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Abstract

We address the limited automatic scanning functionality
of standard PTZ camera systems. We present an adaptive,
scene-specific model using standard PTZ camera hardware.
The adaptive model is constructed automatically by detect-
ing human activity in Motion History Images (MHIs) us-
ing an iterative candidacy-classification-reduction process.
The target motion is quantified and employed in the con-
struction of a global Activity Map, which in turn is used to
direct or navigate the camera.

1. Introduction

In security surveillance there exists a large population
of video surveillance cameras which provide pan/tilt/zoom
(PTZ) functionality. As a result, in this work we focus
on enhancing current functionality for single PTZ cameras.
Many PTZ camera systems provide basic or naive auto-
matic scanning technology. An example scan mechanism is
Frame Scan, where the camera pans over one field-of-view,
pauses, and then repeats. In complex environments, these
generic algorithms typically result in sub-optimal scanning
of the space due to camera position, obstructing scene struc-
ture, or non-uniform user interest across the scene.

In this work we develop a scene-specific, adaptive,
focus-of-attention camera navigation model for video
surveillance by automatically learning locations of high ac-
tivity and directing the camera to sample these areas more
frequently. The algorithm measures activity from a Motion
History Image (MHI) [2] at each view across the full view-
able field of a PTZ camera. This information is then used to
construct a scene-specific model of interest (Activity Map).
Several new scanning algorithms are presented that take ad-
vantage of this Activity Map for camera navigation.

Our work spans human detection/activity recognition,
scene modeling, and scene scanning as focus-of-attention.
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Human Activity Env. Noise Cam. Noise
ped. walking tree shaking brick work
person biking smoke/steam building edges

moving vehicle reflections lamp posts

Table 1. Instances of motion patterns

Human activity recognition includes a broad range of ap-
proaches, which are succinctly described in [1]. Our
work also spans scene modeling and analysis techniques
which fall into two distinct categories: structure based and
semantic-based [6]. Recent work by [8] alternatively em-
ploys a two camera system (master-slave) for focus-of-
attention scene scanning.

2. Stage 1: Measuring Human Activity

In order to measure human activity from a fixed camera
position (i.e., pan/tilt), we employ an iterative process to ex-
tract specific motion regions in a single MHI. In Sect. 2.1,
we introduce the main categories of motion within MHIs.
We then outline the human activity detection algorithm, be-
ginning with building the MHI (Sect. 2.2). Then, the iter-
ative extraction begins by examining individual MHI blobs
for candidacy (Sect. 2.3). Next, the MHI blobs are clas-
sified as either the target motion class or noise (Sect. 2.4).
Finally, our reduction step removes select noise pixels (Sect.
2.5). The iterative candidacy-classification-reduction re-
peats until all MHI pixels are classified as the target motion
class or removed. The final segmentation image is quanti-
fied into a single activity measurement and used to construct
a global Activity Map for the entire scene (Sect. 2.6).

2.1. Categories of Motion

Examination of MHIs from a commercial PTZ video
surveillance camera typically shows three distinct cate-
gories of patterns. We label these general categories as hu-

1



man activity, environmental noise, and camera noise. Ex-
ample sources of each category are provided in Table 1.

In typical surveillance videos, our target motion corre-
sponds to pedestrians, groups of pedestrians, moving vehi-
cles, etc. Consequently, we simply define human activity
as any translating object with a minimum spatial size and
temporal length. In Fig. 1 we provide examples of such
human activity. Rather than using a specific activity de-
tector (e.g., pedestrian templates [7]), we believe an MHI-
based approach can be simple and effective at separating hu-
man activity motion patterns from the noise categories. We
reemphasize here that we are including more than pedestri-
ans in our definition of human activity, which is also moti-
vated from interviews with security surveillance personnel.

2.2. Motion History Image

An MHI is a single image which represents extended
temporal motion (> 2 frames). Current motion pixels are
updated in the MHI using a timestamp, with higher MHI
values corresponding to more recent motion

MHIt(x, y) =
{

t if |Dt(x, y)| > TDiff

MHIt−1(x, y) otherwise
(1)

where Dt contains the difference images and TDiff is the
difference threshold. We set the temporal decay to the
length of the entire (short) sequence (i.e., no pixels are re-
moved). Details of the MHI technique are found in [2].

The long motion trails seen in the raw MHIs of Fig. 1
visually capture a basic property of translating objects. We
refer to this property as “temporal consistency”, in that, a
translating object within an MHI will have a trail consist-
ing of an intensity fade of extended temporal length. Fur-
thermore, an intensity fade for a semi-rigid, constant veloc-
ity, translating object will have equal quantities of all MHI
timestamps (for a particular duration). In addition, we con-
jecture that noise will not exhibit this strong temporal con-
sistency, given the nature of noise sources (generally static).
We therefore use temporal consistency to classify each MHI
blob as a translating object or noise. In the ideal case of a
blob consisting of only a translating object with minimal
noise the classification process is as follows (we describe
later how we manage significant noise contribution).

2.3. MHI Candidacy

First, for each MHI blob, we determine whether the
blob is a potential candidate for human activity (i.e., trans-
lating motion). We define blob candidacy with the two
properties of temporal consistency previously discussed,
which are a minimum spatial size (i.e., size(MHI blob) >
TSpatialSize, e.g., 400 pixels for a 320 × 240 image)

(a) (b) (c)

Figure 1. Timelapsed images and raw MHIs
for (a) Pedestrian, (b) cyclist, and (c) vehicle.

and a minimum temporal length (i.e., max(MHI blob) −
min(MHI blob) > TTemporalLength, e.g., 0.5 sec.). If an
MHI blob fails either of these two criteria then the blob is
not considered a candidate for human activity and its pix-
els are removed from the MHI. These thresholds can be
tightened or relaxed depending on the application to iden-
tify more or less temporally/spatially significant signatures,
respectively. All blobs that are selected as candidate hu-
man activity are passed to the classification stage for stricter
evaluation of translating motion.

2.4. MHI Classification

In this stage, we examine the intensity fade of each MHI
blob. For classification, if we assume that an MHI blob
is indeed human activity (and therefore is a valid translat-
ing object), then the resulting MHI blob will have a trail
of relatively equally spaced timestamps (i.e., spatially and
temporally). As a result, classification of a candidate MHI
blob (translating vs. noise) can be accomplished using a his-
togram similarity measure to quantify the degree of match
between the normalized candidate MHI blob timestamp dis-
tribution and the ideal/expected timestamp distribution (uni-
form) for that blob, where normalization is based on blob
size. A similarity value greater than a threshold, Tclass, is
considered valid translating motion.

The candidacy and classification approaches together are
designed for classifying MHIs in the presence of minimal
noise. In actuality, however, MHIs are more complex due
to the presence and overlap of environmental camera noise
(See Fig. 1(b)). These noise sources, when attached to the
MHI intensity fade of a true translating object, will cause
the current classification algorithm to fail (i.e., classify the
blob as noise). A method is necessary to separate noise pix-
els from the translating object.



2.5. MHI Reduction

We remove MHI noise pixels using the gradient magni-
tude image of the MHI blob (motivated by [3]). Our MHI
reduction algorithm is based on the gradient magnitudes of
the MHI which provide a means to identify and remove pix-
els in order of confidence to translating objectness.

We first remove pixels with a gradient magnitude larger
than a threshold value (corresponding to blob-background
boundary pixels and some noise pixels). We then remove
the most current timestamp pixels, since these pixels do not
form part of the MHI intensity fade. Next, we fill in any
zero gradient magnitude pixels (within regions of the same
non-zero timestamp) using the following process. Each zero
gradient magnitude pixel is assigned the average gradient
value of the 8-connected neighbors having a gradient mag-
nitude > 0. This process is performed iteratively.

Next, we recursively remove any remaining noise pix-
els. In order to tightly control the reduction method, a seed
pixel is selected for the reduction that is the maximum gra-
dient magnitude for the given MHI blob. From this seed
pixel we recursively grow out 8-connected to all other pix-
els in the gradient magnitude image with magnitude greater
than a growing threshold (Tgrow). The value of Tgrow is
equal to the ith element of the blob’s gradient magnitudes
sorted in descending order, where i corresponds to a per-
centage (e.g., 10%) of the blob size. All pixels collected
by the growing operation are then removed from the current
MHI blob, which may result in one or more MHI blobs.
Each of these blobs is returned to the candidacy stage for
consideration as human activity. This iterative candidacy-
classification-reduction process continues until all blobs are
either classified as human activity (valid translating motion)
or removed by the candidacy test.

The final binary segmentation image is converted into
a single activity measurement to give a relative indication
of the amount of activity for the sequence at a particular
camera position. We selected a simple summation of pix-
els due to the difficulty of, segmenting overlapping blobs,
blob fragmentation due to noise/partial occlusion, and scal-
ing without knowledge of the ground plane.

2.6. Global Activity Map

We create an “Activity Map” for a camera’s full view-
able field using the local activity measures described above.
In order to create this Activity Map, we divide the full field
into m × n, discrete pan/tilt locations (at a fixed zoom),
which naturally results in a m×n rectilinear Activity Map.
The rectilinear Activity Map simplifies construction (and
the navigation algorithms in Sect. 3), and produces rea-
sonable results. Building the map consists of visiting each
pan/tilt location in the Activity Map in a random order, ap-
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Figure 2. A 7×17 Activity Map. Brighter areas
correspond to locations with more activity.

plying the activity detection algorithm at each location, and
accumulating the activity measures over time (for each lo-
cation). An example Activity Map is displayed in Fig. 2.

3. Stage 2: Camera Navigation

In this section, we present several activity-based naviga-
tion methods that can exploit the Activity Map to improve
scanning efficiency as compared to current automatic
scanning algorithms. For each of the methods we describe
the Activity Map interpretation and the scanning procedure.

Probabilistic Jump
For this navigation method the Activity Map is normalized
(Activity Map values sum to 1) and considered as a
pseudo-probability distribution. Each subsequent location
for the camera is selected using a probabilistic roulette
wheel sampling of the Activity Map. We limit the scanning
memory/history to only the previous location. Goal
selection is accomplished by probabilistically selecting
a new location until the location selected is not equal to
the current location. Then, the camera moves to this new
location and the algorithm repeats.

Probabilistic Walk
This navigation method is similar to the previous jump
method, except that the next location is selected proba-
bilistically based on the 8-connected neighborhood of the
current location. This implicitly creates a path since the
distance between a location and any neighbor is a straight
line of unit distance (Activity Map resolution determines
unit distance). Similar to Probabilistic Jump, the history is
limited to only the previous location.

Inhibited Probabilistic Walk
The next navigation method is a variation of Probabilistic
Walk and uses a suppression mechanism to control the his-
tory. The approach was motivated by the saliency/saccade
modeling method of [5]. The approach maintains an im-
plicit history of recently visited locations using a spatio-
temporal inhibition mask to decrease, and then slowly re-



cover, the normalized Activity Map values. Here we sup-
press the 5-connected neighbors in the opposite direction of
the next location chosen. The probabilities are returned to
original values using an inverted exponential decay function

Inhibit(t) = 1− exp(−α ∗ (t− t0)) (2)

where t0 is the time the location was initially inhibited, and
α is the inhibition rate (e.g., α = 0.1). Note, other functions
can create the recovery such as linear and exponential.

Reinforcement Learning Paths
In machine learning, the goal of reinforcement learning is
to determine optimal actions given a set of rewards to maxi-
mize cumulative reward. Specifically, Q-learning is an iter-
ative method for learning a function (Q) which provides the
optimal policy when rewards and actions are deterministic.

For our domain, the Activity Map is considered as the re-
ward function (R), the Activity Map locations are the states
(S), and the move to any 8-connected neighbor is the set
of possible actions (A). We simply select a set of M goal
locations (G) based on a probabilistic selection of locations
from the Activity Map. Then, for each goal location g ∈ G
we have a separate reward function Rg , which is the Ac-
tivity Map modified to give g extremely high reward (ex-
tremely high activity). Each reward function Rg is then in-
put to the Q-learning algorithm. The Q-learning algorithm
finds the optimal path from each state s to each g ∈ G using
Rg, which is then stored and used for navigation.

Navigation consists of probabilistically selecting a new
goal location based on the Activity Map values and a goal
location history. The path is then provided from the Q-
learning results for that goal. Finally, the history is updated
with all goal locations visited along the navigated path.

4. Experiments

In this section we examine the performance of our algo-
rithms. First, we provide results for the MHI-based human
activity extraction method and provide experimentally de-
termined threshold values. Next, we examine the resulting
global Activity Maps. Lastly, the navigation techniques are
compared using paths generated by each algorithm.

We used three Pelco Spectra III SE series dome cam-
eras mounted outdoors on three different university campus
buildings, two of which have overlapping views. Addition-
ally, the cameras are mounted at varying heights (two, three,
and four stories). Images are captured with a Matrox Me-
teor frame-grabber (RGB, 320× 240, ∼ 12fps).

4.1. Measuring Human Activity

Our training set consisted of 59 MHIs, each containing
one or more MHI blobs (object and noise). These train-

Time-Lapse Raw MHI Final Segmentation

Successful Segmentations

Difficult Segmentations

Figure 3. Examples of MHI segmentations for
testing data.
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Figure 4. Spherical images of (a) camera
view, (b) Activity Map, and (c) overlays.

ing sequences were collected across the three cameras, at
different times-of-day and days-of-week. The training im-
ages/locations are similar to the test data shown in Fig. 3.
We manually segmented the MHI test images to learn the
optimal algorithm parameters.

The timestamp similarity metric for classification was
the Bhattacharya Distance, and the value for Tclass was var-
ied over a range of 0 − 1. The percentage for the reduc-
tion threshold Tgrow, defined previously, was varied over
the range 4% – 18% of the MHI blob size. For evalua-
tion, Precision/Recall data was collected for the segmen-
tation results for each combination of Tclass and Tgrow

compared to the manually segmented MHIs. In order to
accurately compare these results, we used the F-measure
(or harmonic mean) of Precision and Recall. The optimal
thresholds were Tclass = 0.79 and Tgrow = 0.10 (based
on F-measure). Four other similarity measures (Jeffrey Di-
vergence, Minkowski-Form Distance, and Match Distance)
were also tested, but none were an improvement.

To further evaluate our algorithm, we collected 10 addi-
tional passes of the full scene for each camera (10 × 119
MHIs) and computed the automatic segmentations (25 min.
per pass). In the successful segmentation images of Fig. 3, a
variety of different motion patterns are captured under vary-
ing situations. The algorithm detected a moving vehicle, a
biker, and several pedestrians. Also, our approach captured
small translating signatures, for example in the second row
from a street vendor and a pedestrian under partial occlusion
due to a tree. Finally, in the last successful segmentation
two pedestrians are detected while a large amount of noise
due to spatial aliasing (from brick patterns) is removed.

The previous results are extremely encouraging, how-

ever, our algorithm does have difficulty in some cases and
we provide some examples in Fig. 3 (bottom set of im-
ages). In the first row, some of the spatial aliasing is in-
cluded in the final segmentation. In the next segmentation
a portion of the roof is included. This is due to the texture
of the material and the proximity of the roof to the camera
(3ft). In the third example, a large group of pedestrians is
not detected as a result of the view angle and the MHI over-
lap. Finally, in the last example a pedestrian’s reflection,
as expected, is captured in a building window. From the
highly varying data presented (view angle, scene complex-
ity, occlusion, and camera noise), we believe our algorithm
is a simple, yet robust, method for dynamically extracting
translating motion from a scene.

For evaluation of the resulting global Activity Map, we
analyzed the spatial consistency of a single camera and then
multiple cameras with overlapping views. For comparison,
we created spherical panoramas of each camera (Fig. 4(a))
and then warped the rectilinear Activity Maps into a spher-
ical representation (Fig. 4(b)). Visually, the overlay im-
ages in Fig. 4(c) emphasize walkways and roadways and
eliminate buildings and rooftops. Also, the first and sec-
ond row overlays (Fig. 4(c)) have highly overlapping views.
Even though no two passes were collected simultaneously
the Activity Maps in the top two rows of Fig. 4(c) converged
to similar activity emphasis across the same physical space
measured from different positions (and time). Hence, the
Activity Map captures an appropriate activity model for the
full viewable field of a single PTZ camera and that the re-
sults are robust across space and time.

4.2. Navigation

We next compared the four activity-based navigation
techniques presented. For Inhibited Probabilistic Walk, we
set the inhibition rate α = 0.1, and for Reinforcement
Learning Paths the number of goal locations was set to 9.
We note here, all zero-valued locations in the Activity Map
are set to a value of 10% of the minimum non-zero Activity
Map value (so all locations were reachable).

We provide a sample path of each navigation technique
by overlaying the sample path on a spherical panorama Ac-
tivity Map blend (see Fig. 5). For each algorithm we dis-
play 20 steps (camera moves) about the scene, and show
the sampled Activity Map locations using disks labeled in
sequential order (to designate multiple samples on a loca-
tion we shift the disks and labels slightly). In addition, for
the three “walking” techniques we also provide a line indi-
cating the path between sequential locations.

The first navigation technique, Probabilistic Jump (Fig.
5(a)), illustrates how the highest probability locations are
sampled multiple times while the lower activity areas are
sampled less. The next navigation method, Probabilistic



Walk (Fig. 5(b)), tends to stay focused in local maxima.
The next navigation technique, Inhibited Probabilistic Walk
(Fig. 5(c)), eliminates the problem of becoming stuck in
local maxima, as it tends to move away from recently sam-
pled locations. Most notably, the low activity patches of
grass in this panorama overlay are avoided. Finally, the Re-
inforcement Learning Paths (Fig. 5(d)) by design, moves
along predetermined paths of high reward and avoids ar-
eas of low activity. Selecting a single optimal algorithm or
combination depends on the user, application, and context.
However, we have demonstrated that navigation methods
based on Activity Maps are useful to more efficiently scan
the scene as compared to existing methods. Additional ex-
perimental evaluations of the Activity Map and navigation
techniques can be found in [4].

5. Summary & Conclusion

We presented an adaptive, scene-specific model using
standard PTZ camera hardware to address the lack of scene-
specific information used in current automatic camera scan-
ning algorithms. The results show our MHI-based human
activity measure captures a basic property of translating mo-
tion. This is demonstrated by our Activity Map, which ac-
curately reflects the scene activity of a PTZ camera and is
robust across both space and time. Overall, our current ap-
proach shows very promising results. In future work, we
plan to examine additional features (e.g., color, texture),
methods for temporal and spatial updating of the Activity
Map, and incorporating multiple Activity Map scales.
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Figure 5. Paths for four navigation tech-
niques.


