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Abstract

We present an expressive feature model for recognizing
the performance effort of human actions. A set of low and
high effort examples for an action are initially factored into
its three-mode principal components, followed by a learn-
ing phase to compute the expressive features required to
bring the model estimation of effort into agreement with
perceptual judgements. The approach is demonstrated us-
ing real and illusory movements.

1. Introduction

“Dynamic movements” are categories of movements
performed under varying degrees of effort. Does his walk
appearleisurely, or is he walking in ahurry? Does that
package lookheavyor light for her to carry? People are
quite adept at identifying the amount of effort exerted by
a person from subtle visual cues. For example, nuances in
body motion can reveal how light or heavy a box is for a
person to lift [12]. Our goal is to develop a computational
system capable of identifying the “perceptual dynamics” as-
sociated with different performance efforts for the task of
recognition.

Intelligent machines having a perceptual model of hu-
man action efforts are relevant to several domains and ap-
plications. Automatic video annotation of pedestrian walk-
ing pace and carrying load would help to enhance the cur-
rent capability of surveillance systems. An ergonomic mon-
itoring system able to detect improper lifting techniques
(for heavy objects) may help reduce the occurrence of back
injury and could be used to train patients with recurring
injuries. Similarly, visual monitoring of athletic training
could help prevent costly sports injuries by recognizing the
onset of fatigue (characteristic changes in effort) during en-
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durance workouts. A computer model of performance ef-
forts could also be used to “warp” motion-capture anima-
tions into new efforts, and could potentially be used for
searching digital motion libraries to find movements ex-
hibiting a similar (or different) effort to the query example.

Instead of matching new movements to multitudes of
training examples based on their proximity in some fea-
ture space, we present a system that learns the “expressive”
motion features associated with a dynamic movement and
computes a metric estimation of the effort. Our approach
first constructs a three-mode factorization of low and high
effort examples and then tunes the model using expressive
features derived from additional labeled effort examples. A
weighted-SSE minimization technique using perceptually-
labeled training data is employed to approximate human
judgements of effort similarity. We demonstrate the ap-
proach with the task of recognizing the amount of effort ex-
erted by a person carrying objects of different weight. Two
movement illusions are also employed to further demon-
strate the perceptual similarity of the model.

2. Related Work

There has been much recent work in computer vision
on the detection, tracking, and recognition of human ac-
tions (See reviews [1, 6]). Closely related to the recogni-
tion of action effort is analysis of style. A bilinear model
was used in [13] for separating perceptual content and style
parameters. A Fourier-based approach to generate human
motion with emotional properties was described in [16]. A
Hidden Markov Model (HMM) with entropy minimization
was used by [3] to generate different state-based anima-
tion styles, and a Parameterized-HMM was used by [19]
to model stylistic gesture variations. A factorization of mo-
tion capture data for extracting person-specific motion sig-
natures was described in [18], and a movement exaggera-
tion model using measurements of observability and pre-
dictability of joint angles was presented in [5].

The most related research addressing a three-mode anal-



ysis of human movements over various performance ef-
forts is presented in [9]. Arm segment velocities of 12
athletes throwing three differently weighted balls were ex-
amined using a three-mode factorization. The components
themselves weremanually inspected in an attempt to de-
termine loadings signifying horizontal/vertical velocities,
proximal/distal velocities, various throwing phases, and dif-
ferent skill levels of the throwers.

3. Expressive Features as Key Features

The success of perception (machine or man) relies on the
ability to construct model representations whose assump-
tions and constraints reflect the structure and regularity of
the world. A “key feature” is a property that can be reli-
ably inferred in a particular context, where the likelihood of
correctly indicating the property is high (few false targets)
and the property itself has a significant prior probability of
occurring [10].

With respect to recognizing action effort, do some prop-
erties of the movement vary consistently across effort to en-
able reliable discrimination of effort (e.g., which joint mo-
tions contribute the most to the overall percept of the action
effort)? We refer to these key features asexpressive fea-
tures1. We will show that certain trajectories can be used
to match perceptual rankings of motions and therefore act
as key features. We will also present a model that can in-
fer these expressive features to enable the model to make
judgements similar to those of people.

4. Three-Mode Expressive Model

Many times it is preferable to reduce the dimensional-
ity of large data sets for ease of analysis (or recognition)
by describing the data as linear combinations of a smaller
number of latent, or hidden, prototypes. Singular value
decomposition and principal components analysis are stan-
dard methods for achieving this data reduction, and have
been successfully applied to severaltwo-modeproblems in
computer vision (e.g., [15, 8, 2]).Three-modefactorization
[14] is an extension of these traditional two-mode methods
and offers a framework suitable to incorporating expressive
features for efficient recognition of action efforts in a low-
dimensional space.

Dynamic movements are inherently three mode: body
pose (mode 1), time (mode 2), and effort (mode 3). The
data can be organized into a cubeZ (See Fig. 1.a) with the
rows in each frontal planeZk comprising all the trajecto-
ries for a motion at a particular effort indexk. This data
cube could be “flattened”, or rasterized, into an ordinary
two-mode matrix, but this simply ignores the underlying

1An alternate meaning of expressive features is given by [4].
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Figure 1. (a) Three-mode configuration of
dynamic-effort movement data. (b) Three-
mode factorization of data.

three-mode nature of the data. As is required with any prin-
cipal components model, the data must first be normalized
to a fixed length/size. We present results in the experimental
section of this paper with automatic temporal segmentation
and time-normalization of periodic carrying actions.

Three-mode factorization decomposes the data cubeZ
into three orthonormal matricesG, H, andE that span the
column (pose), row (time), and slice (effort) spaces (See
Fig. 1.b). Typically, each mode needs only to retain its first
few components to capture most of the fit toZ. Note that
any two of the three basis sets cannot be produced within a
single two-mode factorization. The core matrixC has three
dimensions and represents the relationships of the compo-
nents inG, H, andE for reconstructing the original data
in Z. An alternating least-squares algorithm for solving the
three-mode factorization is presented in [7]. A related ten-
sor decomposition can be found in [17].

The three-mode factorization ofZ can be concisely writ-
ten in matrix form as

Z = GC(ET ⊗HT ) (1)

where⊗ is the Kronecker product. Any frontal planeZk for
a given effort indexk (an action at a particular effort) can
be formulated as

Zk = G

(
u∑

r=1

ekrCr

)
HT (2)

Therefore, we can reconstruct any frontal planeZk by
choosing the correctekr component loadings from the ef-
fort modeE. For an unknown action (assumed to belong to
the category), its effort values must be estimated.

4.1. Estimating Action Effort

The three-mode factorization for each data elementzijk

of Z can be written as a summation of three-mode elements,



where the effort loadings can be isolated from the remaining
factorized terms

zijk =
s∑

p=1

t∑
q=1

u∑
r=1

giphjqekrcpqr (3)

=
u∑

r=1

ekr

(
s∑

p=1

t∑
q=1

giphjqcpqr

)
(4)

=
u∑

r=1

ekrαijr (5)

If we have a nearly diagonal core (withcpqr ≈ 0 when
p 6= q), we can further reduce the computations with
αijr =

∑min(s,t)
p=1 giphjpcppr. The ekr values in Eqn. 5

can be estimated using least-squares methods.
Human movement exhibits smooth and predictable reg-

ularity with changes in the dynamic condition. Therefore
only a few examples captured at distinct dynamic efforts
may be all that is required to successfully model the ac-
tions. If we consider only two extreme efforts for an action
(e.g., slow/fast walking, light/heavy lifting), the three-mode
factorization ofZ (after mean-subtraction along the effort
dimension) is reduced to contain a single effort parametere.
Movements examined between these extreme efforts should
not deviate considerably from this three-mode basis.

To estimate the effort value for a movement of unknown
effort with this reduced model, we can solve an error func-
tionF using the sum-of-squares of the input and its formu-
lated reconstruction

F =
∑

i

∑
j

(zij − e · αij)
2 (6)

As all trajectories may not equally discriminate the ac-
tion effort (all may not be expressive features), we augment
the error function with expressibility weightsEi for each of
the feature-i trajectories

F ′ =
∑

i

Ei

∑
j

(zij − e · αij)
2 (7)

For minimizingF ′ to estimate the target effort parameter,
we compute the derivative with respect toe and re-arrange
to produce

ê =

∑
i Ei

∑
j zijαij∑

i Ei

∑
j α2

ij

(8)

Setting theEi values to 1 in Eqn. 8 yields the standard least-
squares estimation ofe. Non-uniform expressive feature
weights in Eqn. 8 can be used to compute effort values that
do not necessarily correspond to a standard minimization of
SSE (as will be demonstrated).

4.2. Learning Expressive Features

To learn the expressive feature weightsEi, we construct
a second error functionJ comparing additional training ex-
amples with knowne values (method to attain thee values
will be described in Sect. 5.4) to the estimatedê values
computed with Eqn. 8.

For a set ofk training motionsZ̃k and their efforts̃ek,
we define the matching error as

J =
∑

k

(ẽk − êk)2 (9)

=
∑

k

(
ẽk −

∑
i Ei

∑
j z̃ijkαij∑

i Ei

∑
j α2

ij

)2

(10)

=
∑

k

(
ẽk −

∑
i EiBijk∑
i EiAij

)2

(11)

This non-linear arrangement of theEi values can be
solved using a fast iterative gradient descent algorithm of
the form

Ei(n + 1) = Ei(n)− η(n) · ∂J

∂Ei
(12)

with the gradients∂J
∂Ei

computed over allk training exam-
ples

∂J

∂Ei
= 2

∑
k

(
ẽk −

∑
i EiBijk∑
i EiAij

)
·
Aij

∑
i EiBijk −Bijk

∑
i EiAij

(
∑

i EiAij)
2 (13)

The learning rateη is re-computed at each iteration to yield
the best incremental update. A random-restart approach is
employed to handle local minima. Following convergence
of Eqn. 12, effort values can be estimated for new move-
ments using Eqn. 8.

5. Experiments

We analyzed our approach in the context of determining
the “carrying effort” of a person holding a bag (in one hand)
of increasing weight while walking on a treadmill.

Motion data of the movements were collected, and the
lightest and heaviest carry were used to construct the three-
mode basis. People were asked to compare each of the
carrying movements to a set of synthetic movements and
choose the best match (mimicking the computer recogni-
tion process). Given these perceptual mappings, the expres-
sive feature weights were automatically learned to tune the
three-mode model to produce effort values similar to the hu-
man judgements. Two illusory movements were addition-
ally tested with the learned model and compared to human
observations.



5.1. Motion Capture

A Vicon-8 motion capture system with 14 video cam-
eras was used to create a hierarchical skeleton of the body
with 3-D joint-angle trajectories sampled at 30 Hz (Ac-
claim ASF/AMC format). The trajectories for the move-
ments were lowpass filtered using a 5th order, zero-phase
forward-and-reverse Butterworth filter with cut-off at 6 Hz.
Two walk cycles were automatically extracted from each
sequence using trajectory curvature peaks, averaged into a
single walk cycle, and time-normalized to 50 frames using
spline interpolation. The joint positions as seen from a cam-
era placed between a front and side view of the person (45
degrees) were computed and rendered. Recent video track-
ing advances (e.g., [11]) will be investigated in future work
to extract these joint positions automatically (the focus in
this paper is movement representations for recognition).

We captured 9 carrying sequences (carrying 0 – 40 lbs,
in 5 lb increments) of a person walking on a treadmill at 1.4
MPH. The lowest (lightest) and highest (heaviest) carrying
efforts are shown in Fig. 2.a. Additionally, we produced
22 “synthetic” movements by linearly interpolating and ex-
trapolating a three-mode model created from the position
data for the lightest and heaviest carry (producing 2 lighter,
15 interpolated, and 5 heavier). These synthetic movements
will be used in the perceptual mapping task.

5.2. Input Representation

At this point we must decide on a representation for the
movements to construct the three-mode basis for recogni-
tion. Rather than committing to any particular set of higher-
level composite feature definitions, we represent move-
ments more generally as sets of low-level motion trajecto-
ries. Figure 2.b compares the results of a standard least-
squares effort estimation with three-mode models for the
carry examples using x-y joint positions and 2-D joint-
angles. As both methods produce essentially the same re-
sults, we selected the 2-D angle representation as it has
fewer degrees-of-freedom (10) and more invariants (e.g.,
translation, scale, and possibly rotation).

5.3. Illusory Movements

We additionally created an artificial low-effort carry
Žlow and high-effort carryŽhigh from manually altering
the motion capture data. These two movements, when com-
pared to the 22 synthetic model movements using a non-
expressive effort estimation (Eqn. 8 with allEi = 1), both
map to the same synthetic movement (#11 of 22). How-
ever, these artificial movements perceptually appear quite
distinctly as light and heavy efforts:̌Zlow → LOW-EFFORT

andŽhigh → HIGH-EFFORT. These illusions will be used
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Figure 2. (a) Light (left) and heavy (right) carry
figures. A bag is held in the right hand. (b)
Position vs. angular effort estimation.

to further demonstrate the perceptually-based behavior of
the model that was trained using only the real motions.

5.4. Perceptual Mapping Task

Nine people were given the task of matching the carrying
movements to the set of synthetic model motions to provide
a mapping for Eqn. 12 to learn the expressive features. Each
person was capable of distinguishing side-by-side examples
of extreme light and heavy carrying movements prior to the
matching task.

A computer program was implemented to conduct the
mapping task, and is shown in Fig. 3. On the left, one of
11 carry movies (9 real, 2 illusory) is shown as a “refer-
ence” movie. On the right, one of the 22 synthetic model
movies is shown. Below the synthetic movie, a slider bar is
provided for the user to quickly and easily seek through the
possible synthetics. Moving the slider bar to the left or right
instantly displays lighter or heavier looking movies, respec-
tively. The reference and synthetic movies are synchronized
and played repeatedly. The reference movies are selected in
random order for each trial. The slider bar is initially set to
a random position for each reference movie.

Once the user has made a choice of which synthetic
movie most closely resembles the reference movie, the per-
son selects a confirmation box and clicks theNEXT button
to load the next reference movie. The program records the
synthetic movie choice for each reference movie. Two com-
plete trials were required, with the first trial used only to
familiarize the person with the program and the movies.

5.5. Learning Perceptual Features

After the perceptual task is completed, each reference
movie (for each person) is mapped to a particular synthetic
movie. For each selected synthetic movie, there exists a



Figure 3. Screen-shot of matching program.

knowne value (used to generate the movie). The mean and
standard deviation for the reference-synthetice mappings
of the nine people are then computed (not including the il-
lusory movies). Using the meane values, Eqn. 12 is con-
verged to the expressive feature weights needed to bring the
model estimation of effort (Eqn. 8) into alignment with the
human judgements of the movements. The learning is per-
formed using the 2-D joint-angle three-mode model of the
lightest and heaviest carry examples (the positione map-
pings are the same in this space) with 99.9% of the variance
captured (the number of components inG, H, andE were
8, 8, and 1, respectively).

6. Results

We present the results of the perceptual matching task in
Fig. 4.a. Rather than a smooth mapping from low (light)
to high (heavy) effort, the 7 lower-effort carry movements
visually appeared similar, yet distinct from the remaining 2
higher-effort carry movements. The average mapping cor-
relation of pairwise subjects wasρ = 0.91 (SD 0.05). The
standard least-squares effort estimate is also shown for com-
parison. There is a noticeable difference around reference
movies 6 and 7.

The meane values determined from the perceptual map-
ping task were used in Eqn. 12 to learn the expressive
feature weights. The method consistently converged to the
same trajectory weights, with the lowerback (.36), right-hip
(.15), neck (.59), and right-elbow (1.0) determined to be the
expressive features (See Table 1.a). These results are mean-
ingful as they relate to the increased leaning of the body
and straightening of the carry arm as weight was added to
the bag. The left counterbalance arm was not found to be
an expressive feature even though it had considerable de-

Angular Expressive Weights
1 2 3 4 5 6 7 8 9 10

(a) .36 0 0 .15 0 .59 0 0 0 1
(b) .35 .03 0 .35 0 .61 .02 0 .09 1

Table 1. Learned expressive weights (normal-
ized) for the carrying examples using (a) per-
ceptual means and (b) perceptual means with
random noise trials.

viation from low to high effort (thus affecting the standard
least-squares estimation). In Fig. 4.b, the efforts estimated
with the learned three-mode model are compared with the
perceptual means.

We additionally tested the sensitivity of the gradient de-
scent algorithm by adding random noise to the perceptual
mean values (within .5 SD for each reference movie). The
normalized average of the expressive weights computed for
100 random-augmented mappings showed a similar result
(See Table 1.b), but introduced very small weights for the
left-hip (.03), left-shoulder (.02), and right-shoulder (.09).

To further demonstrate that standard least-squares esti-
mation is not sufficient to produce perceptually-valid results
for this class of motion, we turn to the illusory movements.
Figure 4.c illustrates that the non-expressive least-squares
estimation maps the illusory movements to basically the
same effort in the angular three-mode basis. Perceptually,
the result is quite different. The illusory movements were
perceived to be significantly different (Mann-Whitney U
test: U=81,p < 0.0003). The results of the learned model
more closely resemble the perceptual choices than do the
standard least-squares results, even though the illusory data
was not used to train the model. This supports our hypoth-
esis that all motion features are not equal during motion
recognition.

7. Computational Relevance

The recognition method provides a fast and efficient
computation of action effort. Additionally, the approach
shows that standard SSE computations do not produce per-
ceptual results for the motions examined. Once the system
has been trained, the recognition of action effort is com-
puted using Eqn. 8. Theαij values and the denominator
of this equation can be computed off-line prior to recogni-
tion. Since only those feature-i trajectories with non-zero
expressibility weights are used to determine the effort, tra-
jectories with zero weight can be removed from the compu-
tation, thus reducing the total amount of processed data to
only the most expressive trajectories for the category. This
has an added advantage in that the approach can therefore
accommodate occlusions of non-expressive trajectories.
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Figure 4. (a) Perceptual (mean ± 1SD) and least-squares effort estimation for real motions. (b)
Perceptual and learned efforts of real motions. (c) Perceptual, learned, and least-squares efforts of
illusory movements.

8. Conclusion

We presented an expressive feature model for analyz-
ing and recognizing action effort. Initially, a set of low
and high effort examples for an action are factored into its
three-mode principal components. Using a perceptually-
based mapping of real to model-generated synthetic move-
ments, a weighted-SSE minimization technique learned the
expressive motion trajectories needed for the model to pro-
duce effort labels similar to human judgements. The ap-
proach was demonstrated with carrying examples and two
illusory movements to show the improvement of the three-
mode weighted-SSE technique over a non-expressive SSE
approach. Future work includes investigating an auto-
mapping procedure that can mimic the human matching
process, examining additional categories (walking, running,
throwing, lifting, etc.), incorporating natural video input,
and modeling the effort regularities across multiple people.
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