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Abstract—We present a bottom-up approach to hierarchical
classification based on posteriors conditioned with logits. Begin-
ning with the output logits for a set of terminal labels from
a base classifier, an initial hypothesis is repeatedly generalized
(softened) to a weaker label until a particular confidence measure
is achieved. As conditioning the probabilistic model with the full
set of terminal logits quickly becomes intractable for large label
sets, we propose an alternative approach employing “generalized
logits” spanning relevant hypotheses within the label hierarchy.
Experimental results are compared with related methods on
multiple datasets and base classifiers. The proposed approach
provides an efficient and effective hierarchical classification
framework with monotonic, non-decreasing inference behavior.

I. INTRODUCTION

Hierarchical reasoning is the process of employing a coarse-
to-fine representation of objects/labels/etc. to enable inference
at multiple levels of specificity. For example, a phylogenetic
tree in biology hierarchically organizes relationships among
species based upon physical or genetic features. A particular
species can then be analyzed or categorized at different levels
of generalization within the tree. In standard classification
paradigms, hierarchical semantic relationships of the target
(output) labels can be used to guide the classifier into either
refining (top-down) or generalizing (bottom-up) labels. A node
within the tree can be labeled with a semantic generalization
of lower more-specific labels (e.g., ‘Animal’ generalizes ‘dog’,
‘cat’, ‘bird’, ‘fish’) or instead could be labeled with a subset
of terminal labels when semantic generalizations are not
available.

Methods employing a top-down strategy typically use a
series of classifiers that repeatedly refine the label choice until
reaching a label in the terminal set. However, if a classifier
error occurs at any level, the process would continue down
the wrong branch ending at an incorrect terminal label. This
approach could potentially be augmented with a confidence
measure/threshold at each classifier branch and terminate early
if a target confidence could not be met (and thus return a more
general label).

Alternatively, a bottom-up approach having monotonic, non-
decreasing probabilistic behavior can act to reduce classifier
uncertainty by starting with a terminal label hypothesis and
repeatedly generalizing (softening) it to a less-specific label
that has more confidence, until meeting some required con-
fidence bound. For example, an initial hypothesis (e.g., the

label having the largest logit/softmax or terminal posterior)
may be for the terminal label ‘dog’, but with low confidence.
However, a sufficiently confident generalized label of ‘Canine’
or ‘Animal’ may be achievable. Only when generalizing all the
way to the root node would a fully ‘Unknown’ conclusion be
drawn. The ability to ascertain an input is unclassifiable is
still important, e.g., to determine if the example was out of
context. We employ such a bottom-up generalization strategy
in this work.

We approach hierarchical classification using a post-
processing method on the output of a given/existing base
classifier. Any task-based trained classifier that provides a set
of logits for the output target classes can be employed. Given
the output of the base classifier, we design our hierarchical
module to generalize the initial hypothesis (terminal label with
the largest posterior) until reaching a target confidence. Mono-
tonic, non-decreasing probability/confidence of decisions is
required to reduce uncertainty when moving from a lower,
more specific label to a higher, more generalized, label.
Note that a top-down approach would necessarily increase
uncertainty as labels are continually refined into more precise
labels. Our monotonic, non-decreasing inference framework is
based on an efficient posterior conditioning vector containing
logits derived for non-terminal labels.

There are multiple advantages and contributions with our
approach:

1) Can be used with any base classifier that produces logit
values for output labels.

2) Conditions label posteriors with fewer elements (using
generalized logits), making the estimation process more
compact and efficient, particularly with datasets having
few examples per class.

3) Provides a posterior confidence of each classified, and
potentially generalized, test example.

4) Corrects many errors from the original base classifier.
5) Has the desired property of monotonic, non-decreasing

probabilistic inference as labels are generalized.

We will demonstrate the proposed generalized logit ap-
proach on several datasets with different base classifiers and
compare to relevant methods.



II. RELATED WORK

Multiple techniques have been proposed for reasoning and
classifying with hierarchical representations to increase perfor-
mance, efficiency, or accuracy. In [1], a special decision forest
was created that enforces hierarchical structure. A hierarchical
sparse embedding based on example images was employed in
[2]. The approach of [3] iteratively applied spectral clustering
on examples to create a hierarchy. In [4], a series of SVMs
between pairs of labels corresponding to siblings in the
hierarchy was used. A graphical model of the relationships
among terminal nodes was used in [5] to develop an extension
of the softmax function which respects hierarchical structure
(extended in [6] with probabilistic relationships). An RNN was
employed in [7] to refine CNN features from coarse to fine
labels. In [8], a dynamic dense network whose connections are
dictated by hierarchical structure was attached to a CNN. In
[9], a CNN was split into two levels where the network initially
decides a general class label and then uses a more-specific
classifier to determine the final prediction. The approach of
[10] sought to learn a model for predicting “entry-level”
categories (natural classes used by people) to classify images.
In [11], a neural architecture search method was used to
automatically learn a tree structure. Hierarchical reasoning has
also been applied to transfer learning [12], [1], [13] and zero-
shot learning [14], [15].

The most related approaches to our proposed method are
from [16] and [17]. In [16], the output logits of the terminal
nodes/labels are computed from separate SVM classifiers (one
for each terminal node) and their posteriors are estimated
with Platt scaling (logistic regression with a single logit
value). Non-terminal posteriors are computed from the sum
of descendant terminal posteriors, and therefore conditional
independence of the logits is assumed. Their approach is
formulated on the maximization of reward (depth of solutions)
given a specified overall accuracy on the validation set. In
[17], a posterior probability is separately computed for each
node/label in the tree conditioned on its (uncalibrated) softmax
value, where an equivalent softmax value for a non-terminal
node is computed as the sum of softmax values from its
terminal descendants. The posterior at each node was modeled
non-parametrically using a normalized histogram. Inference
was conducted in a bottom-up manner from the argmax-
selected label of the base classifier until meeting a confidence
threshold. However, monotonic, non-decreasing inference is
not guaranteed.

In comparison to [16] and [17], our method uses an idea
similar to the summed softmax in [17], but derives a formu-
lation for generalized logits. Unlike [17], our approach and
[16] have monotonic, non-decreasing inference behavior. We
provide a statistical inference guarantee on test data, similar
to [17], but [16] only provides a guarantee on the validation
set. We also employ a higher-order logistic regression model
(using more logits) than [16]. Overall, our method leverages
favorable properties of these algorithms, while introducing
new techniques to help alleviate some of their limitations.

III. APPROACH

The most straightforward post-processing approach to
bottom-up, generalized hierarchical inference with a base
classifier that outputs logits (e.g., a neural network) is to first
model the label posterior probability at each terminal node
conditioned on the entire output logit vector L = [`1, . . . , `n].
The posterior of the initial-guess label (e.g., the argmax-
selected class from logits or terminal posteriors), conditioned
on L, would then be examined to verify sufficient confidence.
If the confidence is lower than desired, the posterior of its
parent node would next be examined, continuing upward until
the required confidence is achieved.

Any non-terminal posterior can be computed from the
summation of all its terminal descendant node posteriors, as
each node Ni ∈ N in the tree is conditioned on the same logit
vector L and the terminal classes are mutually exclusive, i.e.,

P (Ni|L) =
∑

k∈↓(Ni)

P (Nk|L) (1)

where ↓(Ni) returns the set of all terminal descendants of node
Ni. Therefore any node Ni cannot be more probable/confident
than its parent

P (Ni|L) ≤ P (Parent(Ni)|L) (2)

This monotonic, non-decreasing property of posteriors during
generalization also holds for any ancestral node of Ni. We will
refer to this inference method as the “REFERENCE” approach.

With small dimensionality of L and a large number of
examples, the REFERENCE approach may be computationally
feasible, but many datasets have a very large number of target
labels (perhaps hundreds or more) which makes the estimation
of the probabilities difficult unless an extremely large number
of examples can be employed (curse of dimensionality).

Alternatively, approaches exist that make various assump-
tions to reduce the dimensionality issue. For example, one
could condition a terminal label only on the logit value
for that class, as in [16]. Independence would therefore be
required to properly compute a non-terminal posterior us-
ing the summation of descendant terminal posteriors. With
logits produced from a single deep neural network (instead
of multiple SVM classifiers [16]) there could indeed exist
significant dependancies. In [17], each non-terminal posterior
was individually modeled and conditioned on the softmax sum
of its terminal descendants, however there is no guarantee of
monotonic, non-decreasing generalization.

In our framework, we derive a compact conditional logit
vector for a generalization process that has monotonic, non-
decreasing behavior. Our approach models posteriors condi-
tioned on a smaller set of logits that includes “generalized
logits” corresponding to relevant generalized labels within the
hierarchy. The use of logits allows the direct use of a logistic
regression model for the posterior (as used in [16]). We argue
that the use of generalized logits is more comprehensive than
a single logit and is a sufficient (and smaller) alternative to
employing all logits.



A. Generalized Logits

The base classifier directly produces logits for the terminal
classes, but an equivalent generalized logit corresponding to a
non-terminal superclass node can be recovered based on the
relationship between logits and softmax. Consider a softmax
vector S = [s1, . . . , sn] derived from the base classifier logits.
The ith softmax element si is computed as

si =
e`i∑n
j=1 e

`j
(3)

Joining the first m < n elements into a new superclass
node/label can be represented by softmax value ŝ1:m which
contains the softmax mass from elements 1 through m

ŝ1:m =

m∑
i=1

si =

∑m
i=1 e

`i∑m
i=1 e

`i +
∑n

j=m+1 e
`j

(4)

=
e
ˆ̀
1:m

eˆ̀1:m +
∑n

j=m+1 e
`j

(5)

This allocation of proportional softmax to ŝ1:m thus mimics a
new classifier trained to [ŝ1:m, sm+1, . . . , sn].

The corresponding superclass logit for ŝ1:m is therefore

ˆ̀
1:m = ln(e

ˆ̀
1:m) = ln(

m∑
i=1

e`i) (6)

To recover the generalized logit for any non-terminal node
within a label hierarchy, the base classifier logit values for
all its terminal descendant classes are used within Eqn. 6.
For example, the generalized logit associated with node N in
Fig. 1 is computed from its 4 terminal descendants

ˆ̀
N = ln(

∑
i∈{E,F,G,H}

e`i) (7)

A generalized logit will always be larger than any of the
individual logits that make up its composition. To show this,
consider first sorting the logits in descending order/magnitude
and separating the largest logit

ˆ̀
1:m = ln(e`1 +

m∑
i=2

e`i) = ln(e`1 + ∆) (8)

As e`i > 0 for any `i and the value of ∆ > 0, thus ˆ̀
1:m > `1.

We note the following relationship can be used to eliminate
any numerical overflow with large `i values

ln(
∑
i

e`i) = a+ ln(
∑
i

e(`i−a)) (9)

where a is the maximum logit used within the sum (shifting
the largest logit to zero). Even if any of the remaining shifted
logits underflows, a reasonable answer is still attained as the
smallest values do not have any considerable contribution.

We next describe the inference process and show how gen-
eralized logits can be employed to reduce the dimensionality
of the posterior conditional.
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Fig. 1. Example tree with terminals A-H and non-terminals I-O.

B. Inference

The inference procedure begins with selection of the initial
terminal label hypothesis. This could be given as 1) the base
classifier argmax-selected class label or 2) the terminal class
label having the largest posterior. In this work, we chose the
largest posterior approach. If the posterior of this selected label
is below the specified confidence threshold, the immediate
parent of the initial label is examined, followed by examination
of the remaining ancestors on the upward path to the root until
the target confidence is achieved.

Consider the tree in Fig. 1 when the base classifier selects
terminal A as the initial hypothesis. The possible upward gen-
eralizations of A are I , M , and O. Given a set of conditioning
logits LA (to be defined later) associated with starting at class
A, we begin by evaluating the posterior P (A|LA). If this
posterior does not meet a given confidence threshold, then
the posterior of its parent P (I|LA) is examined. Since node
I is composed of the mutually exclusive terminals A and B,
P (I|LA) = P (A|LA) + P (B|LA). This requires 2 terminal
posteriors conditioned on LA.

If the posterior for I is still below the confidence threshold,
then its parent P (M |LA) is evaluated. This posterior can
be decomposed into P (M |LA) = P (I|LA) + P (J |LA),
where the posterior P (I|LA) has already been computed and
therefore only P (J |LA) is needed. Instead of decomposing
P (J |LA) into the sum of its terminal posteriors P (C|LA) +
P (D|LA), which requires 2 terminal posteriors to be modeled,
we can directly model P (J |LA) with P (C∪D|LA). Similarly,
for root node O, we can model P (O|LA) as P (M |LA) +
P (N |LA), where P (N |LA) = P (E ∪ F ∪ G ∪ H|LA).
Therefore, when starting from node A, posterior information
need only be stored for nodes A, B, J , and N as opposed
to retaining a fully decomposed set of 8 terminal posteriors
(A-H) conditioned on LA.

We can now specify the conditioning logits LA based on
the limited posteriors that are needed (for nodes A, B, J , and
N ). When starting from A, the conditioning vector LA can be
composed of the set

LA = [`A, `B , ˆ̀
J , ˆ̀

N ] (10)

where `A and `B are the sibling terminal logits given directly
by the base classifier, and ˆ̀

J and ˆ̀
N are the generalized logits

corresponding to the union posteriors for J and N , and are



computed using Eqn. 6 as

ˆ̀
J = ln(

∑
i∈{C,D}

e`i) (11)

ˆ̀
N = ln(

∑
i∈{E,F,G,H}

e`i) (12)

The use of generalized logits considerably reduces the number
of logits needed from the original full logit set while providing
the information relevant to each required posterior. With the
binary tree of Fig. 1, having depth d = 3, only d+1 = 4 logits
are needed in the generalized vector for any starting hypothesis
instead of the entire 2d = 8 terminal logits. The summation
of the posteriors conditioned on LA retains monotonic, non-
decreasing probabilistic inference.

For any starting terminal label hypothesis for a full binary
tree of depth d, our approach requires d + 1 posteriors (and
conditioning logits). To accommodate any possible initial
hypothesis (there are 2d terminal labels), a total of (d+1) ·2d
posteriors are needed overall. In comparison, the straight-
forward REFERENCE approach with terminal-only posteriors
conditioned on the full logit vector has a total of 2d posteriors.
Thus the proposed approach is only a modest linear increase
in the number of posteriors for trees of moderate depth.

1) Extension to non-binary trees: A binary tree was used
to motivate the approach and convey computation bounds, but
rarely are label hierarchies truly binary (as will be shown in
the experiments). However, due to our bottom-up method of
directed inference from an initial hypothesis, any tree can be
evaluated in a binary manner regardless of its width.

Consider a non-binary version of Fig. 1 where non-terminal
I now has 3 children: A, B, and B∗ (new). With the initial
hypothesis of A, our specified logit vector would now be
LA = [`A, `B , `B∗ , ˆ̀

J , ˆ̀
N ] and also require an additional pos-

terior P (B∗|LA). As we are only considering generalizations
of A to its ancestors {I,M,O}, a binary set of posteriors
per level in the tree is all that is required. For the poste-
rior evaluation of I (when P (A|LA) is below confidence),
we need only compose it from the sum of 2 posteriors,
P (A|LA)+P (B∪B∗|LA), rather than using all three terminal
posteriors. Thus only a target posterior P (A|LA) and a non-
target siblings posterior P (B ∪ B∗|LA) are necessary. This
two-case posterior approach extends to each level above when
evaluating a potential generalized label that has more than
2 children. It is worth noting that any posterior estimation
error should be reduced when estimating a single union model
(e.g., P (B ∪ B∗|LA)) as compared with the accumulated
error from the sum of individually estimated posteriors (e.g.,
P (B|LA) + P (B∗|LA)).

The vector of generalized logits for starting at A can
therefore be re-written as

LA = [`A, ˆ̀
I\A, ˆ̀

M\I , ˆ̀
O\M ] (13)

where ˆ̀
X\Y represents the generalized logit for the set of

children for node X with child Y removed. To compute ˆ̀
I\A,

for example, when I has children A, B, and B∗, the following
can be employed

ˆ̀
I\A = ln(e

ˆ̀
I − e`A) = ln(e`B + e`B∗ ) = ˆ̀

B∪B∗ (14)

When using the actual binary tree, the logit vector does
not change from before using this formulation (LA =
[`A, `B , ˆ̀

J , ˆ̀
N ]).

This binary approach allows the method to retain a compact
conditioning logit vector and small number of posteriors
independent of the tree width. The length of the logit vector
and number of posteriors are dictated only by the tree depth
to the initial hypothesis.

C. Posterior Model

We model the posterior of a label/node using logistic re-
gression, where a sigmoid is estimated using our conditioning
logits Li = [`1, · · · , ˆ̀

k] with all ground truth positive and
negative examples of class Ni from a validation set (as not to
overfit the same training data used by the base classifier [17]).
The logistic regression model is given by

P (Ni|Li) =
1

1 + exp(−f(Li))
(15)

with the linear function f(Li) = (a0 + a1`1 + · · · + ak ˆ̀
k).

In [16], a similar Platt Scaling model using only a single
logit was employed (a0 + a1`1). To estimate the parameters
in Eqn. 15, the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno algorithm [18] was employed, though other methods
could be used. We will also use this logistic regression
model for the REFERENCE posteriors employed as a baseline
technique in the experiments.

To account for any possible numerical precision deviations
during inference with a test example, the set of posterior values
on the generalization path (corresponding to the initial starting
hypothesis and conditioned with the logit vector for the test
example) should be L1-normalized (as used in [16]) prior to
inference. This guarantees a summation to 1 of the posteriors
for the test example at the root node.

IV. EXPERIMENTS

To demonstrate the advantages of the proposed method,
we compared our approach with [16] and [17] (described in
Sect. II) across multiple datasets and base classifiers, and ad-
ditionally measured the similarity of the prediction posteriors
against the desired REFERENCE posteriors, where applicable.

A. Datasets, Label Hierarchies, and Base Classifiers

We examined four established classification datasets for the
comparison of techniques. ImageNet-Animal was employed in
[17] and contains 398 classes of animals (from the full Ima-
geNet collection [19]), each with different numbers of training
examples and 50 testing examples (given as validation). The
standard CIFAR-100 dataset [20] contains 100 various objects
and scenes, each with 500/100 training/testing examples. In
addition, the smaller, yet distinct, CIFAR-10 [20] dataset has
10 object classes, each with 5K/1K training/testing examples.



Lastly, the Fashion-MNIST (F-MNIST) dataset [21] similarly
contains 10 classes (shirts, pants, shoes, etc.), each with 5K/1K
training/testing examples. As a validation set is required for
the methods compared, each class in every testing dataset was
randomly, and equally, partitioned into separate validation and
test examples.

The semantic trees for the datasets used in the experiments
were derived from WordNet using the approach provided
in [17] and are shown in Figs. 2-5. The bold numbers in
parentheses for Figs. 2 and 3 denote the number of terminals
associated with the higher generalized labels, and ‘· · · ’ denotes
additional generalized nodes present but not displayed due to
space. We note that other trees could be used and that they
will certainly be application dependent. The min/median/max
length of conditioning generalized logit vectors associated
with the terminals in each tree are ImageNet-Animal: 3/6/10,
CIFAR-100: 2/9/12, CIFAR-10: 3/4/5, and F-MNIST: 2/5/5
(all are much smaller than the original number of terminal
labels).

We selected different CNN base classifiers (one for each
dataset) spanning different accuracies to provide the terminal
class logits. A CNN adapted from the VGGNet structure [22]
was trained on F-MNIST to an accuracy of 92.4% (high ac-
curacy). A ResNet-20 (v1) model [23] was trained on CIFAR-
10 to 85.6% (medium accuracy). For ImageNet-Animal, we
employed a ResNet-152 (v1) model [24] (pre-trained on [19])
giving an accuracy of 84.6% (medium accuracy). Lastly,
another ResNet-20 model was purposely trained on CIFAR-
100 to only 65.2% (low accuracy). We used this range of
base classifier accuracies (strong to weak) to compare the
approaches across various possible classifier situations.

B. Metrics
To evaluate the inference methods, we included metrics

used in [16] and [17], along with a few new metrics. The
various metrics give credit for predictions that exist on the
correct IS-A ancestral path of the ground truth, including the
root [16]. No partial credit is given for a prediction off the
upward path of the ground truth. Some of the metrics are based
on the sets of originally Correct (C) and originally Incorrect
(IC) base classifier predictions (given the ground truth and
argmax of the logits). We also compared the posterior values
of predictions for each method (for applicable datasets) with
the corresponding REFERENCE posteriors (described at the
beginning of Sect. III), where logistic regression was employed
on the full set of base classifier logits at the terminal level
(though a model other than logistic regression could be used).
We report the following values:

• C-Corrupt is the fraction of originally Correct (C) predictions
from the base classifier that are relabeled to an incorrect label
off the ancestral path of ground truth. Lower proportions are
desired.

• IC-Reform [17] is the fraction of originally Incorrect (IC)
base predictions that are generalized to a correct label on
the ancestral path of the ground truth. Larger proportions are
desired.

• Accuracy is the fraction of predictions of the generalized
classification results that are correct, where any non-terminal

node on the ancestral path of ground truth (including the root)
is considered a correct label (as used in [16]).

• avg-sIG corresponds to the depth of the generalizations in terms
of Information Gain (IG), as similarly used in [16]. The scaled
IG (sIG) for a correct prediction at node Ni is

sIG(Ni) = (log2 |T | − log2(|↓(Ni)|)) / log2 |T | (16)

where T is the set of all terminals. When a correct prediction
is at the terminal level (most precise), the scaled gain is
sIG = (log2 |T | − log2 1) / log2 |T | = 1. When a prediction is
withdrawn to the root (‘Unknown’), the scaled gain is sIG = 0.
The sIG is 0 by default for any incorrect prediction. We compute
the average across all test examples to get avg-sIG.

• C-Withdrawn [17] is the fraction of originally Correct (C) base
predictions assigned to the root node (‘Unknown’).

• IC-Withdrawn [17] is the fraction of originally Incorrect
(IC) base predictions assigned to the root node (‘Unknown’).
As these predictions were originally incorrect and potentially
unclassifiable (e.g., due to occlusion), this value could be large.

• avg-Ref-diff is the average of the difference acquired by sub-
tracting the associated REFERENCE posterior value from the
examined inference method’s posterior value for each of the
test predictions. A value close to zero is desired, as it signifies
the posteriors of the inference method are similar to the desired
REFERENCE posteriors. The standard deviation will also be
provided. Note that this score is applicable only for datasets
where the actual REFERENCE posteriors can be computed.

• avg-Ref is the average of the corresponding REFERENCE pos-
terior values for all test predictions determined from a partic-
ular inference method. A value that meets/exceeds the given
confidence threshold is desired as it shows that the inference
approach actually adheres to the confidence threshold with
respect to the REFERENCE posteriors. The standard deviation
will also be provided. Again, this score is applicable only for
datasets where the REFERENCE posteriors can be computed.

C. Hierarchical Inference Comparison

We compared our approach with [16] and [17] on each
dataset/classifier and report the results in Tables I-IV for
the specified metrics at 90% and 95% confidence thresholds
(100% confidence typically drives inference to top-level ‘Un-
known’ decisions). We also provide the performance of the
base classifiers (with no hierarchical inference).

We begin with evaluation of the approaches on CIFAR-10
and F-MNIST as their posteriors can be scrutinized against
the desired REFERENCE posteriors (which can be computed
for these two datasets). Given a semantic tree and a confi-
dence threshold for a dataset, we seek to evaluate whether
an inference approach picks the “right” labels for the test
examples. Choosing the root (‘Unknown’) for an example
could actually be the appropriate decision. Evaluation of the
corresponding REFERENCE posterior values for each algo-
rithm’s predictions is used to show which inference method
provides the most appropriate predictions (with respect to the
REFERENCE method).

Comparative results for CIFAR-10 are shown in Table I.
For [16], the learned parameters (on the validation set) were
λ90% = 0.934 (ε = 90% confidence) and λ95% = 3.328 (ε =
95% confidence), and a single ε̃ = 0.001 was used for all
datasets. The proposed approach has the overall largest IC-
Reform and has the smallest C-Corrupt along with [17] (and



Unknown
Vertebrate Invertebrate

Mammal Reptile Bird Fish · · · Arthropod · · ·
Placental · · · Diapsid · · · Aquatic Oscine · · · Teleost · · · Insect · · ·

Ungulate Primate Carnivore · · · Snake Lizard · · · Wading · · · · · · fish · · ·
Even-toed · · · Monkey · · · Canine Feline · · · · · · · · · bird
ungulate · · · Dog · · · · · · · · ·
· · · Hunting Working · · ·

Hound Terrier Sporting Shepherd · · ·
· · · · · · · · · · · ·

(15) (2) (13) (7) (19) (26) (17) (1) (12) (18) (25) (12) (13) (15) (17) (6) (17) (11) (3) (5) (16) (8) (11) (24) (10) (6) (8) (27) (20) (14)

Fig. 2. ImageNet-Animal semantic hierarchy.
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· · · Conveyance Furniture · · · · · · Invertebrate Vertebrate Woody Plant · · ·

Vehicle · · · · · · Arthropod Mammal Reptile Fish Tree
Wheeled Vehicle Insect · · · Placental · · · Diapsid · · ·
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(4) (5) (1) (1) (2) (5) (9) (3) (5) (4) (3) (2) (5) (9) (9) (2) (4) (1) (5) (1) (5) (1) (4) (1) (2) (4) (2) (1)

Fig. 3. CIFAR-100 semantic hierarchy.

Unknown
Vertebrate Vehicle

Placental Craft Motor Vehicle
Ungulate Carnivore

deer horse cat dog frog bird airplane ship automobile truck

Fig. 4. CIFAR-10 semantic hierarchy.

Unknown
Covering

Clothing Footwear
Garment Shoe

t-shirt shirt pullover coat trouser dress sneaker sandal ankle boot bag

Fig. 5. F-MNIST semantic hierarchy.

[16] at 95%). Note that [17] will always have C-Corrupt =
0 as it starts with the original base classifier hypothesis. The
proposed approach has the highest hierarchical accuracy score.

Examining the avg-sIG scores (reflecting the depth of pre-
dictions), the largest values (deepest predictions) are given
by [16], and are similarly supported by their low C/IC-
Withdrawn values. Many more examples were assigned to the
root ‘Unknown’ node for the proposed approach and [17].
However, we must evaluate the posteriors against the REF-
ERENCE posteriors to justify whether the deeper predictions
and lower withdrawals are actually warranted. The avg-REF-
diff (and standard deviation) for the proposed approach shows
that its posterior values are actually much closer and tighter to
the desired REFERENCE posterior values. The method of [17]
is overly confident and thus falsely assigns labels deeper in

the tree. Furthermore, the avg-REF (and standard deviation)
shows that the proposed method better meets/exceeds both
confidence thresholds ([17] only passes at 90%). Since [16]
optimizes only on the validation set during training, it cannot
guarantee that any test prediction meets/exceeds the confidence
threshold. It actually shows under-confidence in the avg-REF
values. From comparison to the REFERENCE method, the
results of proposed approach should therefore be accepted over
the other methods.

The results for F-MNIST are shown in Table II. The pa-
rameters used for [16] were λ90% = 0.000 and λ95% = 1.972.
As before, the proposed approach has a much stronger IC-
Reform than the other methods and a similar C-Corrupt. The
avg-sIG and C/IC-Withdrawn comparative trends are similar
to the previous dataset. The avg-REF-diff scores again show



TABLE I
CIFAR-10 AT 90% AND 95% CONFIDENCE.

Base Proposed [16] [17]
90% 95% 90% 95% 90% 95%

C-Corrupt - .00 .00 .02 .00 .00 .00
IC-Reform - .93 .98 .47 .74 .79 .82

Accuracy .86 .99 1.00 .91 .96 .97 .97
avg-sIG .86 .59 .48 .84 .77 .76 .72

C-Withdrawn - .11 .16 .00 .01 .04 .04
IC-Withdrawn - .26 .34 .00 .08 .21 .21

avg-REF-diff - .01 .01 -.04 -.03 .06 .06
st. dev. - .05 .03 .10 .08 .10 .09

avg-REF .79 .96 .98 .85 .91 .91 .92
st. dev. .22 .06 .04 .18 .12 .10 .09

that the posteriors used in the proposed approach are much
more similar to the target REFERENCE posteriors. Lastly, both
the proposed approach and [17] successfully meet/exceed both
confidence thresholds. The REFERENCE comparisons indicate
again that the proposed method is more preferred.

We also examined the inference methods on CIFAR-100
and ImageNet-Animal. As the REFERENCE posteriors cannot
be computed on these datasets due to their dimensionality,
we therefore present the results for the approaches with the
expectation of similar inference behavior and support for
the proposed approach. We employed a weak base classifier
(65.2% accuracy) for CIFAR-100 and a more reasonable base
classifier (84.6% accuracy) on ImageNet-Animal to examine
the methods with disparate initial base classifier performances.

Results for CIFAR-100 are provided in Table III. For
this dataset, the parameters for [16] were λ90% = 2.102
and λ95% = 3.575. The proposed approach retains similar
performance, though the avg-sIG values are much lower. Given
that the C/IC-Withdrawn values are fairly similar across the
methods, this states that the predictions are more generalized
in the semantic tree with the proposed approach. Lastly, the
results for ImageNet-Animal are given in Table IV. The param-
eters for [16] were λ90% = 0.076 and λ95% = 2.404. These
results show a much stronger IC-Reform for the proposed
approach, though with higher C/IC-Withdrawn values. As it
was shown that the posteriors of the proposed approach were
much more similar to the REFERENCE posteriors for CIFAR-
10 and F-MNIST, we therefore expect the CIFAR-100 and
ImageNet-Animal results to be more appropriate with the
proposed approach.

We show a few test predictions across the datasets from
the proposed approach at 90% confidence in Fig. 6. Note that
CIFAR-10/100 and F-MNIST are comprised of very small,
low-resolution images and thus appear blurry in the figure.
In the generalized examples of apple and hammerhead, the
base classifier actually predicted the correct labels, though they
were deemed unreliable and reasonably generalized by the
approach to ‘Produce’ and ‘Fish’. The C-Withdrawn examples
of automobile and bag were also correctly classified by the
base classifier, but again they were not confident or standard
instances and therefore set to ‘Unknown’. It is difficult to see
any obvious object in these images. The IC-Reform examples

TABLE II
F-MNIST AT 90% AND 95% CONFIDENCE.

Base Proposed [16] [17]
90% 95% 90% 95% 90% 95%

C-Corrupt - .00 .00 .02 .01 .00 .00
IC-Reform - .93 .98 .22 .46 .81 .85

Accuracy .92 .99 1.00 .92 .95 .99 .99
avg-sIG .92 .79 .72 .92 .90 .85 .84

C-Withdrawn - .01 .01 .00 .00 .00 .00
IC-Withdrawn - .07 .08 .00 .00 .02 .03

avg-REF-diff - .02 .01 -.03 -.03 .04 .04
st. dev. - .03 .03 .09 .08 .07 .07

avg-REF .88 .97 .98 .88 .92 .95 .95
st. dev. .15 .05 .03 .15 .12 .08 .07

TABLE III
CIFAR-100 AT 90% AND 95% CONFIDENCE.

Base Proposed [16] [17]
90% 95% 90% 95% 90% 95%

C-Corrupt - .00 .00 .02 .01 .00 .00
IC-Reform - .98 .99 .74 .86 .80 .81

Accuracy 0.65 .99 1.00 .90 .95 .93 .93
avg-sIG 0.65 .16 .11 .55 .48 .51 .46

C-Withdrawn - .02 .04 .02 .05 .01 .01
IC-Withdrawn - .04 .06 .02 .08 .02 .03

TABLE IV
IMAGENET-ANIMAL AT 90% AND 95% CONFIDENCE.

Base Proposed [16] [17]
90% 95% 90% 95% 90% 95%

C-Corrupt - .00 .00 .03 .01 .00 .00
IC-Reform - .96 .98 .48 .72 .67 .70

Accuracy .85 .99 1.00 .89 .95 .95 .95
avg-sIG .85 .30 .20 .78 .69 .71 .68

C-Withdrawn - .07 .13 .00 .01 .01 .01
IC-Withdrawn - .09 .14 .00 .06 .03 .05

of ankle boot and bear show reasonable generalizations to
‘Footwear’ and ‘Placental’ given the confusing appearances.
It is understandable how the base classifier mislabeled bear
as elephant. In each case, the lowest common ancestor in the
semantic tree was selected for the incorrect base classifier
prediction and ground truth. Lastly, the IC-Withdrawn images
of lobster and deer have no obvious visual distinction in the
imagery and thus were incorrectly labeled by the base classifier
and set to ‘Unknown’ by our approach.

Overall, the proposed approach using generalized logits
provided the best C-Corrupt, IC-Reform, and Accuracy scores,
and was shown with CIFAR-10 and F-MNIST to better
approximate the desired REFERENCE posteriors. The largest
(deepest) avg-sIG across the datasets was achieved by [16], as
they directly optimize for deeper labels, though they reformed
less and adhered least to the REFERENCE posteriors. The
histogram-based method of [17] was more similar to the
proposed approach in some situations, however that method
does not have monotonic, non-decreasing inference behavior
as labels are generalized.



Generalized C-Withdrawn IC-Reform IC-Withdrawn

apple automobile ankle boot lobster
apple automobile sneaker forest

‘Produce’ ‘Unknown’ ‘Footwear’ ‘Unknown’

hammerhead bag bear deer
hammerhead bag elephant airplane

‘Fish’ ‘Unknown’ ‘Placental’ ‘Unknown’

Fig. 6. Example classification results at 90% confidence from the four datasets
(Ground truth / Base Classifier / ‘Proposed method’).

V. CONCLUSION

In this work, we presented a bottom-up probabilistic in-
ference framework that generalizes an initial label hypothesis
within a hierarchical representation until a highly confident
prediction can be found. We condition the estimation of
label posteriors using a compact vector of generalized logits.
The proposed post-processing architecture offers an efficient
means to hierarchical inference while retaining monotonic,
non-decreasing inference behavior. Experimental results com-
pared related methods on multiple datasets and base classifiers
trained to various accuracies to demonstrate the applicability
of the approach. A further comparison to a reference posterior
(when applicable) was used to determine the reliability of the
predictions. The method is applicable to multiple classification
scenarios in which confident, generalized output labels are
preferred over flat, unconfident predictions.
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