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1 Introduction

For reactive computers, embodied robots, or artificial creatures to effectively interact with us, it
will be necessary for them to discern the various types of human movements that abound in the
world. Additional applied significance for machines capable of human motion recognition can be
found in automatic surveillance and monitoring systems, video content analysis, and perceptual
user interfaces. The tracking and recognition of human motion, action, and events using computer
vision has recently gained widespread interest in both academic and industrial research, with much
emphasis on real-time systems (See [14, 56, 55, 34, 1, 68] for reviews of current research).

It is well known that certain types of biological movement patterns can be unambiguously
recognized from their own organization of motion [46]. Though people generally cannot identify
a static collection of bright dots in a dark scene as any meaningful object (See Fig. 1.a), they can
easily interpret the moving dots as a set of lights attached to the joints of a walking person. People
can further determine above chance the gender of the walker [17], even from viewing only two
moving ankle points [47, 48]. In fact, babies have been found to stare longer at such biological
point-light displays than at dots moving randomly [31]. This problem of recognizing biological
movement has intrigued both psychologists and computer vision researches for decades, and has
generated multiple controversial theories regarding reconstruction and recognition [36, 75, 46, 53,
70].

We have shown that even very low-resolution (blurred) video was sufficient for perceptual
identification of common human (and animal) movements [22, 19]. A single frame from a blurred
video sequence is shown in Fig. 1.b, which when subjects viewed this image (in color) reported
seeing “an antelope in a field”, “an ice skater”, “maybe a plot of trees in the distance”, “the hood
of a car”, or most originally “an impressionist painting viewed through a dirty window”. [What
is your guess?] However, once the video is started from this frame, the immediate percept of a
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Figure 1: (a) Video frame showing point-lights attached to a person’s joints. (b) Initial frame of a
blurred video sequence shown to viewers. Only after the blurred video is played does the action
percept of a swinging gibbon become clear. (c) Blurred image from a sitting movement.

gibbon swinging along a rope is correctly identified. A similar non-identifiable image is shown
in Fig. 1.c that can easily be recognized from the blurred video as a person sitting. As with the
point-light displays, the movements throughout the sequence, rather than the static image features,
were used as the dominant cue for recognition.

From these motivations, we developed two approaches to the representation and recognition of
dynamic human movements. First we describe a real-time template-based method that compresses
the holistic motion of an activity into a single motion history image. For recognition, higher-order
moment features are computed from the template and statistically matched to trained models. In
our second approach, we present a novel categorical framework for recognizing movements. Hu-
man movement is subject to a variety of physical and dynamic constraints, which together produce
tight regularities in multi-dimensional feature spaces. Categories are fundamentally organized to
exploit such correlations and thus these movement regularities offer a natural and descriptive basis
for movement categorization.

2 Motion History Images

Rather than attempting the full three-dimensional reconstruction of the human form, we first de-
veloped a view-based approach to the representation and recognition of action that is designed to
support the direct recognition of the motion itself (as motivated from the blurred video examples).
The method focuses on accumulating and recognizing holistic “patterns of motion” rather than
trajectories of structural features. The strength of the approach is the use of a compact, yet de-
scriptive, real-time representation capturing a sequence of motions in a single static image (similar
to [44]) called a Motion History Image (MHI) [22, 6]. The MHI is constructed by successively
layering selected image regions over time (capturing the motion recency of pixels) using a simple
update rule:

_ 7 if¥(I(z,y) #0
MHI5(z,y) = { 0 elseif MHIy(z,y) <7 —6 (1)

where each pixel (x,y) in the MHI is marked with a current timestamp 7 if the function W signals
object presence (or motion) in the current video image I(x,y); the remaining timestamps in the
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Figure 2: Top row: Keyframes of an arm stretching exercise movement. Bottom row: MHIs
corresponding to keyframes in the top row.

MHI are removed if they are older than the decay value 7 — §. This update function is called for
every new video frame analyzed in the sequence.

The function W that selects a pixel location in the input image for inclusion into the MHI can
be arbitrarily specified. Since the template representation captures both the position and temporal
history of a moving object, many possibilities for selecting regions of interest are applicable. De-
tectors may include background subtraction, image differencing, optical flow, edges, stereo-depth
silhouettes, flesh-colored regions, etc. With an object selection process for ¥ (e.g., background
subtraction), the representation can accommodate slowly moving regions (< 1 pixel/frame) that
would otherwise be missed by image differencing or standard optical flow. For the results pre-
sented here, we used background subtraction and image differencing.

To illustrate the construction of an MHI, keyframes from a sequence of a person performing an
“arm stretch” movement and the corresponding (cumulative) MHIs are presented in Fig. 2 (using
background subtraction and § = 2.33 sec.). For display purposes the timestamp pixel values in the
templates are linearly mapped to graylevel values 0-255. Here the brightness of a pixel corresponds
to its recency in time (i.e., brighter pixels are the most current timestamps). Depending on the value
chosen for the decay parameter §, an MHI can encode a wide history of movement (See Fig. 3).

We also construct a binary cumulative motion image, referred to as a Motion Energy Image
(MEI). The MEI indicates the presence of motion (the MHI describes the recency of motion), and
is generated by thresholding the MHI above zero. Together, these images form temporal motion
templates for representing human actions.

Similar use of templates for characterizing motion include work by [59, 51, 29], but are con-
strained to very particular domains (e.g., periodicity, facial motion). Our general template method
is targeted at representing arbitrary human (and other) movements.
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Figure 3: Effect of altering the decay parameter ¢ (in seconds) in Eqgn. 1.

Figure 4: Examples from aerobics database and their MHIs (constructed using image-
differencing).

2.1 Matching Motion Templates

To evaluate the power of the template representation, we recorded video sequences of 18 aerobics
exercises performed by an experienced aerobics instructor. Seven views of the action (+90° to
—90° in 30° increments in the horizontal plane) were recorded. For this experiment the temporal
segmentation (duration of ¢) was set manually, though an automatic method is described in [22].
For these experiments we used image-differencing for ¥. A single key frame and corresponding
MHI from the frontal view for 5 of the 18 aerobics exercises are shown in Fig. 4.

Given a set of MHIs and MElIs for each view/action combination, we compute statistical de-
scriptions of the these images using 7 Hu moments [39] which are known to yield reasonable shape
discrimination in a translation- and scale-invariant manner. To recognize an input action, the Ma-
halanobis distance [72] is calculated between the moment description of the input and each of the
known actions.



2.1.1 Testing with One Camera

A new test subject performed each move and the input data was recorded by two cameras viewing
the action at approximately 30° to left and 60° to the right of the subject. The MHI and MEI
for each of the two views of the test input actions were constructed, and the associated moments
computed.

Our first test uses only the left (30°) camera as input and matches against all 7 views of all
18 moves (126 total). We select as a metric a pooled independent Mahalanobis distance using
a diagonal covariance matrix to accommodate variations in magnitude of the moments. Table 1.a
displays the results. Indicated are the distance to the move closest to the input (as well as its index),
the distance to the correct matching move, the median distance (to give a sense of scale), and the
ranking of the correct move in terms of least distance.

The first result to note is that 12 of 18 moves are correctly identified using the single view.
This performance is quite good considering the compactness of the representation (a total of 14
moments from two correlated motion images) and the large size of the target set. Second, the
typical situation in which the best match is not the correct move, the difference in distances from
the input to the closest move versus the correct move is small compared to the median distance.
Examples of this include test moves 1, 9, 13, 16, 18. In fact for moves 1, 16, 18 the difference is
negligible. Sometimes an alternative view of a different action projects into a template with similar
statistics. For example, consider sitting and crouching actions when viewed from the front. The
observed motions are almost identical, and the coarse template statistics do not distinguish them
well.

2.1.2 Combining Multiple Views

A simple mechanism to increase the power of the method is to use more than one camera. Several
approaches are possible. For this experiment, we use two cameras and find the minimum sum of
Mahalanobis distances between the two input templates and two stored views of an action that
have the correct angular difference between them, in this case 90°. The assumption embodied in
this approach is that we know the approximate angular relationship between the cameras.

Table 1.b provides the same statistics as the first table, but now using two cameras. Notice that
the classification now contains only 3 errors. The improvement of the result reflects the fact that
for most pairs of this suite of actions, there is some view in which they look distinct. Because we
have 90° between the two input views, the system can usually correctly identify most actions.

We mention that if the approximate calibration between cameras is not known (and is not to
be estimated) one can still logically combine the information by requiring consistency in labeling.
That is, we remove the inter-angle constraint, but do require that both views select the same action.
The algorithm would be to select the move whose Mahalanobis sum is least, regardless of the angle
between the target views. If available, angular order information — e.g., camera 1 is to the left of
camera 2 — can be included. When this approach is applied to the aerobics data shown here we
still get similar discrimination. This is not surprising because the input views are so distinct.

In response to the errors, the test subject for move 16 performed the move much less precisely
than the original aerobics instructor. Because we were not using a Mahalanobis variance across
subjects, the current experiment could not accommodate such variation. In addition, the test sub-
ject moved her body slowly while wearing low frequency clothing resulting in an MHI that has



Table 1.a: Single Camera Test Table 1.b: Two Camera Test
Closest Closest Correct Median | Rank Closest Closest Correct Median | Rank
Dist Move Dist Dist Dist Move Dist Dist
Test 1 | 1.43 4 1.44 2.55 2 Test 1 | 2.13 1 2.13 6.51 1
2 | 3.14 2 3.14 12.00 1 2 | 12.92 2 12.92 19.58 1
3 | 3.08 3 3.08 8.39 1 3 | 7.17 3 7.17 18.92 1
4 | 0.47 4 0.47 2.11 1 4 | 1.07 4 1.07 7.91 1
5| 6.84 5 6.84 1924 | 1 5 | 16.42 5 16.42 32.73 1
6 | 0.32 10 0.61 0.64 7 6 | 0.88 6 0.88 3.25 1
Test 7 | 0.97 7 0.97 2.03 1 Test 7 | 3.02 7 3.02 7.81 1
8 | 20.47 8 20.47 35.89 1 8 | 36.76 8 36.76  49.89 1
9 | 1.05 8 1.77 2.37 4 9 | 510 8 6.74 8.93 3
10| 0.14 10 0.14 0.72 1 10| 0.68 10 0.68 3.19 1
11| 0.24 11 0.24 1.01 1 11| 1.20 11 1.20 3.68 1
12| 0.79 12 0.79 4.42 1 12| 2.77 12 277 15.12 1
Test 13| 0.13 6 0.25 0.51 3 Test 13| 0.57 13 0.57 2.17 1
14| 4.01 14 4.01 7.98 1 14| 6.07 14 6.07 16.86 1
15| 0.34 15 0.34 1.84 1 15| 2.28 15 2.28 8.69 1
16| 1.03 15 1.04 1.59 2 16| 1.86 15 2.35 6.72 2
17| 0.65 17 0.65 2.18 1 17| 2.67 8 3.24 7.10 3
18| 0.48 10 0.51 0.94 4 18| 1.18 18 1.18 4.39 1

Table 1: Results using (a) one camera and (b) two-cameras. Each row reports test move, distance
to nearest move, distance to correct matching move, median distance, and correct move ranking.

large gaps in the body region. We attribute this type of failure to our simple motion analysis (im-
age differencing); a more robust motion detection mechanism would reduce the number of such
situations.

2.2 Motion Gradients

From Eqn. 1, the MHI layers the W regions over time in such a way that the visual appearance
of the layered regions gives the impression of motion directly from the intensity gradients in the
template. It is quite apparent from MHI-70 in Fig. 2 that the upward progression of movement is
captured in the dark-to-light intensity gradients. Since motion can be perceived from the displayed
timestamp gradients in the template, one could convolve gradient masks with the timestamp values
in the MHI to extract a motion vector at each pixel. This is similar in concept to computing normal
flow along brightness contours [37]. We demonstrated this concept in [20, 18, 26].

Much like the work on hierarchical motion estimation, stereo matching, and image coding
using image pyramids [4, 62, 13], we extend the original MHI representation into a pyramid to
provide us with a means of addressing the gradient calculation of multiple image speeds using
efficient, fixed-size gradient operators (e.g., Sobel masks). A pyramid permits the use of fixed-
size gradient masks in each pyramid level (along with some constraints) to calculate motions of
different speeds. The result is a hierarchy of motion fields where the resulting motion computed in
each level is tuned to a particular speed (with faster speeds residing at higher levels). Due to the
required anti-aliasing size reductions, the timestamped MHI cannot be transformed directly into a
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Figure 5: Image pyramids. (a) Thresholded ¥ pyramid of a person silhouette. (b) MHI pyramid
created from (a).

pyramid. Instead, the ¥ image is first transformed into a pyramid and then each level from the ¥
pyramid is thresholded and used to update an MHI of that particular resolution (See Fig. 5).

Before calculating the motion orientations and speeds in each level of the MHI pyramid using
the gradient masks, a few constraints are initially required. First, the boundaries of the motion
regions should not be examined by the gradient operators because of their adjacency to the null
background values. We therefore impose an 8-connectedness test for each timestamp pixel to verify
that it is “interior” to the motion region. Similarly, we do not examine the current timestamps (7).
We additionally constrain the F,, or F,, gradient to have an absolute value above some minimum to
ensure that > 2 regions are being layered as a ramp (rather than a step of uniform region) within
the gradient mask. For the implementation a threshold of 1/(2-FPS) is used.

Unlike the standard reintegration component (warp, expand, re-estimate) in the motion estima-
tion of [4], we do not require an iterative propagation of the course-to-fine motion measures back
to the size of the original MHI. Instead, for each pixel we 1) choose the finest resolution pyramid
level that passes the gradient constraints, 2) compute the motion from that level using gradients,
and 3) scale the result to the size of the original image. In Fig. 6.a we show the selected pyramid
levels for each pixel in the arm raising MHI from Fig. 2. As expected with arc motion, the radially
distant regions have a faster speed and are thus calculated at a higher pyramid level. In Fig. 6.b we
plot a histogram of the computed speeds. The resulting motion field is displayed in Fig. 6.c which
captures the overall expected pattern and organization of motions, with the larger motion vectors
most radially distant from the point of rotation.

2.2.1 Motion Orientation Histograms

Once the motion field for the MHI has been computed (e.g., Fig. 6.c), several recognition methods
could be applied to characterize particular movements. In the gesture recognition work of [33], a
single histogram of image edge orientations of a user’s hand was used to recognize various static
gestures, with dynamic gestures formed by concatenating histograms of individual poses. We fol-
low this approach and develop a motion orientation histogram by accumulating the orientations ¢
of the motion flow computed from the MHI pyramid (this method could be extended to incorporate
speed as well).

We examined several different movements from the previous aerobic database of exercise ac-
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Figure 6: (a) Pyramid levels assigned to pixels in the MHI (three-level pyramid with level-O=light-
gray, level-1=medium-gray, and level-2=black). (b) Histogram of calculated pixel speeds. (c)

Resulting motion field.
P1 P2 P3 P4 P5 P6

P, | 0.000 0.205 0.205 0.155 0.338 0.370

P»| - 0000 0085 0089 0207 0.262
P - ~ 0000 0.105 0.243 0.294
P - - —  0.000 0.269 0.301
P - - - ~  0.000 0.260
P - - - - ~ 0.000

Table 2: Euclidean L, norm || P, — P;|| measures for normalized polar plots in Fig. 7.

tivities used in [22]. In Fig. 7, we present the final keyframe, MHI, and polar motion orientation
histogram for those movements. The histograms are quantized by 5 degrees and smoothed with a
5-tap Gaussian filter. It is clear from the polar motion orientation histograms that these movements
are significantly different from one another and that the histograms are useful for recognition. The
comparative Euclidean L, norm distances between the movements in Fig. 7 are shown in Table 2.

2.3 Interactive Applications

The robustness of the moment-based MHI approach was demonstrated in two interactive systems.
The KidsRoom [7, 8, 9] was an interactive fantasy-world playspace where children could participate
in a reactive storybook narrative and interact with virtual characters (See Fig. 8.a). Our tracking
system [43] and MHIs were used to monitor and recognize activities of the children. A newer
version of this environment (KidsRoom-2) was constructed by Nearlife for a year-long exhibition
in London’s Millennium Dome. The other system was an interactive aerobics trainer [24, 76, 61,
52] that instructed and motivated people through an aerobic workout (See Fig. 8.b). The virtual
instructor watched and recognized the exercise movements of the user employing our silhouette
extraction technique [23] and MHIs. The output of the recognition system (e.g., jumping-jacks)
and the responses of the virtual instructor (e.g., “Good job!”’) were coupled in a reactive system to



Figure 7: Top row: Key-frames from six aerobic exercise movements. Middle row: MHIs for the
movements. Bottom row: Polar plots of motion orientation histograms computed using an MHI
pyramid.

give the sensation that the instructor attended to the user.

The MHI motion template approaches are currently implemented in C++ using the highly op-
timized routines provided in the Intel Image Processing Library (IPL) and Open Source Computer
Vision (OpenCV) library [42]. Many of the MHI functions and other necessary operators have
already been incorporated into these packages [26, 11]. The main advantage to using the Intel
libraries in terms of hardware is that faster processing is now accessible on standard PC-based
platforms rather than on specialty systems or costly workstations. To date, there have been over
75K downloads of OpenCV. With this infrastructure, we are seeking stable real-time performance
for a system that can be easily ported and made available to other researchers or developers.

2.4 Templatesto Categories

The MHI framework was originally motivated by our perceptual ability to recognize particular
actions using small amounts of structured motion information from limited visual input. For these
percepts to be possible, we believe there must be correlated regularities in the motions to which our
visual systems are tuned. Thus if we can identify such observable regularities that are characteristic
to different types of human movement, we can encode these structures, as categories, directly into
a computer vision system for the classification of our movements.
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Figure 8: (a) The KidsRoom. (b) Virtual aerobics trainer.

3 Movement Categorization

There has been much successful prior work in computer vision toward general object categoriza-
tion. The related work on categorizing motions has mainly been concerned with low-level particle
trajectory boundary characterizations (e.g., [67, 25]) or qualitative motion flow field descriptions
(e.g., [5, 49]). We present here a novel categorization of movement. We refer to movement as the
dynamic changing patterns of articulated limbs and bodies. We adopt movement categorization as
a cognitively-motivated framework to provide insight into several computational issues related to
constructing robust vision machines to recognize human movements. Our approach to movement
categorization is based on the dynamic regularities of correlated movement features, rather than
employing alternative rule-based or exemplar approaches to categorization [69].

3.1 Categories

The number of different movements in the world that must be dealt with by a vision system is
perhaps infinite. Hence a basic task of any vision-based agent (biological or technological) having
limited information processing capacities is to reduce the overwhelming number of movements to
a more manageable number of categories®. Categorization is the process of treating certain non-
identical items equivalently. Categories are organized to exploit correlations among properties, and
thus enable computational and cognitive “economy” [66] for making decisions from partial sensory
information. They provide a natural encoding of maximal information with the least amount of
computational effort. Categorization has been shown to be a ubiquitous mechanism for perception
in nature, from insects to primates to humans [38, 32, 73], and it is also a primary ontological
component to Artificial Intelligence and knowledge engineering [71].

3.2 CategoriesasRegularities

The formation of perceptual categories requires that the world be structured with regularities avail-
able from visual input. Without such structure, it would be impossible for us to make any reliable
inferences from our percepts. Given a configuration space ® of dimension d parameterizable by
R4, a regularity p C @ is a manifold of dimension d’ < d parameterizable by R* [30]. Any

LA more general categorical statement is givenin [12].
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manifold is therefore a regularity with respect to some less-constrained configuration space. The
smoothly varying structure of a regularity describes the dynamic “genericity” [30] of the category.
Regularities are further characterized in terms of their predictive power, or modal nature [65, 45].
Specifically, this relates to how many additional property dimensions can be predicted from a sin-
gle visual feature (quantitative prediction), and how much variance is inherent along the regularity
(quality of the prediction).

Regularities of movement abound in our world. Their existence is mainly due to biomechanical
constraints on body form, energy, and speed interacting with the laws of physics. A general move-
ment regularity found across the animal kingdom is the dynamic Froude number g—z with running
speed V/, acceleration of gravity GG, and leg length L. Froude values calculated for walking and
running animals (and humans) can be used to show that different types of animals take relative
strides and have similar gaits when their Froude numbers are the same [2]. Similarly, human loco-
motion is subject to a variety of physical and dynamic constraints [54, 41], which together produce
tight regularities in multi-dimensional feature spaces. Only a few basic locomotion features, such
as stride frequency, relative stride, and walking speed, are needed to produce a strong dynamic
regularity (See Fig. 9). Interestingly, many movement regularities such as this can be represented
with linear or log-linear parameterizations [54].

3.3 Movement Category Representation

We define a movement category as a parameterization of dynamic regularities together with any
structural constraints:

Definition 1 Movement Category = Dynamic Regularities + Structural Constraints

The parameterization is used to generalize multiple exemplars, and can span several dimensions.
The structural constraints allow for any fixed values to be included in the representation (e.g.,
people have two legs). This category description is similar to our previous structural and variable
constraint model proposed for oscillatory motions [25, 19, 27].

To illustrate a basic movement category, consider the class of simple pendular motion of a
swinging particle at the end of a light inextensible cord [64]. The structural constraints for this
class of periodic movement include the choices for the particle mass M, the cord length L, and
the gravity G. The dynamic regularity (for small amplitudes) consists of the correlation of the
period of movement 7" to various ratios of L/G. This relationship can be parameterized by 7' =

F(L,G) = 2m/L/G. Assuming a gravitational constant of 9.8 m/s?, this movement regularity

can be represented in log-linear form: In(7") = 3 In(L) + (In(27) — 5 In(G)). We can then predict
(or verify) the period of movement for a pendulum from the observed length of the cord (mass
does not effect the period). Our goal is to similarly represent various types of human movement as

categories to provide a powerful and general mechanism for recognition.

3.4 Categoriesof Human L ocomotion

We have selected the domain of human locomotion for a focused investigation of the movement
category approach, though the framework remains general to other movement domains. After
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Figure 9: A dynamic locomotion regularity of stride frequency, relative stride, and walking speed
for a single person.

a review of related work, we present preliminary results in the classification of typical walking
movements and the sub-classification of children and adults.

Certain types of movement recognition can benefit from a model-based tracking pre-processor,
but there are situations where direct movement recognition (with no part tracking) is applicable
[22]. In [58, 59], the periodic motion of pixels (as created from walking) was analyzed throughout
a sequence using Fourier techniques, followed by recognition of a feature vector derived from
the motion in partitioned cells in the XYT volume. Another image-based periodicity approach is
described in [16].

Another common approach to locomotion recognition includes the analysis of trajectory infor-
mation derived from features of the walking body. In [74], the curvature trajectory of positions on
a stick figure representation was examined using the Fourier transform to recognize cyclic walking
movements. Principal component analysis and linear transformations are used in [77] to param-
eterize the temporal movement of body parts for the representation and recognition of walking.
The frequency-based approach of [50] examined the phase relationships of periodic elements de-
rived from optical flow for the task of person identification. Similarly, [40] recognized individual
walkers by combining an Eigenspace transformation and a Fisher Linear Discriminate function on
background-subtracted silhouettes. Also addressing identification, [57] used the spatio-temporal
braided patterns of the legs within the XYT volume to detect walking, and then extracted fea-
tures of the pattern to identify individuals. Lastly, [15] incorporated a sequence of body signature
skeletons into an HMM framework to determine a posture transition path for recognition.

In contrast to the above recognition approaches, our interests focus more on the categorization
of human movement to determine the type of locomotion (e.g., walking, running) with descriptive
characterizations (e.g., age, gender, pace) that may even be further refined to allow person iden-
tification. We are motivated from the inherent biomechanical regularities associated with several
low-level visual features, which form a grounded basis for our movement categorization. From the
categories, we seek to determine several meaningful levels of descriptive analysis for the move-
ment and person, rather than just a singular recognition match. This is a significant departure from
the recognition work described above.

12
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Figure 10: Silhouette generation and tracking. (a) Video frame of a walker. (b) Background-
subtracted silhouette. (c) Maximal forward extension of lower quarter portion of silhouette. (d)
Minimal forward extension. The movement features are extracted from the minimal/maximal ex-
tensions and can be computed using this method over several different viewpoints.

3.4.1 Categorization of Walking

We can immediately determine an atypical walking pattern (e.g., limping) from inconsistencies of
that movement with our strong perceptual category for normal human walking. Furthermore, the
normal walking category itself contains several variations, all of which are considered to be typical.
For example, though stride length increases with walking speed, the classification does not. We
examine the smoothly changing visual behavior of locomotion over multiple walking speeds to
capture the natural dynamics composing the movement regularities.

We relax the viewing constraint imposed on the recovery of spatial features (e.g., fronto-parallel
alignment) by instead using salient temporal properties. We present three view-invariant temporal
features for describing locomotion:

T. = Thecycletime of a leg.
T = The ratio of stance-to-swing times of a leg.
Ly; = The time difference from the onset of stance in leg 1 to the

onset of swing in leg 2.

These features can be reliably obtained from low-level image analysis of people walking in video.
We begin by extracting a silhouette of the person in each video frame with a background sub-
traction technique using RGB pixel differences, dilation, and removal of small pixel regions (See
Fig. 10.a,b). We next form horizontal-motion trajectories using the leftmost and rightmost pixels
within the bottom quarter section of the silhouette (See Fig. 10.c,d). The translation component
is removed using the horizontal motion of the top-most detected head point of the silhouette. The
movement features are directly calculated from the curvature extrema in these trajectories and are
invariant to several changes in viewpoint (similar to the view-invariant trajectory representations in
[63]). Using a synthetic walking sequence [60] rendered from multiple hip-level views (0° — 90°),
this simple tracking approach was able to compute the same temporal events for a leg across views
45° — 90° (50% of the views).

To construct the locomotion regularities, we collected a video database of male and female
walkers moving at slow, medium, and fast paces, and computed the movement features for each
individual. Each walking cycle was analyzed separately with no averaging of features over mul-
tiple cycles. In Fig. 11.a, we present T, vs. 7 that characterizes the typical horizontal walking
movements for a single leg. In Fig. 11.b, a second regularity of T, (averaged T, of the two legs)

13
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Figure 11: Movement regularities used for human locomotion categorization and classification.
(@) Log-linear cycle time and stance-swing time ratio (p = —.7674). (b) Cycle time and leg delay
(p = .9269). Computed linear prototypes with +3¢ are shown.

vs. Ly is shown. This regularity represents how the two legs move in relation to one another over
multiple speeds.

To specify the degree of class membership of a new movement pattern to the category, we
compute a perpendicular statistical distance of the new feature values to the regularity prototypes
using
X =Y+ B

oo +1

with {X; = In(T¢), Y1 = In(7), oy = —.6299, B; = —.3680} for the single leg regularity and
{Xy =T, Y = Ly, ag = .2524, 35 = —.1580} for the coupled legs regularity. The parameters for
each regularity are determined from our training features using an Eigenvector line fitting process
which minimizes the sum of squares of the perpendicular distances from the training points to
the linear prototype [28]. The variance measures were computed as the overall variance along
each regularity (o0? = .0703, 02 = .0224). We show the linear prototype models with 30 class
boundaries in Fig. 11. To be classified as typical walking, the regularity distances are thresholded
and incorporated into the binary result A using the product classification rule [69] to discount
movements having non-conforming properties:

R; 2)

1 Rz S3O’Z

We collected several new examples of typical and atypical walking sequences to test the ap-
proach. The set of typical walking included two people filmed a week apart from their training
sequences, three new people not used in training, a 4-year-old child, a sequence each from the
datasets of Little and Boyd [50] and Baumberg and Hogg [3], and a synthetic walking animation
[60]. The atypical walking movements included a fast-paced walking video slowed down by 50%,
a slow-paced walking sequence played at double the normal speed, a limping pantomime, a skip-
ping movement, a marching walk, a light jog, a somersault, and a crawl. The classification results
using Eqgns. 2 and 3 were calculated for the sequences. Using the prior expected typical/atypical
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labels, 13 of 17 sequences were correctly classified. The exceptions included the skipping, march-
ing walk, and light jog that were mistakenly determined to be within the range of normal walking.
We attribute this behavior to the horizontal-only motion being categorized. Interestingly, the syn-
thetic walking sequence was unexpectedly deemed to be atypical walking. Indeed, upon closer
examination of the animation it did have a peculiar movement quality.

3.4.2 Distinguishing Children from Adults

We additionally posed the question of whether we could have a computer vision system further
recognize the categorical differences between children and adults from the way they walk, rather
than from static physical traits requiring a calibrated camera (e.g., body height).

Measurements of time and distance for each walking cycle represent the most basic descriptions
that determine a particular gait [41]. A commonly used variable in describing locomotion is relative
stride L', calculated by normalizing the person’s stride length by stature (or leg length). The ratio
is a dimensionless number, and thus can be used to compare the relative spatial configurations of
children and adults in video. A descriptive temporal feature is stride frequency f (strides/min),
computed from the inverse of the cycle time (60/7.). To calculate these stride-based features, only
the locations of the head and feet in each video frame are required, rather than the extraction of
joint angles, limb lengths, or poses.

For this experiment, we collected video data of marked head and ankle positions from nine
adults 30-52 years old and six children 3-5 years old. This particular age range for children was
motivated by the reported biomechanical difference of children 3-5 years old as compared with
adolescents and adults [35]. The adult subjects were recorded walking on a motorized treadmill at
speeds ranging from 1.5-4.5 MPH, increasing in 0.2 MPH increments (individuals had different
maximum speeds). The child movements were recorded as they walked back-and-forth across
a room at different speeds. Treadmill and overground walking strides for an individual are not
significantly different over the major range of our walking speeds [10].

The automatically computed ranges of stride frequencies of the children and adults were 55.3—
89.8 strides/min and 36.7-73.3 strides/min, respectively. The relative strides for the children and
adults were in the range 0.27-0.55. The natural log data for each cycle of each leg for all the walk-
ers are depicted in Fig. 12. The general interpretations of this data are that the stride properties are
positively correlated, and that when a child has the same (or larger) relative stride configuration as
an adult, the child has a larger stride frequency. Since the data in Fig. 12 appears not fully Gaus-
sian and almost linearly separable, we used a two-class (c1="Adult’, c2=*Child”) linear perceptron
classifier having the general form

cl

n . n >
d(X) = ; W;L; + Wpt1 = 0, with ; W;T; < — Wp41- (4)

c2
The classification boundary computed for the database after 30K epochs using a Matlab Neural
Network Toolbox implementation is shown in Fig. 12. When the entire dataset is classified using

this discriminator, we receive 95% correct classification for the adults and 93% correct classifi-
cation for the children. Three older children 5-6 years old were also tested and shown to have
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Figure 12: Relative stride length vs. stride frequency in children and adults (natural log values). A
linear classification boundary is shown separating the two categories to a high degree. The walking
movements of an 11-year old reside entirely in the adult category. Videos were recorded with a
fronto-parallel viewpoint.

a larger percentage of movements than the younger children in the adult category (~30%), sug-
gesting the beginnings of a change in walking style. When an 11-year old was examined, his
movements existed entirely within the adult category (See Fig. 12). Even though the two stride
properties individually are not discriminatory, the correlation of the features is salient for classi-
fication. Given that only two movement features were used to characterize and differentiate the
children from adults, the result is quite encouraging. Further details of this work can be found in
[21].

4 Summary

We live in a dynamic world full of motion. Though multiple channels of visual information are
utilized in understanding this world, motion itself is a powerful indicator of people and events. We
described two approaches for the computer recognition of human activities.

We first presented a view-based approach to the representation and recognition of human move-
ment. The basis of this real-time representation is a Motion History Image (MHI) that compresses
the holistic motion of an activity into a single template. For recognition, higher-order moment
features are computed from the templates and are statistically matched to trained models. The
MHI was also transformed into an image pyramid to permit efficient fixed-size gradient masks to
be convolved at all levels of the pyramid to extract motion information at a wide range of speeds.
Polar motion orientation histograms were described as an additional means of recognition.

We next presented a novel categorical framework for representing and recognizing dynamic
human movements. The approach is based on the inherent regularity in human movement to clas-
sify movement patterns to general movement categories. The approach was demonstrated with the
classification of typical and atypical walking movements, and also by the discrimination of child
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and adult locomotion.

The task of constructing vision machines with even a fraction of our understanding for hu-
man (and animate) motions is indeed challenging. The outcome of this long-term research will
have clear implications for computers, machines, and robots designed to monitor and interpret our
actions.
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