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Abstract. We present a novel multi-camera framework to extract reliable path-
lets [1] from tracking data. The proposed approach weights tracks based on their
spatial and orientation similarity to simultaneous tracks observed in other camera
views. The weighted tracks are used to build a Markovian state space of the envi-
ronment and Spectral Clustering is employed to extract pathlets from a state-wise
similarity matrix. We present experimental results on five multi-camera datasets
collected under varying weather conditions and compare with pathlets extracted
from individual camera views and three other multi-camera algorithms.

1 Introduction

An important task in video surveillance is to observe/model an environment and extract
behaviorial trends. This is typically done by collecting data for extended periods of
time and extracting pathway regions (trajectory clusters [2—4], semantic regions [5, 6],
pathlets [1]) using either trajectory or feature-based approaches. Generally these algo-
rithms exploit data from single cameras and the extracted regions typically correspond
to locations in the image where motion occurs. If these regions were projected to an
orthophoto (i.e., aerial top-down image as seen in Google maps), locations correspond-
ing to non-ground plane motion (e.g., head of a pedestrian) would project to locations
other than the ground plane area where the object was actually moving. Thus, many of
the extracted regions describe only 2D sensor-view patterns. What is really desired are
pathway regions corresponding to ground-plane areas of traffic.

One solution to the erroneous region projection could be to use tracks solely from
the area of objects in contact with the ground. However, finding such locations is gen-
erally not straightforward, nor would it be feasible to perform in real-time with envi-
ronments containing large amounts of moving objects. As many surveillance systems
contain multiple cameras viewing the same area from different vantage points, we ex-
ploit the data collected from multiple cameras to generate refined pathway regions to
better capture the actual pathway regions. We choose to map the cameras to an or-
thophoto, instead of to a single camera view, because they do not suffer from projective
distortions which causes image pixels to represent varying amounts of spatial data.

The camera network we utilize encompasses a crowded urban environment where
receiving a single long track per object for its duration through the scene is infeasi-
ble in real-time. Consequently, we employ the Kanade-Lucas-Tomasi (KLT) tracker
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[7], which results in multiple fragmented tracks per object but is capable of tracking
hundreds of features simultaneously in real-time. A pathway analysis method suited to
this type of tracking data is the approach of [1], which extracts “pathlets” (coherent
motion regions containing tracks with similar origin and destination) of a scene from
KLT tracks. In this paper, we present a novel extension to [1] which combines infor-
mation from multiple cameras to extract the pathlets. The approach is based on using
tracks from other cameras to vote for or remove tracks from a given camera view. We
evaluate our proposed approach on multiple datasets, and compare the results with path-
lets extracted using the tracking data from the individual camera views and three other
multi-camera approaches suited to the task.

2 Related Work

The majority of surveillance-related research on modeling scene behavior has focused
on using a single camera. These works often use either trajectory [1-4] or feature-based
[5, 6] approaches to extract trajectory clusters or semantic motion regions of a scene.
Trajectory methods have included envelope approaches to determine if tracks should be
assigned to existing routes or formed into new routes [3], vector quantization to reduce
trajectories to a set of prototypes [2], and Spectral Clustering on pairwise trajectory
similarity matrices [4]. Alternatively, optical flow [6] and combinations of optical flow
and appearance metrics [5] can be used to analyze scene activity without relying on
tracking.

Recently, research has begun focusing on utilizing entire camera networks rather
than single cameras. Data is fused from 2D image and 3D world coordinates in [8]
to track objects between cameras. In [9] a camera network topology is estimated and
targets are tracked across blind areas within the camera network by associating activi-
ties across camera views. In [10] objects are tracked in partially overlapping cameras,
and the extracted features are mapped to a ground plane and associated across views to
track targets through the camera network. Information is combined across all cameras
in [11] and the ground plane location corresponding to feet are found to track people
in crowded scenes. In [12, 13] correlation of activity regions from different cameras
are modeled and used to detect global activity anomalies. Features are extracted from
objects tracked independently in each camera view in [14] and the distribution of ac-
tivities across camera view feature spaces are learned to group trajectories belonging to
the same activity and model paths taken across camera views.

While several methods have been proposed to utilize multiple cameras to either
track objects for extended durations or correlate activities across camera views, to the
best of our knowledge the work presented in this paper is the first approach which
exploits data from multiple cameras to extract meaningful pathway regions that more
accurately describe where objects are moving than regions derived using a single cam-
era.



3 Multi-Camera Pathlet Extraction

We based our approach on the pathlet method of [1], that is specifically designed to han-
dle weak tracking data. The algorithm in [1] overlays an L x L grid onto a scene and
quantizes tracks into states, where each state s; = [(z,y), 0] is defined as a grid cell lo-
cation and the quantized angle of the track through the cell. Once quantized, the tracks
are used to count the transitions from each state to states in their 8-connected neigh-
boring cells. These counts are then normalized to generate a Markovian state transition
model for each state. Next, the ratio of number of tracks that enter/leave a state versus
start/stop at the state are used to find the entry/exit probabilities for each state close to
the border of regions where tracks exist. The result is a probabilistic scene model of
where tracks enter the scene, how they transition throughout the scene, and where they
exit the scene. This model is employed to sample tracks (longer than the original weak
tracks) which are used to determine where tracks through each state typically originate
and terminate. Finally, the original weak tracks are used to produce a trace of the count
of tracks in each state across time. A state-wise similarity matrix is constructed based
on the origin/destination and temporal cross-correlation of tracks through the states, and
the Spectral Clustering algorithm of [15] is employed to extract pathlets from the scene.
See [1] for additional details

We extended the algorithm in three ways to enable multi-camera fusion. First, the
Markovian transitions between states are adapted to handle confidence weights assigned
to the tracks to enable scene modeling using tracks with varying believability. Second,
we removed the constraint that entry and exit states be close to the border of regions
where tracks exist to eliminate the necessity of finding the border around motion re-
gions, and instead use the sum of track weights entering a state (/V;,,) and exiting a state
(Noyt) to calculate the entry and exit weights (WWg and Wx ) for any state as
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where p and o are the mean and standard deviation of a CDF of a logistic distribu-
tion (set to 0.75 and 0.05 in our experiments), respectively. We use the above formu-
lation as it is a more flexible method than presented in [1]. Finally, since the temporal
cross-correlation used in [1] was empirically found to have little affect on the extracted
pathlets, we define the state similarity matrix using solely the origin and destination
similarity of tracks through the states.

Our proposed multi-camera method projects the tracks from all cameras to an or-
thophoto (via homography) and computes a weight for each track based on its spatial
and orientation similarity to temporally overlapping tracks from the remaining cameras.
The intuition for this approach can be explained by considering the ideal case of track-
ing an individual with two cameras that are 180° apart and registered to the orthophoto
with a planar homography. Intuitively, KLT tracks from the two cameras corresponding
to features close to the feet of the person will result in projected tracks on the ground
plane location [11]. Feature points near the head of the person will project incorrectly
(they violate the planar assumption). Thus, if projected tracks in one camera view are
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close in proximity and travel in the same direction as temporally overlapping tracks
from other cameras, they are more likely to correspond to tracks closer to the ground,
thereby more accurately describing the true paths in the environment.

The procedure for determining w (t}), the weight of track ¢ in Camera-1 from all
other cameras, is as follows. First, a (t}, t?), the pairwise track weight for each tempo-
rally overlapping track t? in Camera-2, is computed as
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within the temporal overlap 7; to 79, and where the binary orientation similarity
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considers two tracks to be traveling in the same direction at time k if the direction of

their instantaneous velocities are within 15°. We use a value of o = 4 for the exponen-

tial weighting in Eq. 2 in all of our experiments.

Next, we use a greedy algorithm to determine [ (til), the weight of ¢! from all
tracks in Camera-2. First, all elements in an indicator vector x used to keep track of
matched observations in t} are initialized to zero. Then, while there are unmatched
observations (to tzl) and unmatched tracks from Camera-2 that have temporally co-
occurring observations, 3, (¢}) is incremented by 2% - o (¢!, t%), where ¢3 is the un-
matched track from Camera-2 resulting in the maximum track weight « (t}, t?j), m
is the number of matched observations between the two tracks (i.e., temporally co-
occurring and previously unmatched in ), and M is number of observations in ¢}. The
indicator vector z is then updated to reflect the observations that were just matched.
Thus, f2 (tll) is a weighted average of the tracks from Camera-2 that get matched to ¢}
based on the number of elements they match to in z.

The final weight of track i in Camera-1, w (¢} ), is calculated as the product of the
camera weights for ¢} across all cameras
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Thus, the weight of a track will increase as the support from tracks in other cameras
increases.

4 Experimental Results

We tested the proposed multi-camera pathlet extraction method on four two-camera
datasets and one three-camera dataset from the camera locations shown in Fig. 1(a),
whose corresponding camera views are shown in Fig. 1(c). The three-camera dataset,
Dataset V, is composed of track data from the three camera views used in Datasets II-
IV. Track information was collected on different days with varying weather conditions.
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Fig. 1. (a) Camera locations of four cameras used for the datasets. (b) Individual and
overlapping coverage of Cameras 1 and 4. (c) Camera views for Datasets I-IV. (Best
viewed in color.)

Dataset I consists of tracks collected from Cameras 1 and 4 for approximately fifteen
minutes on a sunny day. Datasets II-V consist of tracks collected from Cameras 1, 2,
and 3 for six hours on a rainy day.

4.1 Alternate Approaches

We present three alternate methods in addition to our proposed approach to extract path-
lets using data from multiple cameras and compare the results. In all of the methods,
projections between the camera and ortho-space are performed using a planar homog-
raphy [16] (i.e., a plane-to-plane mapping) from manual correspondence, which results
in a projection matrix to transfer between coordinate systems. Using the homography,
the camera views are mapped to a common orthophoto for each dataset to determine
the overlapping ground region.

The first method (Method A) is a naive approach which projects the tracks from
all cameras to the orthophoto. Tracks are given equal unitary weight and pathlets are



extracted from a state space model built in the ortho-space. This method is the same as
the proposed method but with no track weighting scheme.

The second method (Method B) projects the tracks from each camera separately to
the orthophoto (again assigning each track with a unitary weight), and extracts path-
lets using the tracking data from each individual camera alone. The pathlets extracted
from each individual camera are then intersected together, resulting in a set of com-
bined pathlets. The intersection algorithm generates a label matrix (number of states x
number of cameras) where each element [7, j] corresponds to the pathlet ID that state
1 belongs to from the pathlets extracted using the tracking data from camera j. Each
combined pathlet consists of all states having the same label combination across the
individual camera pathlets, where a state must be labeled in a pathlet from each camera
to persist. Thus, the number of combined pathlets is equivalent to the number of unique
rows of the label matrix containing no zeros.

The third method (Method C) extracts the pathlets for the tracking data from each
camera (assuming unitary track weight) in the camera-space and projects the resulting
pathlets from each individual view to the orthophoto. The pathlet projection algorithm
maps each state pixel/angle combination in the camera-space to a pixel/angle combi-
nation in the ortho-space. The corresponding ortho-space pathlets consist of all states
whose respective cells are at least 50% populated. The ortho-space pathlets are com-
puted using an intersection algorithm similar to the algorithm used in Method B. To
account for slight projection deformations, the intersection algorithm is relaxed by al-
lowing combinations of states from ortho-space pathlets from different cameras if their
orientations are within 45°.

Our proposed approach (Sect. 3) will be referred to as Method D.

4.2 Optimal Pathlet Selection

To provide the maximal results for the different approaches, we first define the region-
of-interest (ROI) in the orthophoto. For our datasets (Fig. 1(c)) we define the sidewalks
as the ROIs as these should be the only locations with moving targets. We then overlay
the grid used to build the state space model (Sect. 3) and define grid cells as positive if
more than 50% of its pixels are within the ROI in the overlapping camera region and
negative otherwise. For Method C the boundaries of the overlapping camera region and
ROI are mapped back to the individual camera views, where positive and negative cells
are defined based on the respective grid sizes used for each camera view.

Since it is feasible for states to contain insufficient information from training to build
an accurate Markovian transition model, we remove states with low weight (where a
state’s weight is equivalent to the sum of the track weights for the tracks that are mapped
to it) from the state space model. First, we sort the states in descending order of weight
and generate a sorted cumulative distribution function (CDF). Again, our goal is to gen-
erate pathlets that describe the environment (i.e., walkways), rather than the scene from
the individual camera view. Thus, we want to include states from positive cells and re-
move states from negative cells. After state removal, let T}, F},, and F}, be the number
of positive cells with states, the number of negative cells with states, and the number of
positive cells without states, respectively. Then, precision (P = T»/(T, + F,)) measures



the percentage of kept cells that belong to the ROI, while recall (R = T»/(T, + F,,)) mea-
sures the percentage of cells belonging to the ROI which are kept. Since precision can

P+R
combines precision and recall into a single metric that is maximized when precision and
recall are jointly maximized, to determine the quality of the kept states. To optimize the
pathlets (for each method), we find the F-measure resulting from the highest weighted
states kept if the sorted CDF is thresholded at X %, and keep the states based on the
threshold resulting in the maximum F-measure. Thus, the threshold is designed to max-
imize the states kept from positive cells while minimizing states kept from negative
cells.

The output of each multi-camera fusion algorithm is a set of pathlets describing the
environment in the ortho-space. We then project the ortho-space pathlets back to the
original camera views. We overlay the individual camera view grid on each projected
pathlet and determine its spatial extent in the camera view grid space by only keeping
cells which are at least 50% covered by the projected cluster. The camera view pathlets
are run through a connected components algorithm, separating disjoint pathlets into a
set of connected pathlets, and small pathlets (those containing less than 5 cells) are
removed, yielding the final set of camera view pathlets. We use a 10 x 10 pixel grid
for all cameras and datasets except for Camera-4 in Dataset I (where we use a 20 x 20
pixel grid because of the zoom factor). A 5 x 5 pixel grid is used in the ortho view for
all datasets.

be high with a low recall and vice-versa, we use the F-measure (F =2- ﬂ) , which

4.3 Results

We use precision, recall, F-measure, and N, (the number of pathlets containing at least
50% of their cells within the overlapping camera region) as the primary means to quan-
titatively compare the pathlets extracted from the different approaches. Intuitively, IV,
provides a rough comparison to determine if an environment is relatively under- or
over-segmented. Tables 1 and 2 show the four quantitative measurements correspond-
ing to the threshold which optimizes the F-measure of the pathlet extraction methods
(as described in Sect. 4.2) for each dataset.

Table 1. Quantitative measurements of pathlets extracted using tracking data from in-
dividual camera views on five datasets. (Cam-x / Cam-y / Cam-z)

Dataset Ny, Precision Recall F-Measure
I 2/6 0.82/0.82 0.96/0.93 0.88/0.87
1I 9717 0.64/0.75 0.97/0.85 0.77/0.80
11 8/14 0.69/0.76 0.85/0.92 0.77/0.83
v 9/4 0.63/0.65 0.96/0.86 0.76/0.74
\Y 10/6/6 | 0.64/0.66/0.75 | 0.96/0.85/0.91 | 0.77/0.75/0.82

Table 1 shows that recall is typically much higher than precision for pathlets ex-
tracted from each individual camera. This suggests that the pathlets extracted from a



Table 2. Quantitative measurements of pathlets extracted using four multi-camera fu-
sion algorithms on five datasets. Bold font represents the highest F-measure received in
each camera for the dataset. (Cam-x / Cam-y / Cam-z)

Dataset | Method Np Precision Recall F-Measure
A 8/12 0.80/0.87 0.91/0.90 0.85/0.89
I B 6/7 0.95/0.97 0.7570.72 0.83/0.82
C 8/8 0.88/0.94 0.87/0.85 0.88/0.89
D 8/8 0.82/0.90 0.93/0.91 0.87/0.91
A 4/4 0.84/0.74 0.72/0.70 0.77/0.72
I B 6/5 0.93/0.84 0.7370.71 0.82/0.77
C 8717 0.92/0.85 0.77/0.76 0.84/0.80
D 4/5 0.89/0.77 0.85/0.86 0.87/0.81
A 5/6 0.78/0.70 0.83/0.84 0.80/0.76
1 B 8/8 0.89/0.85 0.69/0.70 0.78 /0.77
C 12/13 0.93/0.86 0.75/70.73 0.83/0.79
D 8/9 0.86/0.79 0.91/0.91 0.89/0.85
A 5/4 0.64/0.59 0.94/0.92 0.77/0.72
v B 4/4 0.70/0.65 0.74/0.72 0.72/0.68
C 10/7 0.73/0.65 0.84/0.80 0.78/0.72
D 5/4 0.74/0.69 0.81/0.79 0.77/0.74
A 5/5/75 0.67/0.62/0.58 | 0.95/0.92/0.94 | 0.78/0.74/0.71
v B 5/476 0.93/0.90/0.83 | 0.70/0.67/0.73 | 0.80/0.77/0.77
C 18/11/14 | 0.97/0.96/0.87 | 0.73/0.71/0.69 | 0.83/0.81/0.77
D 6/5/5 0.85/0.82/0.76 | 0.89/0.87/0.86 | 0.87/0.84/0.81

single camera cover a majority of the ROI, but also bleed outside the ROI, resulting in
non-walkway pathlets.

Based on Table 2, Method A generally has the least precision of the multi-camera
fusion methods, which is expected given the naive nature of the algorithm. Further-
more, the method typically results in a higher recall than precision, meaning it tends to
generate pathlets which cover, yet bleed outside the ROL

Methods B and C generally result in the highest precision of the multi-camera fu-
sion algorithms. This result is expected since both methods use the intersection algo-
rithm described in Sect. 4.1. Consider an ideal case where two camera views are 180°
apart focusing on a single sidewalk which lies between the cameras (e.g., similar to
Dataset I in Fig. 1(b)). In this scenario tracks from one camera will cover the sidewalk
and overlap to the right of the sidewalk, while tracks from the other camera will cover
the sidewalk and overlap to the left of the sidewalk. Thus, the intersection of the cor-
responding pathlets will lie directly on the sidewalk resulting in a very high precision.
However, since states must have been kept in all camera views to be present in the final
combined pathlets, the intersection algorithm used in Methods B and C also generally
causes the recall to be lower than in Methods A and D.

Method D, our proposed method, tends to balance precision and recall more than
the other multi-camera fusion methods. Furthermore, it results in the highest average
F-measure for all five datasets and the highest F-measure in all the datasets’ individual



camera views except for two cases, where it is only 0.01 less than best the F-measure
received from Method C. However, in most cases Method D requires less pathlets to
model the environment than Method C (see N, in Table 2), which suggests that Method
C is prone to generating over-segmented pathlets.

Qualitative Analysis

Figure 2 shows the pathlets extracted for Dataset I using the KLT tracking data from
each individual camera and from the multi-camera fusion methods using the highest
weighted states resulting in the optimized F-measure (as described above). In each im-
age the white area, black lines, and colored blobs correspond to the overlapping camera
region, ROI outline, and extracted pathlets, respectively.

The pathlets extracted using the tracking data from both individual cameras capture
the bi-directionality of the main sidewalk inside the overlapping camera region. How-
ever, tracks on the upper body of pedestrians cause the pathlets to extend beyond the
sidewalk and outside the ROI. Furthermore, there are additional pathlets in both camera
views outside the overlapping camera region which extend beyond the camera’s ROI
due to the projection of far-field data.

Method A combines the track data from the two individual cameras after they are
projected to a common ortho-space. As shown in Fig. 1(b), a majority of the overlap
from Cameras 1 and 4 occurs within the ROI. Consequently, the states in these areas will
contain more tracks, resulting in a higher contribution to the total state weight. For this
particular scenario this artifact of the camera overlap removes a majority of the false
positive cells when optimizing the F-measure, resulting in pathlets that are primarily
inside the ROI for the overlapping camera region. However, Fig. 2 clearly shows that
Method A over-segments the scene, using multiple pathlets to describe traffic traveling
in the same direction.

The intersection algorithm used in Method B causes the primary sidewalk to be
over-segmented in both camera views. Interestingly, this over-segmentation does not
occur in Method C which also uses an intersection algorithm. This is likely a result
of the relaxation described in Sect. 4.1 to deal with projection deformations. Method
C also produces pathlets for traffic entering/exiting the main sidewalk from/to an ad-
joining sidewalk, which were only extracted from Camera-4 but kept because of the
intersection algorithms.

Method D (our proposed approach) correctly yields one distinct pathlet to define
each direction of the main sidewalk, and also extracts pathlets for traffic entering/exiting
from/to the adjoining sidewalk.

We focus on Methods C and D from now on since they are both quantitatively
and qualitatively superior to the other approaches. Figures 3 and 4 show the pathlets
extracted from Datasets II-IV for Methods C and D (our proposed method), respectively.

In Dataset II both algorithms extract pathlets to capture the bi-directionality of the
two primary sidewalks. Furthermore, Method D captures movement on the less fre-
quently traveled secondary sidewalk which connects the two primary sidewalks, which
Method C fails to do. In Dataset III, Method C severly over-segments the scene while
Method D again captures the bi-directionality of the primary sidewalks with single path-
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Fig. 2. Extracted pathlets using tracking data from the individual cameras and the four
multi-camera information fusion algorithms for Dataset I. (Best viewed in color.)
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Fig. 3. Extracted pathlets using Method C for Datasets II-IV. (Best viewed in color.)

lets in each direction. Furthermore, Method D also captures a pathlet describing the
connecting sidewalk and pathlets describing traffic entering and exiting from the ‘T’
junction. In Dataset IV both methods capture the bi-directionality of the primary walk-
ways with Method C generating more pathlets describing tracks entering and exiting
the ‘T’ junction. In Dataset V (not shown due to space constraints) Method D outper-
forms Method C which drastically over-segments the environment (see [V, in Table 2).
Combining the quantitative measurements in Table 2 with the tendency Method C has
for over-segmenting an environment, it is apparent that our proposed approach (Method
D) performs the best at extracting environmental pathlets for the datasets.

5 Summary

We presented a novel approach to employ data from multiple cameras to generate path-
lets. Our proposed approach weights tracks based on their spatial and orientation simi-
larity to tracks collected simultaneously in other cameras. The weighted tracks are used
to build a Markvoian state space model and Spectral Clustering is utilized to extract
pathlets from a state-wise similarity matrix based on the origin/destination of tracks
through the states. We compared our approach with pathlets extracted from the individ-
ual camera views and from three other multi-camera algorithms on five multi-camera
datasets collected under varying conditions. Finally, we showed quantitatively and qual-
itatively that our proposed method outperforms the other methods. This research was
supported in part by the US Air Force Research Laboratory Human Effectiveness Di-
rectorate (WPAFB) under contract No. FA8650-07-D-1220.
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Fig. 4. Extracted pathlets using our proposed method (Method D) for Datasets II-IV.
(Best viewed in color.)
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