
Tracking Mean Shift Clustered Point Clouds for 3D
Surveillance

Mark A. Keck Jr.
Dept. of Computer Science

and Engineering
Ohio State University

Columbus, OH 43210 USA

keck@cse.ohiostate.edu

James W. Davis
Dept. of Computer Science

and Engineering
Ohio State University

Columbus, OH 43210 USA

jwdavis@cse.ohio
state.edu

Ambrish Tyagi
Dept. of Computer Science

and Engineering
Ohio State University

Columbus, OH 43210 USA

tyagia@cse.ohio
state.edu

ABSTRACT

We present in this paper a method of tracking multiple ob-
jects (people) in 3D for application in video surveillance.
The tracking method is designed to work on images with
objects at low resolution and has two major contributions.
First we propose a way to generate 3D point clouds that im-
poses multiple constraints (both geometric and appearance-
based) to ensure minimal noise in the 3D data. Second,
we incorporate a method to group the points into clouds
(or clusters) that correspond to objects in the environment
being imaged. We show that this method is more power-
ful than current 3D tracking techniques that try to fuse 2D
tracking information into 3D tracks. A comparison to com-
peting 3D tracking methods are shown, and performance
and limitations are discussed.

Categories and Subject Descriptors

I.4.5 [Image Processing and Computer Vision]: Re-
construction; I.5.3 [Pattern Recognition]: Clustering

General Terms

Algorithms

Keywords

3D tracking, reconstruction, mean shift clustering.

1. INTRODUCTION
The human visual system has the striking ability to tem-

porally associate, or track objects. However, this has proven
difficult in computer vision, and as such tracking has become
a classic problem in the field. Tracking in the surveillance
domain is often solved with one of a few existing methods.

Kalman filters [3,7,13,14] assume the object being tracked
is driven by a linear process and the filter, based on ob-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VSSN’06, October 27, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1595934960/06/0010 ...$5.00.

servations, finds the optimal state sequence of the hidden
process. Often this scheme is extended to estimate state
sequences of nonlinear processes with Extended Kalman fil-
ters (EKFs) at the cost of suboptimal estimation of state
sequences. Kalman filters and EKFs have one simplifying
assumption: they assume that the posterior is Gaussian dis-
tributed. This assumption does not hold for all processes,
and motivated the creation of particle filters [9] which have
been used extensively in tracking of contours and shapes.
More recently, kernel-based techniques for tracking have also
become popular. Mean shift tracking [5,6] is very attractive
to the vision community because of its computational effi-
ciency compared to the other techniques described, however,
it lacks some of the robustness that the previous approaches
have.

All of the aforementioned algorithms are more often than
not applied only in the image plane (in 2D). There have been
steps toward extracting 3D information from existing frame-
works or using multiple cameras to improve tracking results
(e.g. [2, 11, 19]), but these frameworks focus on combining
results from 2D trackers into 3D information and therefore
still suffer from all the problems of 2D tracking.

To get around these problems we propose a 3D recon-
struction of the foreground objects and track those objects
in three dimensions, circumventing the problems inherent in
combining multiple 2D trackers. The work proposes a novel
methodology on reasoning about 3D reconstruction and the
grouping of these point clouds. Experimental results are
shown and compared to other approaches.

The remainder of the paper is organized as follows: Sect.
2 will discuss related work in more detail. In Sect. 3 we
will describe our method of matching points in two camera
views and generating 3D point clouds by employing multiple
geometric constraints and continues with Sect. 4 discussing
how we group the point clouds generated. We will go over
experimental methods in Sect. 5 and discuss the findings.
Concluding remarks are given in Sect. 6.

1.1 Notation
In this paper, we will use the following notational stan-

dards. Non-image matrices will be denoted with capital
boldface (e.g. A) and vectors will be denoted with lowercase
boldface (e.g. b). The ith row of a matrix A will be denoted
ai. Image matrices will be denoted with calligraphic font,
like I.

Often in this paper we will refer to two cameras, and there-

187



(a) (b)

Figure 1: (a) View from first camera. (b) View from
second camera.

fore two images. We will refer to objects in the first cam-
era/image with no accentuation, for instance image I or
image point m. However, we will denote objects related to
the second camera/image with the ′ symbol, like image I′

or image point m′.
We will denote homogeneous coordinates with the tilde

symbol, i.e. if x = [x y]⊤, then x̃ = [x y 1]⊤.

2. RELATED WORK
As discussed in Sect. 1 there have been many proposed

tracking frameworks, and most are based on either the Bayesian
approach to dynamic state estimation [1,3,7,9,13,14] or are
based on kernel density estimation [5,6]. As these techniques
are all fairly well known in the community, we would only
like to comment on the fact that in almost all cases they are
only used in single view.

More recently 3D trackers have started to appear. Some
trackers focus more on the finer level of tracking with high
resolution targets [12]. However, the primary focus of this
system is surveillance and therefore we are interested in a
coarser level of tracking.

There have been some systems focused in this domain that
have used multiple sensors to improve results. In [19] shape
features were extracted from blobs in a single view and these
features were associated from frame to frame. The tracking
algorithm was extended in the paper using an EKF and
multiple cameras to help with occlusion. In [2] a similar
approach was proposed, using epipolar transfer to match
centroids of foreground objects in two and three views and
found the corresponding 3D point for the match sets. This
3D data was then pushed through a Kalman filter for track-
ing. Both of these systems work in many cases, but when
two foreground objects are a single blob in all images, these
systems fail (although it sounds like a special case, this is
actually quite common).

Other work exists that locates the positions of people on
the ground plane using homographies [11]. This can, with a
large number of cameras, give accurate counts of the number
of pedestrians in a scene and reliably attain the position
of their feet. However, this approach suffers greatly when
shadows are abundant (typical in natural scenes).

We propose a semi-dense 3D reconstruction (only recon-
struct the surfaces of foreground objects) followed by an
intelligent clustering of the resulting 3D points, and then
using the centroids of these 3D clusters as the observation
input to a Kalman filter for tracking.

(a) (b)

(c) (d)

Figure 2: (a) Background subtraction from first
view. (b) Background subtraction from second view.
(c) Shadow removal from first view. (d) Shadow re-
moval from second view.

3. 3D POINT CLOUD GENERATION
In this section we will discuss the steps necessary to gen-

erate a 3D reconstruction. From here forward, we assume
that we have only two cameras.

3.1 Calibration & Structure from Motion
The first step in the system is to calibrate the cameras

offline. We accomplish this using the algorithm from [15].
This results in knowledge of the intrinsic camera matrices
which we denote as K and K′ for cameras one and two
respectively. Once the cameras are calibrated, we deploy
them in an outdoor area. Example viewpoints from two
cameras with overlapping views are displayed in Fig. 1.

The next step is to determine the relative orientation of
the cameras. We use a basic structure and motion tech-
nique similar to [17]. However, because the cameras are as-
sumed to be wide baseline an automatic matching approach
like that of [18] cannot be robustly employed to recover the
epipolar geometry. One could implement an approach simi-
lar to [16] where features invariant to photometric and geo-
metric changes are extracted in the image and then matched,
but we manually selected anchor points in the scene to avoid
noise in this stage affecting our results. This process ex-
tracts the relative rotation and translation between the two
cameras, which we will denote R and t respectively.

To take advantage of more geometric information, we also
assume that at least four of the correspondences among the
views are known to be on the ground plane, so that the
homography between ground planes, H, can be estimated
such that for all homogeneous points x̃ (where x = [x y]⊤

are coordinates from the first image)

sx̃′ = Hx̃ (1)

where s is an arbitrary scale factor. We estimate H using
the standard least squares technique.

3.2 Shadow Removal
For each camera, a mean background model is estimated

188



Algorithm 1 Projective Shadow Removal

1: procedure ShadowRemoval(H,I, I′,F , F ′, T )
2: Let Lr,Lg,Lb denote the red, green, and blue planes

of image L
3: Î ← Warp(I, H) ⊲ Warp view 1 to view 2

4: F̂ ← Warp(F , H) ⊲ Warp foreground 1 to view 2

5: D ← I′ − Î
6: M← F ′ ∨ F̂ ⊲ Create a mask
7: C ←

p
D2

r +D2
g +D2

b ×M
8: S ← C > T

9: F ′
r ← F

′ ∧ ¬S
10: return F ′

r

11: end procedure

over 60 images. To extract foreground objects from the im-
ages, basic background subtraction using the mean back-
ground model is performed:

F = |I − B| > T (2)

where F is the foreground image, B is the background im-
age, I is the input, and T is a manually chosen threshold.
Although this is a very simple background subtraction tech-
nique, we will show that it is still effective (other methods
can be used). Example foreground images are shown in Fig.
2(a) and (b). Notice that in these images shadows appear
strong in the foreground. Just as in many other applica-
tions, shadows in the foreground of these images will cause
problems later in the pipeline.

To remedy this we attempt to remove shadows using a
technique similar to that in [10]. The input to the algorithm
is the homography H between the two ground planes, the
input images I and I′ and the original foreground images F
and F ′ and a threshold T . In this algorithm, the notation
“×” is an element-wise multiplication. A description of the
algorithm in Alg. 1 follows.

As a preprocessing step, we use image warping to remove
areas in each of the foreground images that can only be seen
in one view (this allows us to reason on only foreground ob-
jects seen in both views). We also balance the luminance
across the images. We then warp both the original image
and the foreground image from view one into view two. We
get the image difference of image two and the warped image
in the color space. We can then calculate the “distance” be-
tween these two images by squaring each plane element-wise,
and taking the square root. With this distance image, we
want only to examine the elements that are in the foreground
in either image, so we make a mask from the foreground of
image two and the warped foreground of image one. We
then mask the distance image with this and find elements
that are smaller than threshold T . Anything that passes this
threshold is assumed to be a shadow because it has similar
color in both the warped and original image, which means
it is very likely to lie on the ground plane.

Although in [10] the authors utilize an appearance model
for shadows, we found comparable performance with this
algorithm using a single threshold. An example of shadow
removal is shown in Fig. 2(c) and (d).

3.3 Image Matching
With two foreground images (without shadows), we now

find correspondences among the foreground objects. To do
this we employ a version of epipolar search. Since we know

−0.4

−0.2

0

0.2

0.4

0.6

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

(a)

−0.4

−0.2

0

0.2

0.4

0.6

0.4

0.6

0.8

1

1.2

0

0.05

(b)

Figure 3: (a) Matching via simple epipolar search.
(b) Matching via our epipolar search strategy using
two geometric constraints.

the fundamental matrix F from our estimation of the mo-
tion between cameras, for any point of interest x̃ in image
I we can determine the line l′ in image I′ on which the
corresponding point x̃′ lies with the following formula:

l′ = Fx̃ (3)

Epipolar search is a common technique and a good refer-
ence on epipolar geometry and search can be found in [8].
Typical implementations, however, often employ color his-
tograms as a metric for matching points across views. Due
to the low resolution of the foreground objects and noise,
this constraint alone generates many false matches.

However, if the objects move with respect to some domi-
nant ground plane (which we assume exists to remove shad-
ows) and the cameras are relatively far from this ground
plane (which is often the case in surveillance), we can im-
pose a second geometric constraint to limit our search in-
stead of a constraint based solely on appearance. We as-
sume that any point of interest on an object in I (because
it is moving with respect to a dominant ground plane) will
be transformed “near” the corresponding point in I′ via the
homography H. Knowing this will allow us to limit our
search to a much smaller area, and in general it is impor-
tant to note that in these types of applications geometric
constraints are far more robust than appearance-based con-
straints alone (although using appearance based features to
fine-tune matches after this stage may help disambiguate
multiple matches).

The goal is then to find the point along the epipolar line
l′ in I′ that is within radius ρ of point x̃′ = Hx̃ that is
most similar to x̃ in appearance. The radius ρ is in pixels,
and depends on the distance from the camera to the ground
plane. In our case, we chose the number 20 for all experi-

189



ments. In Fig. 3(a) we show an example of basic epipolar
search without a second geometric constraint. In Fig. 3(b)
we show our approach to epipolar search to illustrate the
utility of the added constraint which reduces the number of
noisy matches significantly. It is also important to note that
all of the points generated in this plot correspond to people.

We apply this matching method first using view one as
the cue and searching in view two, then reverse the process
using view two as the cue and searching in image one for
matches. This results in a denser reconstruction, which is
beneficial for clustering.

Once matches are recovered from the images, we use basic
linear triangulation to reconstruct the 3D points from the
matches. The linear solution for a pair of matching points
m = [u1, v1]

⊤ and m′ = [u2, v2] from image one and image
two, respectively, can be formulated [17] as follows2664 k1 − u1k3

k2 − v1k3

b1 − u2b3

b2 − v2b3

3775 p̃ =

2664 0
0

(u2k
′
3 − k′

1)t
(v2k

′
3 − k′

2)t

3775 (4)

where matrix B = K′R. We can rewrite Eqn. 4 as Zp̃ = z.
The linear solution to p̃ is

p̃ = Z†z (5)

where Z† denotes the pseudo-inverse (Z⊤Z)−1Z⊤.
We perform this reconstruction for each of the matches

found, and as a result get a set of 3D points in space corre-
sponding to our foreground objects.

4. MEAN SHIFT CLUSTERING
Point clouds like those generated in Sec. 3.3 cannot be in-

put directly to a tracking system. We need a much more suc-
cinct representation for observations of foreground objects.
To do this we cluster the 3D points using mean shift [4].

Mean shift clustering allows one to groups a set of points
without knowing the number of clusters a priori. When
using this clustering technique it is important to address
two issues: the metric of the feature space and the shape
of the kernel. For our purposes, fortunately, the feature
space is Euclidean since it is a reconstruction of real 3D ob-
jects (up to a uniform scale factor). We select the standard
Epanechnikov kernel, which guarantees convergence [4]. The
Epanechnikov kernel has the profile

kE(x) = 1− x, 0 ≤ x ≤ 1 (6)

The profile is 0 when x is outside the designated range. This
yields the radially symmetric kernel

KE(x) =
1

2
c
−1

d (d + 2)(1− ||x||2), ||x|| ≤ 1 (7)

where x is a data point in d-dimensional space (in our case
this is 3), and c−1

d is the volume of the d-dimensional unit
sphere. This as well evaluates to 0 when ||x|| > 1.

We also must select the bandwidth of our clustering tech-
nique. This depends on the result of the structure and mo-
tion parameters extracted in Sec. 3.1. Structure and motion
will return the relative orientation and translation up to an
unknown scale, which in turn makes our metric reconstruc-
tion from Sect. 3.3 up to an unknown scale factor. This
means that this parameter will have to be adjusted so that
humans are not clustered together, but also so that a single
human is not broken into smaller pieces in 3D.

Figure 4: A mean shift clustering of the point clouds
in Fig. 3(b)

We then randomly take half of the points, cluster these,
and keep those clusters as the input to our tracking sys-
tem. Each cluster then has a 3-vector as an observation
(the (x, y, z) position of the cluster). A sample clustering is
shown in Fig. 4. Note that all clusters shown in this image
correspond to exactly one person save the one highlighted
by the yellow box. That cluster merged two people together.

We use the cluster centroids as input observations to a
Kalman filter tracker in 3D. Kalman filters are represented
in state-space form, which is a set of two equations: (1)
the state equation (Eqn. 8), which models the underlying
latent process and (2) the observation equation (Eqn. 9)
which relates the process to observable phenomena.

xk+1 = Gxk + wk (8)

yk = Hxk + vk (9)

In tracking with Kalman filters, the state vector is often
the position and velocity of the object being tracked, which
we also use.

x =

2666664 x

y

z

∆x

∆y

∆z

3777775 (10)

We also use the standard matrices G and H

G =

2666664 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3777775
H =

24 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

35
The observation and state noise covariance matrices are

set experimentally. With our system identified, we can apply
the Kalman recursions and filter observations.

We still, however, have the problem of associating the
proper observation from an incoming frame pair (a cluster)

190



with the corresponding filter. A natural solution, since we
are dealing with filtering trajectories, is to use the distance
between the estimated position at time t for each filter i,
which is found with the following formula:

ẑi
t = HGxi

t−1 (11)

and compare this estimate with the incoming observations
using the Euclidean distance. We then associate an obser-
vation with the filter corresponding to the smallest distance.
As there are possible conflicts, we first choose the smallest
value for all observations, associate that to the proper filter,
and then remove all other distance measurements generated
by that filter and repeat the process until all observations
are either assigned, or are deemed unassignable (i.e. they
are too far away from any available filter).

For those observations which are not assigned, if they are
near the “edge” of the images (in this case “edge” does not
refer to the normal edges of images, but the edge of the area
that is seen in both views) then a new filter is generated and
seeded with that starting position. If the observation is not
near the edge, it is ignored (assumed to be noise).

5. EXPERIMENTS
To evaluate the method outlined above, we applied it to

five different outdoor sequences. Each sequence was cap-
tured with a Matrox Quad digitizer so that two channels
could be recorded simultaneously. The sequences were cap-
tured at the full 640×480 resolution at a full 30 Hz. In each
sequence, sets of corresponding points (∼ 35) were manu-
ally extracted from sequence pairs to estimate the epipolar
geometry.

We selected sequences for validation and testing that tra-
ditional trackers, as well as 3D trackers based on fusing 2D
information [2, 19], would fail.

Resulting video frames from the tracked sequences are
shown in figures Figs. 5, 6, 7. First in Fig. 5 we validate
the tracking approach with a simple sequence. In this se-
quence, you can see that the pedestrian is tracked through
the wide-baseline views accurately. We show frames from
both views.

In Fig. 6 we show the tracker functioning in an environ-
ment with a high volume of pedestrians. As a reminder, the
approach only tracks the pedestrians that can be seen in
both views. In this case we can see that the 3D tracker per-
forms well. Although in frame 50, you can see that tracker
10 started to die off, it has started to recover by frame 100
and returned near the target. This loss of target occurred
due to background subtraction. With such low resolution
from the second camera, it was difficult to robustly extract
point clouds from the two people being tracked by trackers
10 and 11, and often only on observation was extracted for
the two people.

Finally, in Fig. 7, we show the most general case. In
this example, any 2D tracker (or any 3D tracker based on
the fusing of 2D information) will fail because all people
are low-resolution, have unreliable appearance, and are all
merged into a single blob in both views. To show that 2D
trackers would fail, we implemented the exact same type of
tracker from our 3D case in 2D and based the observations
on blobs instead of on 3D clusters. The results are shown
in Fig. 8 (these are the same frames shown in Fig. 7). We
have shown the final images of the two sequences with the
tracks discovered from the tracker overlaid.

By looking at these two figures (Fig. 7 and 8) showing
the same sequence with the two different algorithms, one
can see that the 3D tracking algorithm is much more robust
to occlusion. Although the tracks look erratic (jagged) the
tracker is able to observe all three people in the track and
keep the filters alive. However, in Fig. 8 we see that in both
views, two of the three trackers initialized on the group of
three people die out very quickly while one tracker seems
to lock on and count them as a single person. Even if one
attempts to intelligently combine these 2D trackers across
views to extract 3D information, that information will be
unreliable. This is just a single example to provide evidence
to the fact that 2D trackers will always fail when an object
is merged with another object (or objects) in every single
view.

However, this comes at a price. First of all, the algorithm
is obviously much slower than algorithms based on fusing
2D information to get 3D tracks. There are two very time-
consuming processes in the system.

The first such process is shadow removal. It requires
multiple image warps, which is very time consuming. We
first tried to implement more standard techniques to remove
shadows, such as those based on normalized color space, but
got very poor results, and turned to this method for its ro-
bustness since our matching method will return extremely
poor results without shadow removal.

The second major bottleneck in the system is the match-
ing process itself. For every point in every foreground edge
a search along an epipolar line in the corresponding image
must occur to find a match. This is time consuming and in
future work could have complexity reduced by adding more
cameras.

Furthermore, it is evident in sequences we have not shown
that shadows are not being completely removed. This is be-
cause the shadow removal system will not perform well when
the shadow cannot be seen in both views. This will allow
more noise points in the reconstruction stage, making clus-
ters more noisy and affecting the location of the 3D centroid
somewhat. Again, in future work this issue could be resolved
by adding more cameras.

6. CONCLUSION
In this paper we presented a technique for tracking hu-

mans using two cameras. The technique employs a spe-
cialized shadow removal technique that uses the geometry
of the scene and a specialized epipolar matching technique
that utilizes two geometric constraints (epipolar and homo-
graphic) due to the nature of geometric constraints being
more robust than those based on appearance. Point clouds
of foreground objects are generated and then clustered and
the centers of these clusters are used as observations to a
Kalman filter tracking system.

The approach was then tested and results were shown. It
is apparent from these results that other 3D trackers based
on fusing 2D results and information cannot handle cases
where people overlap in multiple camera views.

Future work will be focused on adding more cameras to
speed up the system and to achieve more accurate results.

7. ACKNOWLEDGMENTS
This research was supported in part by the National Sci-

ence Foundation under grant No. IIS-0428249.

191



8. REFERENCES
[1] S. Arulampalam, S. Maskell, N. Gordon, and

T. Clapp. A tutorial on particle filters for on-line
non-linear/non-gaussian bayesian tracking. IEEE
Transactions on Signal Processing, 50(2):174–188,
Feb. 2002.

[2] J. Black and T. J. Ellis. Multi camera image tracking.
Image and Vision Computing, 2005.

[3] K. J. Bradshaw, I. D. Reid, and D. W. Murray. The
active recovery of 3d motion trajectories and their use
in prediction. Pattern Analysis and Machine
Intelligence, 19(3):219–234, 1997.

[4] D. Comaniciu and P. Meer. Mean shift: A robust
approach toward feature space analysis. IEEE Trans.
on Pattern Analysis and Machine Intelligence, May
2002.

[5] D. Comaniciu, V. Ramesh, and P. Meer. Real-time
tracking of non-rigid objects using mean shift. In IEEE
Conf. on Computer Vision and Pattern Recognition,
pages 142–151, Hilton Head, SC, USA, 2000.

[6] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based
object tracking. IEEE Trans. on Pattern Analysis and
Machine Intelligence, May 2003.

[7] F. Dellaert and C. Thorpe. Robust car tracking using
kalman filtering and bayesian templates. In Conference
on Intelligent Transportation Systems, 1997.

[8] R. I. Hartley and A. Zisserman. Multiple View
Geometry in Computer Vision. Cambridge University
Press, ISBN: 0521540518, second edition, 2004.

[9] M. Isard and A. Blake. Condensation – conditional
density propagation for visual tracking. International
Journal of Computer Vision, 29(1):5–28, 1998.

[10] K. Jeong and C. Jaynes. Moving shadow detection
using a combined geometric and color classification
approach. In IEEE Wkshp. on Motion and Video
Computing, Breckenridge, CO, USA, Jan. 2004.

[11] S. Khan and M. Shah. A multiview approach to
tracking people in crowded scenes using a planar
homography constraint. In European Conference on
Computer Vision, 2006.

[12] L. Lu, X.-T. Dai, and G. Hager. A particle filter
without dynamics for robust 3d face tracking. In Conf.
on Computer Vision and Pattern Recognition
Workshop, volume 5, 2004.

[13] O. Masoud and N. Papanikolopoulos. A novel method
for tracking and counting pedestrians in real-time
using a single camera. IEEE Transactions on
Vehicular Technology, 50.

[14] R. Rosales and S. Sclaroff. Improved tracking of
multiple humans with trajectory prediction and
occlusion modeling. Santa Barbara, CA, USA, 1998.

[15] R. Tsai. A versatile camera calibration technique for
high accuracy 3d machine vision metrology using
off-the-shelf tv cameras and lenses. IEEE Journal of
Robotics and Automation, Aug. 1987.

[16] M. Vergauwen et al. Wide-baseline 3d reconstruction
from digital stills. In Int. Wkshp. on Visualization and
Animation of Reality-based 3D Models, Engadin,
Switzerland, Feb. 2003.

[17] Z. Zhang. A new multistage approach to motion and
structure estimation by gradually enforcing geometric
constraints. In ACCV (2), pages 567–574, 1998.

[18] Z. Zhang, R. Deriche, O. D. Faugeras, and Q.-T.
Luong. A robust technique for matching two
uncalibrated images through the recovery of the
unknown epipolar geometry. Artificial Intelligence,
78(1-2):87–119, 1995.

[19] Q. Zhou and J. K. Aggarwal. Object tracking in an
outdoor environment using fusion of features and
cameras. Image and Vision Computing, 2005.

192



(a) (b) (c)

Figure 5: Results from test sequence one. (a) Frame 1/Cam 1 (b) Frame 50/Cam 1 (c) Frame 100/Cam 1
(d) Frame 1/Cam 2 (e) Frame 50/Cam 2 (f) Frame 100/Cam 2.

(a) (b) (c)

(d) (e) (f)

Figure 6: Results from test sequence two. (a) Frame 1/Cam 1 (b) Frame 50/Cam 1 (c) Frame 100/Cam 1
(d) Frame 1/Cam 2 (e) Frame 50/Cam 2 (f) Frame 100/Cam 2.

193



(a) (b)

Figure 7: Results from test sequence three. The full tracks are shown from both views to compare with
tracks generated from only the 2D trackers. (a) Tracks in the first view. (b) Tracks in the second view.

(a) (b)

Figure 8: Results from test sequence three from the 2D tracker. Compare the tracks in these images to those
in Fig. 7. (a) Tracks in the first view. (b) Tracks in the second view.

194


