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Abstract

We present a new feature-level image fusion technique for
object segmentation based on mutual information. Using
object regions roughly detected from one sensor as input,
the proposed technique extracts relevant information from
another to complete the segmentation. First, a contour-
based feature representation is presented that implicitly
captures object shape. The notion of relevance across sen-
sor modalities is then defined using mutual information
computed based on the affinity between contour features.
Finally a heuristic selection scheme is proposed to identify
the set of contour features having the highest mutual infor-
mation with the input object regions. The approach works
directly from the input image pair without relying on a train-
ing phase. Results are presented for segmenting people from
background, and quantitatively evaluated.

1. Introduction

In vision applications, such as video surveillance and au-
tomatic target recognition, imaging sensors of different
modality are often used. The expectation is that a set of
such sensors would benefit the system in two ways; first, the
complementary nature of the sensors will result in increased
capability, and second, the redundancy among the sensors
will improve robustness. The challenge in image fusion is
thus combining information from the images produced by
the constituent sensors to maximize the performance bene-
fits over using either sensor individually.

We adopt here a more “goal-oriented” view of image fu-
sion than is traditionally used. Instead of improving the con-
text (or information) present in a scene, we consider the task
of using image fusion to improve the estimation of the shape
(as defined by a silhouette, or a boundary) of an object. We
start with an initial detection of object regions from one sen-
sor (A). The proposed algorithm then takes these detected
regions as input, and extracts relevant information from the
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other sensor (B) in an attempt to produce a better segmen-
tation of the object. The initial detections can be obtained
from either sensor. Depending on the application, factors
such as persistence, signal-to-noise ratio, and the availabil-
ity and complexity of the detection scheme can influence
this choice. The proposed fusion technique enables a user to
benefit from the presence of two imaging modalities at the
cost of providing an initial segmentation from either one.

Image fusion algorithms can be broadly classified into
low-, mid-, and high-level techniques based on their posi-
tion in the information processing pipeline. Our proposed
algorithm is a goal-oriented mid-level fusion technique that
utilizes contour-based features. As will be shown, these fea-
tures allow a description of shape from partially detected
object regions. We use these features within a mutual infor-
mation framework to extract relevant (redundant and com-
plementary) information across sensors. Deriving such in-
formation directly from raw pixel intensities or similar low-
level fusion cues would be difficult. High-level fusion tech-
niques usually employ voting schemes to combine results
after independently processing each input. Such high-level
techniques are not well suited to situations when onlytwo
input channels exist. Further, the cost of obtaining detection
results independently in each channel can be considered an
overhead.

We start by extracting contour features from the in-
put image regions of both sensors (assumed to be co-
registered). We extend the notion of affinity, originally de-
fined to measure the smoothness of the curve joining two
edge elements [17], to contours. Using this affinity mea-
sure, we formulate conditional probability distributions of
contour features from sensorA with respect to sensorB.
We then compute the mutual information between contour
features from the two sensors based on these conditional
distributions. Then we identify the set of contour features
from B that maximize the mutual information with the fea-
tures fromA. The contours from sensorA overlaid with the
selected contours from sensorB form the fused result.

We demonstrate the approach for a video surveillance
application using a thermal and color camera as the two in-
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put sensors. Based on manually segmented object regions
we show the efficacy of the proposed method by comparing
segmentation performance using the fused result over using
either input sensor independently.

2. Related Work
Image fusion techniques have a long history in vision.
Gradient-based techniques include defining first-order con-
trasts in high dimensions [14] and examining gradients
at multiple resolutions [13]. Several region-based multi-
resolution algorithms have been proposed such as the pyra-
mid approaches of [15, 10] and the wavelet-based approach
of [7]. Other biologically motivated techniques [5] have
also been proposed. Most of these fusion techniques aim
at enhancing the information content of the scene, to ease
and improve human visual analysis. In contrast, the method
we propose is designed specifically to enhance the capabil-
ities of an automatic vision-based detection system.

Recently [4] proposed a fusion algorithm also designed
with a similar aim. However, their fusion technique was
specific to a thermal and color camera, and required back-
ground modeling in both domains. Our proposed method is
an improvement on both counts, in that it is not tied to any
particular combination of sensors and it only requires the
prior ability (via method of choice) to detect object features
in any one sensor modality.

3. Contour Features
Based only on the preliminary detection in sensorA, our
goal is to be able to extract relevant information from sensor
B, such that the combined result is a better estimation of the
object shape. The crucial step in this process is choosing the
appropriate features. The importance of first-order gradient
information in estimating the shape and appearance of an
object is well known [2, 8]. We exploit this information by
extracting features that capture the location, orientation, and
magnitude of the object gradients.

We first obtain a thinned representation of the gradient
magnitude image using a standard non-maximum suppres-
sion algorithm. The thinned edges are then broken into
short, nearly linear contour fragments based on changes
in the gradient direction. A contour fragment is obtained
by traversing along a thinned edge using a connected-
components algorithm until a change from the initial edge
orientation is encountered. To ensure contour fragments of
reasonable size, the edge orientations are initially quantized
into a smaller number of bins. We represent a contour frag-
ment by a feature vectorc = [ep1, ep2, θ, Emag], where
ep1 andep2 are the coordinates of the two end-points,θ is
the quantized orientation, andEmag is the mean edge mag-
nitude along the contour. The set of all contour features
{c1, . . . cn} forms the feature representation of the object.

The shape of the imaged object is implicitly captured by the
magnitude (Emag), position (ep1, ep2), and orientation (θ)
of the contour features.

4. Estimating Feature Relevance
Having extracted contour features, our goal is to select fea-
tures from sensorB that are relevant to the features in sensor
A. Mutual information is considered to be a good indicator
of the relevance of two random variables [1]. This ability
to capture the dependence, or relevance, between random
variables has recently led to several attempts at employing
mutual information in feature selection schemes [6, 11, 16].

4.1. Preliminaries
Denoting two discrete random variables byX andY , their
mutual information can be defined in terms of their proba-
bility density functions (pdfs)p(x), p(y), andp(x, y) as

I(X; Y ) =
∑

x∈X

∑

y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
(1)

Based on entropy, the mutual information betweenX
andY can also be expressed using the conditional proba-
bility p(x|y). The entropy,H, of X is a measure of its
randomness (or uncertainty) and is defined asH(X) =
−∑

x∈X p(x) log p(x). Given two variables, conditional
entropy is a measure of the randomness when one of them
is known. The conditional entropy ofX andY can be ex-
pressed as

H(X|Y ) = −
∑

y∈Y

p(y)
∑

x∈X

p(x|y) log p(x|y) (2)

The mutual information betweenX andY can be computed
from the entropy terms defined above by

I(X; Y ) = H(X)−H(X|Y ) (3)

Let us associate random variablesS1 and S2 with the
sensorsA andB respectively. LetC1 denote the domain of
S1, andC2 the domain ofS2. In order to use either Eqn. 1
or Eqn. 3 to compute the mutual information betweenS1

andS2 we first need to define the domains,C1 andC2, and
then estimate the appropriate probability distribution func-
tions. A discretized version of the full contour feature space
of A, and similarly ofB, are natural choices forC1 andC2

respectively. In general, obtaining the pdfs, especially the
joint and the conditionals, of the contour featuresci ∈ C1

andcj ∈ C2 is a difficult task. Indeed, it is this difficulty
that primarily impedes the use of mutual information in fea-
ture selection schemes [16, 11].

Nevertheless, a typical approach would be to estimate
these distributions using a large training data-set consisting
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(a) (b) (c) (d) (e)

Figure 1: Toy example illustrating the relevant processing stages. (a) Detected object contours from sensorA. (b) Contours
obtained from sensorB. (c) Relative affinity values of contours in (b) with respect to a contour (shown in white) from (a). (d)
Set of contours selected from (b). (e) Overlay of contours from (a), shown in gray, with the selected contours (d).

of manually segmented objects imaged using the sensors in
question. The difficulty of generating such a data-set aside,
such an approach has several drawbacks. Importantly, dif-
ferent pdfs will need to be estimated for different object
classes in the training set, and there is no guarantee that
these would generalize well for novel objects. This is es-
pecially cumbersome given the enormous computation and
memory requirements of non-parametric estimation tech-
niques. Further, the well-known issue of scale (bandwidth)
selection [9] in these methods becomes compounded in high
dimensional spaces such as ours.

Instead of relying on a training data-set to learn the dis-
tributions of features, we propose a different approach to the
problem. We make the assumption that objects of interest
have continuous, regular boundaries. Based on this assump-
tion, we seek to define relationships between samples from
S1 andS2 that will enable us to identify the set of contours
from sensorB with the highest relevance to sensorA.

In the context of fusion, we propose that a set of features
has high relevance to another, if it provides both redundant
and complementary information. The choice of contour
features (Sect. 3) enables us to further define relevance as
the ability of a set of features to coincide with, and complete
object boundaries that have been only partially captured by
another set. We now address the issue of computing contour
feature relevance and folding it into a mutual information
framework.

4.2. Contour Affinity

Assume that the pair of images shown in Fig. 1(a) and (b)
represent the thinned gradient magnitudes of a rectangular
box imaged using two sensors. Let Fig. 1(a) represent the
object contours from sensorA, and Fig. 1(b) the set of con-
tours obtained from sensorB.

Visualizing the contour features extracted from sensor
A in image-space, as in Fig. 1(a), we see that the contour
fragments form an incomplete trace of the boundary of the
viewed object. As described earlier, we desire the subset of
contour features from sensorB that provides the best com-

pletion of the broken contour image formed by the features
from A.

Perceptual (and computational) figure completion is a
very active field of research. For the purpose of figure com-
pletion, several studies, such as [17], have used an “affin-
ity” measure between a pair of edge elements to compute
how likely it is that they belong to the same underlying edge
structure. We borrow this notion of affinity and adapt it to
deal with contours of finite size instead of the dimension-
less edge elements used in the literature.

Consider a pair of contoursc1 and c2. Hypothesize a
curve connectingc1 andc2 such that the contours lie com-
pletely along it. Any such connection would join one of the
end-points ofc1 to an end-point ofc2. Based on which two
end-points are connected, all such curves fall into one of
four categories. Consider one such curve between an end-
point of c1 and an end-point ofc2. Further, consider the
vector joining the ends of the curve, pointing from the end-
point of c1 to the end-point ofc2. Let θ1 denote the angle
between this vector and the outward pointing unit vector at
the end-point ofc1, directed along the tangent toc1. Let θ2

denote the angle fromc2, analogous toθ1. Finally, letr de-
note the Euclidean distance between the two end-points of
c1 andc2. These quantities,θ1, θ2, andr are computed for
each of the four possible sets of curves between end-points
of c1 andc2.

We define the contour affinity,Aff(c1, c2), between two
contoursc1 andc2 as the maximum affinity value over the
four possible sets of curves. The affinity for a particular
curve set is defined as

A = e(−r/σr) · e(−β/σt) · e(−∆/σe) (4)

whereβ = θ2
1+θ2

2−θ1 ·θ2 and∆ = |Ec1
mag−Ec2

mag| (the ab-
solute difference in the intensity of the contours). We write
the normalization factorsσr, σt, andσe as σr = R/f1,
σt = T/f2, andσe = E/f3, whereR, T , andE equal the
maximum possible value ofr, β, and∆, and (f1, f2, f3) are
weights that can be used to change the relative influence of
each term in the affinity calculation.
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Contour pairs that are in close proximity, lie along a
smooth curve, and have comparable intensities will have
high affinity values. Consider the pair-wise affinity mea-
surements between contour features taken one at a time
from C2, and the set of contour featuresC1. If a particular
contour featurec2 ∈ C2 lies along the object boundary, it
would have very high affinity values with neighboring con-
tours features inC1. If c2 represents a non-object contour
(e.g., background edge), unless it is in close proximity to
some object contour, aligns well with it,andhas similar in-
tensity values, we expect that it would have a low affinity
value with all the contours features inC1.

Figure 1(c) shows the relative difference in affinity be-
tween the short contour shown in white (selected from Fig.
1(a)) and the other contours (from Fig. 1(b)). The brighter
the contour, the higher the affinity. For this computation of
affinity, we used the weightsf1 = 5, f2 = 5, andf3 = 0,
since the intensity of the contours in this example were gen-
erated randomly.

4.3. Estimation of Conditional Probability us-
ing Contour Affinity

As stated earlier, affinity captures the possibility that two
contours belong to the same underlying edge structure. If
we assume that one of the contours belongs to an object
boundary, one can interpret the affinity between two con-
tours to be an indication of the probability that the second
contour also belongs to the object boundary. In other words,
the affinity betweenc1 andc2 can be treated as an estimate
of the probability thatc1 belongs to an objectgiventhatc2

does.
Consider once again the random variablesS1 and S2.

Let C1, the domain ofS1, now contain contour features ex-
tracted only from the current input image from sensorA.
Similarly let C2, the domain ofS2, contain contour fea-
tures extracted from the corresponding image from sensor
B. Based on the pair-wise affinity between contours ofC1

andC2, we define

P (c1|c2) =
Aff(c1, c2)∑

ci∈C1
Aff(ci, c2)

(5)

whereP (c1|c2) ≡ P (S1 = c1|S2 = c2).

4.4. Computing Mutual Information
The definition of the conditional probability in Eqn. 5 en-
ables us to measure the conditional entropy betweenS1 and
any contourcj ∈ C2. Using Eqn. 2, this can be expressed
as

H(S1|cj) = −p(cj)
∑

ci∈C1

p(ci|cj) log p(ci|cj) (6)

where the distributionp(cj) can be considered as a prior
expectation of observing a given contour feature. Similarly,
assumingp(ci) to be a known distribution (e.g., uniform),
the entropy ofS1 can be computed as

H(S1) = −
∑

ci∈C1

p(ci) log p(ci) (7)

Using Eqns. 6 and 7 in Eqn. 3 we can measure the mu-
tual informationI(S1; cj). In order to obtain an estimate
of the full joint mutual informationI(S1;S2), we consider
each contour independently and use the approximation sug-
gested in [11], which is the mean of all mutual information
values between contour featurescj ∈ C2 andS1

I(S1; S2) =
1
|C2|

∑

cj∈C2

I(S1; cj) (8)

5. Contour Feature Selection using
Mutual Information

We now address the issue of selecting the most relevant set
of contour features fromS2 based onS1. This problem
statement is very reminiscent of the feature selection prob-
lem [11, 6], and the intuition behind the solution is also sim-
ilar. We seek the subset of contours fromS2 that maximizes
the mutual information betweenS1 andS2.

If we assume the prior distribution of contours features
p(ci) andp(cj) to be uniform, the entropy ofS1 (Eqn. 7) is
constant. Maximizing the mutual information is then equiv-
alent to finding the set of features fromS2 that minimizes
the conditional entropyH(S1|S2). In other words, we seek
those contours features fromS2 that minimize the random-
ness of the object contour features inS1.

Rewriting Eqn. 8 using Eqns. 6 and 7, and using the
assumption of uniform distributions forp(ci) andp(cj), the
conditional entropy ofS1 andS2 can be expressed as

H(S1|S2) ∝
∑

cj∈C2

(
−

∑

ci∈C1

p(ci|cj) log p(ci|cj)

)

where the term in parenthesis can be interpreted as the en-
tropy of the distribution of affinity betweencj and the con-
tours inC1. This is indeed the notion of relevance we wish
to capture since, as described in Sect. 4.2, the entropy of
affinity values is expected to be low only forcj lying on
object boundaries.

The problem of finding the subset that maximizes the
mutual information is intractable since there are an expo-
nentially large number of subsets that would need to be
compared. An alternate greedy heuristic involves a sim-
ple incremental search scheme that adds to the set of se-
lected features one at a time. Starting from an empty set
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of selected features, at each iteration, the feature fromS2

that maximizes Eqn. 8 is added to the set of selected fea-
tures. This solution, as proposed in the feature selection
literature [11, 6], has one drawback in that there is no fixed
stopping criteria, other than possibly a user-provided limit
to the maximum number of features required [11]. Obvi-
ously, this is a crucial factor that would impede the use of
this greedy selection scheme in most fusion applications.

We present here a modified version of the greedy algo-
rithm that addresses the need for a reliable stopping crite-
rion:

1. ComputeIfull = I(S1; S2), whereS1 andS2 are ran-
dom variables defined overC1 andC2 respectively

2. For eachcj ∈ C2

(a) Cj
2 ← C2 \ {cj}

(b) ComputeIj = I(S1; S
j
2), whereSj

2 is defined
overCj

2

3. Select allcj such thatIj ≤ Ifull

Initially, the setC2 contains contour features that lie along
the object boundary as well as a potentially large number
of irrelevant contour features due to sensor noise and scene
clutter. The algorithm presented above is based on the ob-
servation that removing a relevant contour feature fromC2

should reduce the mutual information (< Ifull), while re-
moving an irrelevant feature should increase the mutual in-
formation (> Ifull).

Ifull can be considered to be the minimum mutual in-
formation required betweenS1 andS2. UsingIfull as the
threshold, however, can sometimes result in only a fewcj

being selected due to inaccuracies in the estimation of the
pdfs. A better threshold can be obtained in practice. If we
observe the sequence of mutual information valuesIj in de-
scending order (e.g. Fig. 2), there is often a sharp drop (cor-
responding to the separation of object and non-object con-
tours) in the mutual information at some valueIj = IT in
the vicinity of Ifull such thatIT ≥ Ifull. UsingIT instead
of Ifull in step 3 of the above algorithm typically results in
the selection of a better subset of contours. Figure 2 shows
the mutual information valuesIj for a pair of input images.
The dashed horizontal line corresponds toIfull. The solid
line representsIT , the point≥ Ifull in the mutual infor-
mation profile with thelargestdrop. In practice, the subset
of contours belowIT form a better solution than using just
the contours belowIfull. Under conditions of very high
clutter, the profile of mutual information values may not
contain a point with a distinctly large drop. However, the
described heuristic still provides a reasonable separation of
object/non-object contours in this case.

The result of the overall contour selection process, ap-
plied to the example problem of Fig. 1(a) and (b), is shown
in Fig. 1(d). As can be seen, apart from the stray contour
in the bottom right, and a few internal contours, the subset
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Figure 2: Variation of mutual information values (Ij) for
different Cj

2 sorted in descending order.IT (solid line)
forms a better threshold thanIfull (dashed line) in practice.
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Figure 3: An example input. (a) Thermal sub-image. (b)
Visible sub-image. (c) Initial object contours detected from
(a). (d) Thinned gradient magnitudes from (b).

of contours that is selected is reasonable. Figure 1(e) shows
the contours from sensorA (Fig. 1(a)) overlaid in gray with
the selected contours from sensorB. The slight misalign-
ment in the contours from the two sensors was done inten-
tionally to demonstrate the robustness of the algorithm to
small errors in sensor registration.

6. Experiments
To test our approach for feature-level fusion, we consider
a video surveillance scenario that employs a pair of co-
located and registered cameras. This enables us to evalu-
ate the ability of our fusion approach to improve the shape
segmentation of objects in typical urban surveillance sce-
narios. The two sensors used are a ferroelectric thermal
camera (Raytheon 300D) and a color camera (Sony TRV87
Handycam). We show an example of a typical image pair,
cropped to a person region, in Fig. 3(a) and (b). Note that
all the color images are converted to gray-scale.

To choose the “reference” sensor (A), we considered
the nature of the application and the ease of obtaining an
initial detection. The need for persistence in a surveil-
lance application, and the ease of background modeling
in the relatively stable thermal domain [3], prompted us
to choose the thermal camera as sensorA. We employ the
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contour-based background subtraction scheme using Con-
tour Saliency Maps [3] to directly obtain a preliminary de-
tection of object contours from the thermal domain. For
ease of computation, we break the corresponding thermal
and visible input images into sub-images based on the re-
gions obtained from background-subtraction in the thermal
domain. Each thermal sub-image consists of contours that
belong to a single object, or objects that were close to each
other in the input image. The matching visible sub-image
consists of all the thinned gradient magnitudes of the im-
age region containing the object(s). In Fig. 3(c) and (d) we
show an example of the sub-image pair corresponding to the
image regions shown in Fig. 3(a) and (b).

These sub-image pairs form the input to our fusion al-
gorithm. We first extract contour features from each sub-
image as described in Sect. 3. We used 4 orientation bins
with centers at 0, 45, 90, and 135 degrees, and a standard
connected-components algorithm.

For every pair of contour features from both domains,
we then estimate the probability of a contour feature in the
thermal domain conditioned on the occurrence of a feature
from the visible domain (as described in Sect. 4.3). For the
computation of contour affinity (Eqn. 4), in all the experi-
ments, we usedf1 = 5, f2 = 5, andf3 = 15.

The set of contour features from the visible domain that
are most relevant to the object contour features from the
thermal domain are chosen using the steps outlined in Sect.
5. The final fused result is then obtained by overlaying these
contour features selected from the visible domain with the
contour features originally detected in the thermal domain.
In case of misalignments that could arise due to small reg-
istration errors, standard morphological techniques can be
used to ensure that all contours are 1-pixel thick.

We show several examples of the fusion results in Fig.
6. All images have been shown in binary to improve clar-
ity. Figure 6(a) shows the detected contours obtained from
the thermal domain. The Fig. 6(b) shows the thinned gradi-
ents from the visible domain. The set of contours selected
by our algorithm from the visible domain are shown in Fig.
6(c). Figure 6(d) shows the final fused result obtained by
overlaying Fig. 6(c) with Fig. 6(a). Overall, the results
are satisfactory. The algorithm selects contours that both
strengthen and complement the set of input object contours.
In general, the outer boundaries of the fused result are a rea-
sonable approximation of the true object shape. In spite of
the presence of shadows and illumination changes, the pro-
posed fusion framework is effective in obtaining a reason-
able contour segmentation in the visible domain, that fur-
ther improves the original segmentation acquired from the
thermal sensor.

After the sub-images of an image pair have been pro-
cessed, the resulting fused image contains contours ex-
tracted from both domains that best represent the objects

in the scene. Several different vision applications can ben-
efit from improvements in such a result, especially those
that rely on the notion of object shape. Shape could be
either extracted directly from the contours, or after using
figure completion or contour-based segmentation methods
on these contours. Examples of such applications include
activity recognition, object classification, and tracking.

6.1. Quantitative Evaluation
As stated in Sect. 1, the challenge for any fusion algo-
rithm is to utilize information from two or more sources
so as to maximally improve the performance of the sys-
tem over using either sensor individually. In this section
we analyze how our fusion algorithm stands up to this chal-
lenge for the task of shape segmentation. The quantitative
evaluation is based on the manual segmentation of the ob-
ject regions in 39 images-pairs chosen at random from sev-
eral thermal/color video sequences. Results of the hand-
segmentation (by multiple people) of each pair of images
were combined using an element-wise logical-OR operation
to obtain the final manually segmented images.

Since the final result of our algorithm is a set of con-
tours, let us assume that we have available a module that
can perform segmentation (generate a closed shape, e.g., a
silhouette) from such an input. For evaluation, we propose
then to use this module to generate a segmentation from
three different sets of contours,

• Set T: initially detected from the thermal sensor,
• Set V: subset selected from the visible sensor,
• Set TV: overlay of the thermal and visible contours.

The comparison of the shape segmentation achieved in each
of the above scenarios will provide valuable information
that can be used to judge the validity of the proposed ap-
proach. Several approaches for contour-based segmenta-
tion and figure completion exist. For the purpose of this
evaluation, we make use of the method suggested in [3] to
complete and fill the shape.

The set of 39 image-pairs generated a total of 65 useable
sub-image pairs (a simple size criterion was used to elimi-
nate sub-images that contained person regions that were too
small). For each sub-image, the shape segmentation cor-
responding to the three sets of contours enumerated above
were obtained. Examples of the segmentation for Set TV
are shown in Fig. 6(e). To enable a visual assessment of
the segmentation result, we show in Fig. 6(f) the manual
segmentation of the image regions.

To quantify the segmentation results we computePreci-
sionandRecallvalues using the manually segmented object
regions as ground-truth. Precision refers to the fraction of
pixels segmented as belonging to the object that are in fact
true object pixels while Recall refers to the fraction of object
pixels that are correctly segmented by the algorithm. We
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Figure 4: Comparison of F-measure.
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Figure 5: F-measure comparison using subset of Set T.

combine these values into a single measure of performance
using the F-measure [12], which is the harmonic mean of
Precision and Recall. The higher the F-measure, the better
the performance.

In Fig. 4 we present the F-measures evaluated for the
three different scenarios, over all the sub-images. The bold
horizontal lines represent the average F-measure (F ) over
all the sub-images for each input set of contours (FT =
0.8254, FV = 0.8108, FTV = 0.8436). As clearly shown
in the figure, Set TV, the result of the fusion algorithm,
yields the best overall segmentation result. The improve-
ment over Set T, which is the detection result from the ther-
mal sensor, is 2.2%. It is interesting also to note that Set V,
the set of contours selected by the fusion algorithm from the
visible domain, also performed comparably to the thermal
domain (lower than Set T by 1.8%).

These numbers demonstrate the ability of the proposed
algorithm to use limited cues from one sensor to extract
relevant information from the other sensor. The segmen-
tation performance obtained from the fusion results show
that the algorithm is successful in extracting both redundant
and complementary information across modalities.

We next subject our algorithm to more adverse condi-

tions. We perform the same experiment as before, only this
time we use a subset of Set T by randomly discarding 10%
of the contours. This resulting set is then used as input into
our fusion algorithm. This experiment tests if the fusion
algorithm is capable of estimating the correct set of rele-
vant features from sensorB, given a more incomplete de-
tection from sensorA. The results of this experiment are
shown in Fig. 5. As in Fig. 4, the bold lines represent the
average F-measure generated from each set (FT = 0.8127,
FV = 0.8106, FTV = 0.8399). Once again, Set TV, the fu-
sion result, yields the best segmentation. The improvement
over Set T is 3.4%, slightly higher than earlier. Also, the
segmentation generated from Set V is very similar (lower
by 0.2%) to Set T.

Comparing these results to that of the previous experi-
ment, the interesting point to note is the relative changes in
the F-measure across Sets T, V, and TV. As expected, dis-
carding contours adversely affects the segmentation results
achieved from Set T. However, Sets V and TV hardly show
a decrease in performance. In fact, the drop in segmenta-
tion performance for Sets V and TV is only around 20% of
the decrease seen in Set T. These observations lend further
credibility to the proposed fusion scheme. In particular, this
shows that the algorithm is (at least to some extent) able to
extract information from the other sensor to compensate for
the impoverished input from one sensor.

7. Summary

We presented a new, feature-level fusion technique for ob-
ject segmentation based on mutual information. Starting
from an initial detection of object features in one sensor,
our technique extracts relevant information from the other
sensor to improve the quality of the original detection. We
first defined a feature representation based on contour frag-
ments that is complex enough to implicitly capture object
shape and simple enough to provide an easy realization of
feature relevance.

We then approached fusion as a variation of the mutual
information feature selection problem. To avoid the pit-
falls of learning the relevant probability distributions from
training data, we proposed a method that generatesthe re-
quired probability distribution from a single pair of images.
The method computes the conditional probability distribu-
tion based on the notion of contour affinity and effectively
captures the expectation that objects have regular shapes
and continuous boundaries. We then computed the mutual
information between the features extracted from both sen-
sors. Finally, we employed a new scheme to reliably obtain
a subset of features from the secondary sensor that have the
highest mutual information with the provided object con-
tours. The final fused result is obtained by overlaying the
selected contours from both domains.
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Our approach was tested in a video surveillance setting,
using co-located thermal and color cameras. Using over 65
manually segmented object regions, the result of the fusion
algorithm yielded better segmentation results than those ob-
tained from detection results of any one sensor alone.

In the future we plan to extend the method to extract in-
formation frombothsensors simultaneously. We would also
like to investigate the robustness of our feature representa-
tion to translation and rotation of the sensors.
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(a) (b) (c) (d) (e) (f)

Figure 6: Examples of fusion results. (a) Contours detected
from thermal domain (Set T). (b) Contours present in the
visible domain. (c) Contours selected from (b) (Set V). (d)
Overlay of contours from (c) on (a) (Set TV). (e) Segmenta-
tion obtained after completing and filling (d). (f) Manually
segmented object regions.
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