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1. Introduction

Given a monocular video input which contains a mov-
ing human being, our goal is to automatically recognize the
action and then track the articulated pose. Distinct from
other example-based approaches such as estimating poses
from still images [7] and using multiple cameras [6], our
system uses a single camera to reconstruct human motions,
combining knowledge from images and motion capture data
together. Other model-based motion reconstruction systems
are presented in [3, 4, 8].

Figure 1 illustrates the structure of our activity recogni-
tion and reconstruction system. We first create a motion
capture database containing multiple subjects and action
types, and then render the silhouettes from various view
points (step A). Based on the training images, we build a
hierarchical reliable-inference (RI) classifier [2] (step B).
Once the preprocessing is done, we use the RI framework
to classify observed motion into known actions by sequen-
tially evaluating posterior class ratios (step C). Next sev-
eral matches are picked from the database for each test im-
age, based on image features, estimated pose configuration
and camera angle transitions (step D). A dynamic program-
ming technique is used to generate the sequences of nat-
ural and complex human motion from the database (step E).
The pose parameters are further refined [1] to recover global
translation and body orientation and improve the match with
the original sequence (step F).

2. Action Recognition for Synthesis

2.1. Preprocessing and Training

Using the CMU Motion Capture Database, we include
4 actions, including jumping, punching, running and walk-
ing. All global translations and yaw transformations are re-
moved to allow the focus to be on the essential character-
istics of observed motion. Then we use the motion data to
create synthetic examples and extract silhouettes from the
rendered images (step A in Figure 1).

Then we use a RI classifier to recognize human actions,
which are inferred from a posteriori probability model.
We use feature vectors composed of similitude moments
called pseudo Zernike moments, which possess the follow-
ing characteristics: resilience to noise, information redun-
dancy, and rank-preserving reconstruction capability. How-
ever a single image alone is not always sufficient to be clas-

Figure 1. Diagram of our activity recognition and reconstruction
method. The preprocessing stage is enclosed by the rectangle with
dashed lines.

sified as a particular action class. The use of additional
motion images helps alleviate ambiguities and we use a
multi-level sequential RI method [2] that automatically de-
termines an appropriate threshold for each action exposure
from negative examples. The motion history image repre-
sentation is used to collapse multi-frame exposures into a
single 2D template, and the likelihood distribution for each
action class is modelled as a Gaussian mixture model. The
training process is marked as step B in Figure 1.

2.2. Recognizing Actions

In our framework, given an input test video, the multi-
level sequential RI framework continually incorporates the
subsequent motion image into a longer video exposure un-
til a valid action class is found, using the thresholds deter-
mined in the training stage (step C in Figure 1).

2.3. Estimating Poses

After the input image has been classified, we try to find
the pose that produces this image using the training data
set. Given the hundreds images in the test video and dozens
of close matches for each test image, we need to find a se-
quence of matched frames as to produce a good human mo-
tion. A good match is determined by the following factors
(step D in Figure 1).

First, we keep the similarity between the silhouette from
the dataset and the captured person in the test image. Here
we use pseudo Zernike moments to measure the difference
between two images. Second, we minimize differences in
body orientation between successive frames. Since we re-
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move all body yaw in the training dataset, this problem is
equivalent to minimizing the transition of camera angles.
We use Kalman filtering to track body rotation and elim-
inate unlikely matches. Third, we guarantee the smooth-
ness of the joint angles with the progression of the test se-
quence. Thus we create motion graphs [5] from the train-
ing sequences. We find all local minima that are below a
pre-determined threshold in those motion graphs, and al-
low transitions between those local minima. Using strongly
connected component algorithm, we remove all dead ends
in the graph to make it fully connected.

Inspired by Viterbi algorithm, our algorithm always tries
to trace the best path while pruning the unlikely. Specifi-
cally, we only consider matches with the same recognized
action. After examining the whole sequence, we only select
the first K ranked paths, and then continue to process the
next test image. Finally we backtrack the whole sequence
to choose a path with the least cost (step E in Figure 1).

2.4. Reconstructing Translation and Yaw

When we acquire a good match sequence, the pose con-
figurations and their associated cameras are available too.
However, these poses do not have any translation or yaw,
since the information has already been removed in the pre-
processing stage. Core-weighted XOR comparison is used
to retrieve the translation (step F in Figure 1).

We use the same 3D human model that renders the train-
ing images, and we build a silhouette-based objective func-
tion to match the 2D projection of the model to the input
video. In our implementation, given a silhouette, a core-
weighted image is a weighted sum of its Euclidean distance
transform and that of its inverse image. Our cost function
calculates the difference between two core-weighted im-
ages, generated from the test silhouette image and the model
projection respectively. Since the objective function disal-
lows the computation of analytic derivatives in terms of mo-
tion parameters, we employ the downhill simplex method to
minimize the proposed cost function and retrieve the x-y-z
translation.

Then, the new orientation of the body can be recovered
by combining the ’yaw-less’ body orientation of the exam-
ple in the mocap database and the camera angle associated
with the image.

3. Experimental Results

To illustrate our reconstruction method, several full body
tracking sequences combining different actions are used.
The upper row of Figure 2 shows a subject jumping from
left to right and then turning and walking away. Our sys-
tem not only labels the motion frames into correct action
class, but also captures the arm and legs motion and the
turning of the body, which is difficult for many tracking al-
gorithms to follow. Furthermore, we reconstruct a smooth
transition from jumping to walking, which is absent in our
database. The lower row of Figure 2 shows our success

Figure 2. Upper row: Jump clip and its reconstructed pose. Lower
row: Boxing clip and its reconstructed pose.

in tracking boxing motion. Although the punching ex-
amples in our database are performed by an actor stand-
ing still, our trajectory reconstruction algorithm rebuilds
the vivid movement of the boxer. More reconstruction
results can be found at http://www.cse.ohio-state.
edu/∼chenyis/ActionSynthesis.

4. Conclusions
We presented a framework for rapid-and-reliable action

detection and robust 3D human motion reconstruction using
image silhouettes. Based on a motion capture database, the
approach builds an probabilistic action classification frame-
work based on sequential reliable-inference and a sequence
of poses close to the input sequence that is extracted from
the database and then refined. The resulting system recog-
nizes actions correctly and efficiently, and our reconstruc-
tion results not only show similarity to the original motion
but also look natural. However, when the input video is not
synchronized with the motions in the dataset, our system
may choose a wrong path in the motion graph and generate
unmatched motions. In the future, we expect an automated
time-warping technique to solve the asynchrony problem
and add more motions into the database to make our sys-
tem more general.
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