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Abstract. A major issue with data-hungry deep learning algorithms is
the lack of annotated ground truth for specific applications. The high
volume of satellite imagery available today, coupled with crowd-sourced
map data can enable a new means for training and classifying objects
in wide-area imagery. In this work, we present an automated pipeline
for collecting and labeling satellite imagery to facilitate building custom
deep learning models. We demonstrate this approach by automatically
collecting labeled imagery of solar power plants and building a classifier
to detect the structures. This framework can be used to collect labeled
satellite imagery of any object mapped by spatial databases.
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1 Introduction

Advancements in deep learning for image classification, segmentation, and object
detection are creating profound changes in methods for analysis and inference of
imagery. Supervised machine learning tasks are highly dependent on the avail-
ability of large, labeled training datasets. Hence, there is always a need to find
a dataset which is sufficiently large enough to train a model and broad enough
to contain diverse data samples to ensure better generalization performance.
Satellite imagery is one such source of expansive and rich data.

Remote sensing is an Earth observation technique by which information
about a feature on the Earth’s surface is gathered without making physical
contact. Earth Observation (EO) satellites are launched into space with their
primary mission being remote sensing and providing satellite imagery of the
Earth’s surface from low Earth orbits. The number of EO satellites has increased
exponentially over recent years. The data from these satellites have various ap-
plications in fields such as environmental monitoring, disaster management, agri-
cultural engineering, cartography, and military intelligence. EO satellites have
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instruments capable of sensing a wide range of bands in the electromagnetic
spectrum. Another important property of satellite imagery is the frequency in
which new data is captured. A primary advantage of satellite imagery is that
archived imagery of multiple spectral bands at high resolution can be collected
and processed.

Although there has been a considerable increase in the volume of publicly
available satellite imagery, it remains difficult to find a dataset that contains
examples of a specific object for a particular task. Similarly, generating new
datasets leads to the additional overhead of annotation. Manual annotation is a
time-consuming task that becomes difficult with large amounts of imagery. How-
ever, public geographical databases and crowd-sourced map information can be
used to automatically locate objects and label the ground truth. In this work, we
present a generic framework for extracting satellite imagery of specified object
categories using public databases. We demonstrate the approach by automat-
ically extracting satellite imagery of solar power plants (though other object
classes can be used) from around the world and building a classifier to detect
them in novel satellite imagery.

2 Related Work

The availability of satellite imagery has already promoted the use of deep learn-
ing algorithms for analyzing remote sensing data. In [1], they focused on pre-
dicting land use (cropland, residential, forest, etc.) in satellite imagery of urban
areas. However, they were restricted to train with a small, manually-created
dataset for 6 European cities. Similarly, in [9] a classifier was trained to pre-
dict crop types using satellite imagery having manual ground truth. In [6], solar
power plants were detected in geographically restricted satellite imagery and
the ground truth classes were manually annotated. Also, there was a large bias
between the number of positive and negative examples. Crowd-sourced map in-
formation has become widely available today and OpenStreetMap (OSM) [18] is
one such popular crowd-sourced spatial database primarily used for the purpose
of land use mapping. In [7], they used existing OSM datasets for labeling water,
farm, grass, etc. on Landsat imagery. In [15], OSM data were used for filling gaps
in existing land cover maps. In [2], OSM raster images were used to superimpose
land use labels on satellite imagery. Similarly, in [8], OSM raster data were used
to superimpose labels of roads and buildings on existing satellite imagery to
perform semantic image segmentation. In [20], OSM data were integrated with
high spatial resolution imagery to classify types of buildings.

Overall, most of these approaches suffered from the lack of large problem-
specific labeled training examples, which has been a bottleneck for applying deep
learning techniques. Also, those employing OSM data used existing filtered OSM
datasets. Our proposed framework can dynamically query the OSM database for
the required data thus bypassing having to download and filter the entire OSM
database. Additionally, our proposed model extracts OSM data in vector format
allowing us to work with the object boundaries (points, lines, or polygons). We
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Fig. 1: Data generation pipeline architecture.

can also exploit the broader categories of features mapped by OSM. Furthermore,
we exploit the use of additional geo-location data sources to help localize the
objects.

3 Data Generation Pipeline

We developed a modular framework for collecting satellite imagery of a specified
object class using public geographical databases and crowd-sourced labels. The
different modules of our framework are shown in Fig. 1 and explained below.

3.1 Satellite Imagery

In this work, we employ the European Space Agency’s Sentinel-2 (A and B) [5]
constellation of twin satellites. It is a wide-swath, high-resolution, multi-spectral
imaging mission supporting Copernicus Land Monitoring studies (monitoring
vegetation, soil, and water cover, as well as observation of inland waterways
and coastal areas). The Sentinel-2 Multispectral Instrument samples thirteen
spectral bands in the visible, near-infrared, and short-wave infrared part of the
spectrum with a spatial resolution of 10 meters (m) per pixel for the four optical
and near-infrared (NIR) bands, 20 m for the six red edge and shortwave infrared
(SWIR) bands, and 60 m for the three atmospheric correction bands.

Sentinel Hub’s [17] Open Geospatial Consortium (OGC) API can be used to
provide services for data access, display, and processing within hours of image
acquisition. The sentinelhub Python package facilitates OGC web requests to
download and process satellite imagery in batch scripts thus circumventing the
need to manually download Sentinel-2 data from the web. Sentinel Hub’s Web
Map Service (WMS) is used to request downloads of certain Sentinel bands
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(a) July 2018 (b) October 2018 (c) January 2019 (d) April 2019

Fig. 2: Sentinel-2 imagery of the same area acquired at four different times.

using different settings such as maximum cloud coverage, time range of imagery
acquisition, image format, size, etc. The region of interest to be downloaded is
represented as a bounding box in geo-coordinates. This enables the extraction
of satellite imagery for any particular region of interest at any required time
period, thus avoiding time mismatches between imagery and any ground truth
data. Figure 2 shows some examples of Sentinel-2 RGB imagery acquired at four
different times highlighting the variations in the image across different climatic
conditions (notice the snow cover in Fig. 2(c)).

3.2 Object Localization

An object in satellite imagery can be a building, forest, industrial area, etc.
selected to train a classifier. The geo-coordinates of many types of objects
can be found using publicly available resources, such as a catalog of street
addresses or a database containing geo-coordinates. Given a list of addresses,
open-source Geocoders such as Nominatim [13] can be used to determine their
geo-coordinates. Python’s geopy package supports several popular geocoding
web services. Also, some public geo-databases exist that already provide a geo-
coordinate for a category of interest (e.g., power plant database [3]). However,
such data sources may have only an approximate (inaccurate) location for the ob-
ject. We therefore will need to search for the object near the given geo-coordinate.
For this, we use a global spatial database which contains object footprints to
identify bounding regions.

3.3 OpenStreetMap

OpenStreetMap (OSM) [11] is a collaborative project used to create a crowd-
sourced spatial database of the world. It was started in 2004 with the simple idea
of multiple contributors with local knowledge collaborating to create a detailed
labeled map. We employ OSM as our auxiliary data source to extract polygonal
footprints for the given geo-location of objects obtained from public databases.

The OSM data model consists of three basic data structures: Nodes, Ways,
and Relations. A Node represents a geographic point expressed in latitude and
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Fig. 3: OSM region with land use labels.

longitude. A Way constitutes at least two Nodes (polyline or polygon). A Re-
lation is a logical collection of Ways and Nodes (multipolygon). The physical
features on the Earth’s surface are described by OSM using tags with key-value
pairs attached to its basic data structures (Nodes, Ways, and Relations). The
key is used to describe a topic, category, or feature type (e.g., building), and
the value details the specific form of the key (e.g., residential). The OSM Map
Features pages on the OSM wiki [12] lists the tags agreed upon by the OSM
community. Figure 3 shows an example OSM urban area with land use labels.

There are multiple methods for downloading data from OSM. It is possible to
get the data in the form of XML formatted .osm files. OSM also provides its entire
database as a Planet.osm file which is updated weekly to reflect new changes to
its database. But often we do not need to work with the entire database when
there is a specific region of interest. In such cases, the Overpass API [14] can be
used, which is a read-only, web-based service that accepts queries to download
custom filtered datasets. Python’s overpy package provides Python bindings to
the Overpass API.

We use the object’s initial geo-coordinate to restrict our search space in OSM
to avoid the overhead of having to search throughout the entire planet to localize
our object footprints. We next define a search space around the object’s geo-
coordinate. We build a query in the Overpass Query Language which contains
the search criteria and a bounding box defining the search window. We use a pre-
determined size for the search window based on the average size of our objects.
We then search within the window using the Overpass API for the polygonal
footprint of the object class.

We search for both Relations and Ways, as some objects might be represented
as Relations (multipolygon) which are made up of multiple Ways (polygons). In
such cases, we extract all Ways which are a member of a Relation. The Ways
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are made up of an ordered list of Nodes which form the vertices of the object’s
polygonal footprint. A bounding box is fit to the entire footprint using the min
and max latitude and longitude extents. Sentinel Hub is then used to download
the satellite imagery corresponding to the footprint bounding box generated for
the object.

Using the various packages related to Sentinel and OSM, a batch script can
be used to extract imagery of a selected object type from the associated list of
geo-coordinate locations. We can use this same approach to generate negative
(non-object) examples by querying OSM using the Overpass API to ensure the
absence of an object.

4 Example and Experiments

We demonstrate the proposed framework by procedurally generating a training
and testing dataset with positive and negative examples of solar power plants.
To show the applicability of the extracted dataset, we train an image classifier
using a Convolutional Neural Network (CNN) to detect the selected object class.
The main focus of this work is the automatic generation of annotated imagery
(other object classes and classification models could be used).

4.1 Solar Power Plants

We leverage the World Resources Institutes Global Power Plant Database (GPPD)
[3], which is a comprehensive, open-source database of power plants around the
world. Each power plant listed has information on its geo-location, capacity, gen-
eration, ownership, and fuel type. It is continuously updated as new information
becomes available. The database version used in this work includes over 28K
power plants. However as previously mentioned, some of the geo-locations are
only approximate and may not even exist on the footprint of the power plant.

We center our search region in OSM on the provided geo-coordinate of a solar
power plant from the database. We define our search window by ±0.2 decimal
degrees in latitude and longitude around the geo-coordinate (approximately a
16 × 16 km area centered around that geo-coordinate). We then search through
OSM using the Overpass API in the search window for Relations and Ways with
the tags ‘generator:source = solar’ or ‘plant:source = solar’ (standard
tags for solar power plants in OSM, note that other key-value tags for different
objects can be used). We extract all Ways which are a member of Relations. The
Ways give us the desired polygonal footprints of the solar power plants. Figure
4(a) shows multiple polygons that make up an OSM relation representing a solar
power plant.

4.2 Image Collection

The next step is to extract the satellite imagery for the located object footprints.
We selected to evaluate the RGB and NIR bands as they have the highest spa-
tial resolution (10 m) among the bands in the Sentinel-2 imagery. Also, the solar
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(a) OSM. (b) RGB. (c) NIR.

Fig. 4: OSM polygonal footprint and its corresponding Sentinel-2 RGB and NIR
band imagery.

power plants were visually more distinct in the RGB and NIR bands to the
human eye (NIR is closer to the visible range than thermal). Other bands may
be more applicable to different object classes. Figure 4(b)&(c) show the corre-
sponding Sentinel-2 RGB and near-infrared band imagery for the OSM polyg-
onal footprint of a solar power plant (see Fig. 4(a)). Table 1 lists the central
wavelength, bandwidth, and spatial resolution for each of the Sentinel-2 bands
used.

Table 1: Spectral band properties for Sentinel-2 (A and B).

Sentinel-2
Bands

Sentinel-2A Sentinel-2B
Spatial

resolution
(m)

Central
wavelength

(nm)

Bandwidth
(nm)

Central
wavelength

(nm)

Bandwidth
(nm)

B02: Blue 492.4 66 492.1 66 10

B03: Green 559.8 36 559.0 36 10

B04: Red 664.6 31 664.9 31 10

B08: NIR 832.8 106 832.9 106 10

Positive Examples. To extract multiple positive examples of each solar power
plant, we randomly sampled 5 points within each polygonal footprint and ex-
tracted a 256x256 sized image chip centered around each of these points (see Fig.
5). To download the Sentinel-2 imagery, we used Sentinel Hub’s WMS request.
We downloaded imagery for July 2018, October 2018, January 2019, and April
2019 to account for variations in the appearance across different climatic condi-
tions (as seen in Fig. 2). We additionally set the maximum cloud cover percentage
to 30% to filter out imagery where the solar power plant may be occluded by
clouds. Since the cloud coverage is estimated on larger Sentinel-2 tiles (100 km x
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Fig. 5: Randomly sampled points and their cropping windows.

Fig. 6: Positive examples of solar power plants.

100 km areas), and not just for the region defined by a footprint bounding box,
heavily clouded imagery might still be present in the smaller image chips. Also,
a part of the image might contain white (empty) regions if that particular data
acquisition only partially intersected the specified footprint’s bounding box. We
manually removed such corrupt images from our collection.

We generated approximately 20K positive samples from 400 solar power
plants as our training data and another 500 positive samples from 100 different
solar power plants for testing purposes. We created a validation set by randomly
sampling 2K images from the training set. Figure 6 shows a few positive samples
of solar power plants generated by this method.

Negative Examples. The negative samples consist of land regions with no
solar power plants, but contain a diverse collection of urban as well as randomly
sampled land areas. We sampled from two separate world cities databases of
urban areas across the world. We used the freely available World Cities Database
[16] (provides an accurate and up-to-date database of the world’s cities and
towns) for training data and Nordpil’s World Database of Large Urban Areas [10]
which contains a different set of geo-coordinates of urban areas for generating test
data. Both databases provide a single geo-coordinate for geo-referencing cities
and towns. The remaining negative samples are located by randomly generating a
geo-coordinate on the Earth’s surface and verifying with OSM that the randomly
generated point is over land (not over water).
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(a) Urban areas. (b) Random land areas.

Fig. 7: Negative examples.

We extracted 256x256 sized image chips centered on the geo-coordinates of
the selected urban and random land areas. We again use the Overpass API
to query the OSM database to ensure that the bounding boxes contain no solar
power plants. Several heavily clouded image chips remained in our negative sam-
ples. We collected approximately 20K negative samples for training and another
500 negative samples (250 urban areas, 250 randomly sampled land areas) for
testing. As before, we randomly sampled 2K images from the negative training
set with an equal proportion of images from urban areas and randomly sam-
pled land areas for the validation set. Some negative examples from urban and
random land areas are shown in Fig. 7.

4.3 Image Classification Model Architecture

We employed a standard CNN architecture to train our image classification
model. The network employs three downsampling blocks, each composed of a
convolutional layer (Conv) with 32 filters of size 3x3 and ReLU activation, fol-
lowed by a 2x2 max pooling layer (MaxPool). The output from the final down-
sampling block is flattened and fed to 2 fully-connected layers (FC) having 512
nodes each with ReLU activation. The output layer consists of a single node with
a sigmoid activation function. Separate models were trained for NIR (1 chan-
nel), RGB (3 channels), and RGBNIR (4 channels). The input to the network is
the image chip of size 256x256 and the number of input channels is equal to the
number of bands being used to train the model. The model architecture is shown
in Fig. 8 and takes an input of size 256x256 with either 1, 3, or 4 channels.

Each image was preprocessed by normalizing the pixel values to the range
[-1,1]. The model was trained using stochastic gradient descent with a batch
size of 32 images and momentum of 0.9. We initialized the weights in each layer
using Xavier initialization and the biases were initialized with values drawn from
a normal distribution with zero mean and unit standard deviation. The learning
rate was initialized to 0.001 and adjusted using “Poly” learning rate adaptation
[4,19]. We trained each model for 30 epochs and selected the model from the
epoch which had the highest validation accuracy. In addition, we also created a
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Fig. 8: CNN Model architecture.

Table 2: Comparison of results from models trained on different bands.
Bands Accuracy Precision Recall F1 score Parameters

NIR 0.92 0.98 0.86 0.91 17,059,905
RGB 0.96 0.98 0.93 0.95 17,060,481

RGB+NIR 0.96 0.98 0.94 0.96 34,120,386
RGBNIR 0.97 0.99 0.94 0.97 17,060,769

model that gives predictions obtained by averaging the sigmoid outputs of the
individual RGB and NIR models (RGB+NIR).

4.4 Results

The results of the various models on the solar power plants are summarized
in Table 2. The best performance was given by the model trained on all the
four bands together (RGBNIR), with an accuracy of 0.97 and an F1 score of
0.97. As expected, the joint RGBNIR model with early fusion (at the input)
incorporating inter-dependency was better than the individual models. It was
also slightly better than the independent late fusion approach (RGB+NIR). The
RGBNIR model had an increase of 288 parameters over the RGB model and 864
parameters over the NIR model, but it had nearly half of the parameters of the
dual late-fusion approach (RGB+NIR). This shows that the model’s performance
improves as we increase the number of bands used for training, advocating the
use of potentially even more bands provided by Sentinel.

4.5 Alternate Object Classes

The above framework can be used to collect satellite imagery of other object
classes by swapping the public data source used to extract the point location
of the required object class and then using their corresponding OSM tags to
search for their polygonal footprints. Figure 9 shows imagery generated using
the framework for airports, reservoirs, and ports.
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(a) Airports. (b) Reservoirs. (c) Ports.

Fig. 9: Example imagery collected for alternate object classes.

5 Summary

Manually generating and annotating imagery is a time-consuming task and a
commonly faced problem. This task becomes more complicated with the use of
supervised deep learning models which require large volumes of labeled train-
ing data. In this work, we presented a general framework employing existing
geographical databases and satellite imagery to automatically generate labeled
imagery of a selected object class for a classification task. We demonstrated this
method by selecting solar power plants as our object class, though other classes
could also be used with the framework. We achieved compelling results with
multiple image bands which validate the proposed pipeline. We next plan on
leveraging the framework to examine the use of the polygonal footprints to label
each pixel in the image to facilitate semantic image segmentation. We expect the
use of deep learning on satellite imagery to increase as more avenues are opening
for automated annotation.
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