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Abstract. We present a novel framework to reliably learn scene entry
and exit locations using coherent motion regions formed by weak tracking
data. We construct “entities” from weak tracking data at a frame level
and then track the entities through time, producing a set of consistent
spatio-temporal paths. Resultant entity entry and exit observations of
the paths are then clustered and a reliability metric is used to score the
behavior of each entry and exit zone. We present experimental results
from various scenes and compare against other approaches.

1 Introduction

Scene modeling is an active area of research in video surveillance. An important
task of scene modeling is learning scene entry and exit locations (also referred to
as sources and sinks [1]). Understanding where objects enter/exit a scene can be
useful for many video surveillance tasks, such as tracker initialization, tracking
failure recovery (if an object disappears but is not near an exit, it is likely due
to tracker failure), camera coverage optimization, anomaly detection, etc.

In this paper we offer a novel approach for learning scene entries and exits
using only weak tracking data (multiple short/broken tracks per object). Most
existing approaches for learning scene entries and exits rely on strong tracking
data. Such data consists of a set of reliable long-duration single-object trajec-
tories. When an object enters the scene, it needs to be detected and tracked
until it leaves the scene resulting in a single trajectory capturing the path of
the object. Here, the beginning and end of the trajectory correspond to a scene
entry and exit observation, respectively. Given enough of these trajectories, the
set of corresponding entry and exit observations could be clustered into a set of
entry and exit locations. However, collecting such a set of reliable trajectories
can be cumbersome, slow, and expensive, especially for complex and crowded ur-
ban environments where tracking failures are common. Further, for many strong
trackers, real-time multi-object tracking in highly populated scenes is not feasi-
ble. Alternatively, randomly selecting one of many objects in the scene to track
and accumulating these trajectories over time could be unreliable as the sampled
trajectories may not be representative of the true scene action (missing the more
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infrequent entries/exits). Such an approach also requires a long duration of time
to accumulate enough trajectories.

To compensate for these issues, we instead employ data produced from a
weak tracker, which provides multiple and frequently broken “tracklets”. We
use a modified version of the Kanade-Lucas-Tomasi (KLT) tracker [2] for our
work in this paper. Such trackers are capable of locally tracking multiple targets
in real-time, and are thus well suited for busy urban environments. Using a
weak tracker provides a simple way to detect and track all motion in the scene,
though the produced tracklets are more challenging to analyze than reliable
trajectories produced by a strong tracker. As an object moves through the scene
it may produce multiple tracklets that start and stop along its path. Thus,
instead of one reliable trajectory representing the motion of an object, there is
a set of multiple and frequently broken tracklets. The goal of our approach is
to build a mid-level representation of action occurring in a scene from multiple
low-level tracklets. We attempt to cohere the tracklets and construct “coherent
motion regions” and use these regions to more reliably reason about the scene
entry/exit locations. A coherent motion region is a spatio-temporal pathway of
motion produced by multiple tracklets of one underlying entity. Here, we define
an entity as a stable object or group of objects. Thus, an entity may be a person,
group of people, bicycle, car, etc.

Our approach first detects entities at a frame level. Next, we track the de-
tected entities across time via a frame-to-frame matching technique that lever-
ages the underlying weak tracking data from which the entities are constructed.
Thus, entry and exit observations are derived from entities, not individual tracks,
entering and exiting the scene. We then cluster the resulting entry/exit observa-
tions and employ a convex hull area-reduction technique to obtain more spatially
accurate clusters. Finally, we present a novel scoring metric to capture the re-
liability of each entry/exit region. We evaluate our method on four scenes of
varying complexity, and compare our results with alternative approaches.

2 Related Work

Most existing work on learning entry and exit locations relies on strong tracking
data. In [3], trajectory start and end points are assumed to be entry and exit ob-
servations, respectively. They cluster these points via Expectation-Maximization
(EM) to obtain the entry and exit locations. Using a cluster density metric, they
label clusters with low density as noise and discard them, leaving a final set of
entry and exit locations. In [1] an EM approach is also used to cluster trajectory
start and stop points, and they also attempt to perform trajectory stitching to
alleviate tracking failures. Such approaches, however, are not applicable to weak
tracking data. In [4] a scene modeling framework is described in which they
cluster trajectories to learn semantic regions. Only entry and exit observations
that exist near the borders of semantic regions are considered when learning
entry and exit locations. A similar constraint is also employed in [5] where they
only consider states (which they define as a grid area of the scene and motion



direction) near the borders of an activity mask to be eligible to be entry or exit
states, though their state space may be constructed from weak tracking data.

Weak tracking data has been used for many applications in computer vision.
Some applications employ a low-level per-frame feature clustering as we do to
detect entities. In [6] weak tracking is used to perform person counting. They first
condition the short and broken trajectories to smooth and extend them. Then,
for each frame they perform trajectory clustering on the conditioned trajectories
to associate trajectory observations existing through that frame. Using clustering
constraints such as a defined person size, they leverage the number of clusters
to obtain a final person count. A similar approach is used in [7], though the
clustering problem is formulated in a Bayesian framework.

Both [8] and [9] attempt to leverage the idea of a “coherent motion region”
from trajectories, though in [8] their regions are constructed using a user-defined
bounding box that represents the size of a person. In [9], they define a coherent
motion region as a consistent flow of motion which they learn via trajectory
clustering, however the trajectories they cluster are collected over a long time
window and may be the result of motion occurring at very different times.

3 Framework

Our framework first involves entity detection in each frame using weak tracking
data, followed by entity tracking, where we associate entities frame-to-frame,
producing a set of hypothesized entity entry and exit observations.

3.1 Entity Detection

For a given frame, there exists a set of track observations (assuming there is ob-
ject motion in the frame). The first step in our approach is to cluster these track
observations, and thus learn a set of entities for each frame. Trajectory cluster-
ing approaches are used in both [6] and [7], but given the complexity of such
trajectory clustering techniques, and their sensitivity to parameter selection, we
instead use a modified version of mean-shift clustering [10].

Given a set of tracklet observations in a frame of interest, we perform a
modified mean-shift clustering as follows. For an observation point p∗ = (x, y),
we wish to find the nearest density mode from other observation points pi. Each
iteration of mean-shift clustering will move p∗ closer to the nearest mode, and
is computed as

p∗new =

∑n
i=1 pi · wvel ·K( |pi−p

∗|
h )∑n

i=1 wvel ·K( |pi−p
∗|

h )
(1)

where K is a kernel (we use the Gaussian kernel), h is the kernel bandwidth, and
wvel is a velocity weight (to ensure that only points moving in similar directions
as p∗ are clustered together) computed as

wvel =

{
1

1+exp(− cos(φ)
σ )

if |φ| < π
2

0 otherwise
(2)



(a) (b) (c) (d)

Fig. 1. Our mean-shift clustering approach (a) and (c) compared to the trajec-
tory clustering approach in [4] (b) and (d).

Here, φ is the velocity angle between p∗ and pi (velocity is computed using obser-
vations in the previous two frames), and σ defines the rate of weight transition
(we use σ = 0.07 for our experiments). Thus, only points that are spatially close
and traveling in similar directions will seek to the same mode.

We also introduce a blend parameter to the velocity weight computation in
Eqn. (2). Rather than using the initial velocity of p∗ for each iteration (as it seeks
to the nearest mode), we start with the initial velocity of p∗ and slowly blend
it with the velocity of valid surrounding points as it converges toward a mode.
Doing so ensures tighter convergence among points, as computing velocities over
such a short window is subject to noise. To compute the velocity of p∗ at iteration
k, we use dxkp∗ = (1− α) · dxp∗ + α · dxavg and dykp∗ = (1− α) · dyp∗ + α · dyavg.
Here, dxavg and dyavg are weighted averages of the velocities of nearby points
computed as

dxavg =

∑n
i=1 dxpi · wvel ·K( |pi−p

∗|
h
2

)∑n
i=1 wvel ·K( |pi−p

∗|
h
2

)
(3)

where dyavg is computed in the same manner. The blend parameter α is a linear
function of the mean-shift iteration number (increasing from 0 to 1). Points that
converge to the same mode are defined as belonging to the same entity. The
outcome is a set of point clusters (entities), which we then track. Two examples
are shown in Fig. 1 (a) and (c).

We compared our modified frame-based mean-shift clustering technique to
detect entities to the trajectory clustering technique used in [4], which uses Spec-
tral Clustering on a trajectory similarity matrix built using a modified Hausdorff
distance metric to obtain a set of trajectory clusters. The trajectory clustering
approach occasionally produced unexpected results, as seen in Fig. 1 (b) and
(d). In Fig. 1 (b), it over-clusters the object on the sidewalk into three enti-
ties, while our mean-shift approach clusters it as one entity (see Fig. 1 (a)).
In Fig. 1 (d), [4] under-clusters the two objects on the left, while over cluster-
ing the object on the right. Each approach would sometimes over-cluster and
under-cluster, though our approach performed in a more reliable manner over-
all. Further, our mean-shift clustering approach only has one main parameter -
the kernel bandwidth. The trajectory clustering approach is very sensitive to its
parameter settings.



3.2 Entity Tracking

After detecting entities, we next associate them frame to frame. This problem
can be formulated as an ad-hoc blob tracking problem, though it can leverage
the underlying weak tracking data that formed the entities. We use the following
graph-based assignment to associate entities. Let Va be the set of entities that
exist in frame a, and Vb be the set of entities that exist in the subsequent frame
b. We construct a bipartite graph G(V,E) where V is the vertex set, E is the
edge set, and V = Va∪Vb. We connect vai to vbj with an edge eij , if the vertices
(entities) are connected by at least one shared trajectory from the underlying
weak tracking data. Unlike [11], we do not perform any adjustments to these
entity interactions. Thus, entities are free to interact with splits, merges, or any
combination of the two from frame to frame. We define an entity exit event as
an entity from Va that has no edge connecting it to Vb. Likewise, we define an
entity entry event as an entity from Vb that is not connected to an entity in
Va. If an entity from one set (Va or Vb) shares a tracklet with multiple entities
from the other set, we consider this to be an “interaction” (e.g. split, merge).
Entity tracks between entries, exits, and interactions correspond to the coherent
motion regions. The set of coherent motion regions that begin due to an entity
entering the scene correspond to likely entry observations. Likewise, the set of
coherent motion regions that end due to an entity exiting the scene correspond
to likely exit observations. The set of coherent motion regions that begin with
an entry observation and end with an exit observation are especially useful, as
they correspond to entities that were able to be tracked reliably from the time
they entered the scene until they exited. For such cases, we are able to strongly
associate their entry and exit observations, however, we do not require such
entity tracks. Figure 2 (a) shows the original weak tracking entry observations,
and (b) shows the resultant entity entry observations using our framework.

4 Entries and Exits

From our entity detection and tracking framework described above, we accumu-
late a set of entity entry/exit location observations. We now explain how we learn
entry/exit “regions” from these observations, and how we score each region.

We first perform standard mean-shift clustering on our set of entry locations
(and then exits) using the same kernel bandwidth as was used in Sect. 3.1. The
result is a set of entry (and exit) clusters. We choose mean-shift clustering over
an EM approach (as in [3]) for a few reasons. Mean-shift clustering is able to
localize on cluster modes automatically, without knowledge of the number of
clusters, as would be required with an EM approach. Model selection techniques
such as Bayesian Information Criterion (BIC) [12], for an EM approach, may still
sometimes suffer from over fitting (as explained in [13]). Further, the mean-shift
clusters better represent the shape of non-Gaussian regions.

After clustering the data we attempt to remove outliers in each cluster, and
localize on the area of highest density within each cluster. To accomplish this we
first determine the convex hull of each cluster. We then area-reduce the convex



hull by removing unreliable observations. We compute a density score for the
points in each cluster via kernel density estimation [14] using only the points in
the cluster. We then remove points one at a time in ascending order of density
score, and compute the change in area of the new convex hull after each point is
removed (the removal of outlier points will cause a large reduction of convex hull
area). Thus, we have a distribution of convex hull area changes (from remov-
ing each point). We compute the variance of this distribution (assuming a zero
mean), and select observations greater than σ = 1.5 standard deviations away.
Of the cluster points that produced these outlier convex hull area changes, we
choose the point with the highest density score, and discard all cluster points
with lower density scores. Thus, we have a new set of points which better repre-
sent the true mass of the cluster. To generalize the shape of this new region, we
compute a kernel density surface using the new set of remaining points, deter-
mine the point who is lowest on the density surface, and slice the surface at that
density value. The perimeter of the slice outlines the final entry or exit region.
Thus, unlike [3], our entry and exit clusters reflect the true spatial density and
distribution of their underlying observations (which may not be Gaussian).

4.1 Entry/Exit Zone Reliability

We now describe how we validate our entry and exit regions to distinguish reliable
entries and exits from those that are the result of noise or partial scene occlusions.
In [3], they compute an entry/exit region density and then label regions with
density below an arbitrary threshold as noise. Such an approach will not work
well if scene traffic is imbalanced, as entries/exits with low popularity (and thus
low density), may be regarded as noise. Also, if a scene is very noisy, this method
may also classify noise as being a good entry/exit region. We define a good entry
region as one with entity tracks emanating out of it, and a good exit region as
one with entity tracks flowing into it. Entry regions whose entry-only tracks (or
exit regions whose exit-only tracks) exhibit bidirectional activity are unreliable
regions, and may be the result of areas with a high rate of tracking failure,
partial scene occlusions, or scene noise (trees or other such movement that the
tracker may pick up). Further, for entry regions, other tracks in the scene should
not intersect the region in the same emanating direction that defines the region
(i.e., the entry region should not be a “through” state). Such a scenario would
indicate that another entry region exists behind the current one. The same idea
holds for exit regions. Thus, we attempt to capture both the consistency of the
entry/exit entity tracks that define each region, as well as the consistency of the
interaction between other entity tracks and each entry/exit region.

Using the entry/exit entity tracks that define each region, we learn the distri-
bution of directions that these tracks leave (for entries), and enter (for exits), the
region by quantizing the angle that each track intersects the region into one of b
bins (we use b = 8 in our experiments). This histogram is normalized to provide
a probabilistic measure for the directions that entry/exit tracks leave/enter each
region. From this distribution r, we compute a directional consistency function
r̂, which accounts for any symmetry of the entity track distribution for each



entry and exit region in the following manner. For a bin i with probability r(θi),
every other bin probability r(θj) is subtracted from r(θi), in a weighted manner
such that bin angles that are directly opposite of i receive high weight (as they
correspond to bi-directional behavior), and bin angles close to i receive lower
weight. For a region k,

r̂k(θi) =
max

[
0,
∑b
j=1 wij · (rk(θi)− rk(θj))

]
∑b
j=1 wij · rk(θi)

· rk(θi) (4)

where wij is an angle similarity weight that give more emphasis to angles corre-
sponding to bidirectional behavior with respect to θi, and is computed as

wij =

{
exp(1 + cos(|θi − θj |)) if cos(|θi − θj |) < 0

0 otherwise
(5)

Thus, θj is ignored if it is within 90 degrees of θi, and most heavily weighted

when it is exactly opposite of θi. For a region k,
∑b
i=1 r̂k(θi) is 0 when the

tracks leaving an entry (or entering an exit) are completely symmetric (and thus

strongly bi-directional), reflecting that the region is unreliable, and
∑b
i=1 r̂k(θi)

is 1 when a region is completely non-symmetric, and thus reliable.
In addition to this directional consistency measure, we also need to capture

the way in which other tracks interact with each entry or exit region. We com-
bine the previous directional consistency measure (Eqn. (4)) with an interaction
component to compute a total reliability score, ψ, for each region k

ψk =

(
b∑
i=1

r̂k(θi)

)
·

(
1−min

[
1,

∑b
i=1 r̂k(θi) ·Mk(θi)∑b
i=1 r̂k(θi) ·Nk(θi)

])
(6)

Here, Nk is the number of entity tracks that define an entry/exit region k,
and Nk(θi) is the number of entity tracks that leave an entry (or enter an exit)
region k at angle i. Similarly, Mk is the number of other entity tracks in the
scene that intersect an entry/exit region, and Mk(θi) is the number of those
entity tracks that intersect and entry/exit region k at angle i. As described
earlier, for a reliable region these tracks should not intersect an entry region in
the same direction as the entry tracks that leave it (or intersect an exit region in

the same direction as its tracks exit). The first term
∑b
i=1 r̂k(θi) is the directional

consistency term for the entry/exit region and acts as a prior (Eqn. (4)). This
score will dominate the total score if Mk = 0 (no tracks intersect the region k).
If Mk > 0, and the intersecting tracks support the region as being reliable, then∑b
i=1 r̂k(θi)·Mk(θi) ≈ 0. If however there are tracks that intersect the region and

contribute evidence that the region may be unreliable (due to tracking failures,

the region being partially occluded, etc.),
∑b
i=1 r̂k(θi)·Mk(θi)∑b
i=1 r̂k(θi)·Nk(θi)

will approach 1 as

the number of discrediting intersecting tracks approaches Nk, and grow large
if the number of tracks > Nk, penalizing the region score. If Nk is 0, then we
define the region as unreliable. Lastly, we compute a final region score as
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Fig. 2. (a) Weak tracking entries, (b) entity entries, (c) potential entry regions,
and (d) entries with reliability score Ψ > 0.75. [Best viewed in color]

Ψk =
1

1 + exp(−ψk−µσ )
(7)

where µ and σ should be determined based on the scene noise, tracking reliability,
etc. For our experiments we used µ = 0.5 and σ = 0.15. Formulating the final
score as such allows for noise tolerance, and makes the model able to adapt to
scenes with different noise levels. Figure 2 (c) shows entry regions detected for
a scene, and (d) shows the resultant reliable entry regions (Ψ > 0.75).

In addition, we also compute a popularity score, Popularity = Nk, for an
entry/exit region k (number of entry/exit tracks that define the region).

5 Experiments

We performed experiments to compare our learned entry/exit regions to those
using other approaches. We employ data from four scenes of varying complexity
captured from cameras mounted on four and eight story buildings, at a resolution
of 640× 480. The duration of the datasets used were 1 hour (Scene 4), 2 hours
(Scene 1), and 3 hours (Scenes 2 and 3). We also show how our framework may
be used to learn relationships between entries and exits in the scene.

5.1 Entry/Exit Region Evaluation

We compared our results to the methods described in [3] and [5] (as [5] also uses
weak tracking data to determine entries/exits). In [5], they partition the scene
into a grid of states, where each state is defined by a grid cell location and motion
direction. They then map each tracklet to a set of states. They define an entry
and exit weight metric to score each state si as WE = Cstart ·max(0, 1− Cin

Cstart
)

(entry weight), and WX = Cstop ·max(0, 1 − Cout
Cstop

) (exit weight). Here, Cstart
is the number of tracklets that start in state si, Cin is the number of tracklets
that transition into si, Cstop is the number of tracklets that stop in state si,
and Cout is the number of tracklets that transition out of state si. Low weight
entry and exit states can then be removed to obtain a final set of entry and



Scene 1-4 entries Popularity Scene 1-4 exits Popularity

Fig. 3. Entry and exit regions (using our proposed method) with a reliability
score Ψ > 0.75 and popularity > 10 tracks. [Best viewed in color]

exit states. They also use a binary activity mask to force entry/exit states to be
on the border of the scene activity, though we do not employ this technique to
allow for a fair comparison (neither our method, nor the method in [3] have such
constraints). In [3], they use EM to cluster entry and exit track points. They
then use a density metric to determine which clusters to keep, computed as W/E
where W is the ratio of points belonging to a cluster, and E is the area of the
Gaussian ellipse, calculated as E = π · I1 · I2 where I1 and I2 are the eigenvalues
of the covariance matrix. We used our entity track entry/exit observations as
input for this method, as it is intractable and noisy (see Fig. 2 (a)) to learn
entries/exits using weak tracking (tracklet) start/stop observations.

For our method, we chose a reliability score threshold of Ψ > 0.75 to select
a set of final entry/exit states. We also remove any remaining regions with a
popularity score less than 10. Results from our method can be seen in Fig. 3.
We display those regions along with the strongest track entry/exit angle for
each region. We also display entry/exit region popularity by the strength of the
entry/exit region color. It is worth noting that we experimented with various
kernel bandwidth (h) values (from 10 to 20), and found the results did not vary



significantly. For our experiments we used h = 13. For the method described
in [5], we display states with an entry/exit weight at least 0.75 of the max
entry/exit weight. The states are displayed by arrows over a scene grid denoting
the state location and direction. For the method described in [3], we clustered
the entity entry and exit observations using EM, with a relatively large number
of clusters (as they do). We display entry/exit regions with density scores >
0.01 of the of the maximum density score (produced the best results). Results
for these two alternative methods can be seen in Fig. 4.

For Scene 1, our method was able to learn all expected entry and exit regions.
The methods in [5] and [3] both learn incorrect entries/exits due the streetlight
occlusion in this scene. Our method is able to recognize this as a partial scene
occlusion due to the motion symmetry and entity tracks intersecting the region.
Further, [5] fails to learn the entry/exit on the top right of the scene, and [3]
learns various noise clusters which result from the KLT tracker picking up bushes
in the scene that move due to wind. The motion of such action is inconsistent,
and thus is flagged by our method as being an unreliable region.

For Scene 2 our method was able to learn the desired entry/exit regions
with the exception of the region in the top left of the scene. This is due to
the region being difficult to track, and as such this region exhibits symmetric
behavior. The method in [5] also does not learn this region. Both [5] and [3]
again learn entry/exit regions that result from the streetlight occlusion in this
scene. Also, [3] also tends to over-cluster many valid regions, and both methods
learn noisy regions in the middle of the scene.

In Scene 3, all of the regions that we learn are valid entry/exit regions, though
we also learn one exit region corresponding to activity at a picnic table. For this
scene, [3] fails to learn the ramp entry and exit on the top left of the scene (due
to low traffic) and learns a few noisy entry regions near a bush. The method
in [5] also fails to learn the ramp entry and exit on the top left, as well as the
exit on the top of the scene and one of the building exits. Further, [5] learns a
noisy entry and exit region near the streetlight occlusion.

For Scene 4 our method learns all expected regions with the exception of the
top left sidewalk. Again, this is due to this region being difficult to track. The
method from [5] also fails to learn this region as an entry, and [3] only learns it
as an exit. Further, [3] fails to learn the parking garage entry/exit regions as well
as the building entry region, and it also over-clusters the entry near the top of
the scene. In addition, [5] fails to learn the building and parking garage entries
and exits, as well as the entry near the top of the scene. It also learns various
noisy regions in the middle of the scene.

Choosing a robust density threshold proved to be a difficult challenge for [3].
A threshold that works well for one scene may not generalize for other scenes,
as seen in the results. Also, neither method enforces entry/exit directional con-
sistency, and thus may learn very noisy entries/exits (method [3] in Scene 1),
or regions that result from partial scene occlusion (e.g., streetlight examples in
Scenes 1, 2, and 3). Overall, the proposed approach produced the best results.



Entries from [3] Exits from [3] Entry states from [5] Exit states from [5]

Fig. 4. Entry and exit regions using the method in [3] (cols 1 and 2). Entry and
exit states using the method in [5] (cols 3 and 4). [Best viewed in color]

5.2 Semantic scene actions

In addition to using our method to learn scene entries and exits, we can also learn
relationships between entries and exits. This is possible using the set of coherent
motion regions that begin with an entry and end with an exit observation. This
information could be used to see where people go without caring about the actual
path they take. The top entry/exit relationships for Scenes 2-4 can be seen in
Fig. 5. We were able to learn the relationships via entities constructed from weak
tracking data using our framework. Such analysis usually requires large amounts
of strong tracking data.

6 Conclusion

We proposed a novel framework to learn scene entries and exits using weak track-
ing data. We described a method that forms weak tracking data into coherent
motion regions by detecting entities at a frame level and tracking the entities



Scene 2 Scene 3 Scene 4

Fig. 5. Strongest activities from various scenes displayed as arrows from entry
regions to exit regions. [Best viewed in color]

through time, resulting in a set of reliable spatio-temporal paths. We also intro-
duced a novel scoring metric that uses the activity in the scene to reason about
the reliability of each entry/exit region. Results from multiple scenes showed that
our proposed method was able to learn a more reliable set of entry/exit regions
as compared to existing approaches. This research was supported in part by the
US AFRL HE Directorate (WPAFB) under contract No. FA8650-07-D-1220.
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