2. False positive rates for negative ex-
amples.

aries, mid-level cues such as contour continuity and closure
are computed. An MRF, defined over the contour features,
is used to integrate the different sources of information and
provide a contour segmentation. While the approach is ap-
plicable to general object categories, we presented results
for detecting and segmenting people from surveillance im-
agery. The results were evaluated against manually marked
data, and generated a high F-measure of Precision and Re-
call. We are currently working on an implementation that
will enable us to scan images at multiple resolutions. We
also plan to evaluate the method for other objects categories.
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(a) (b) (c) (d) (e)

Figure 5. Example results. (a) Input image.
(b) Candidate contours. (c) Selected con-
tours. (d) Silhouettes. (e) Ground-truth.
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