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Abstract

We present an approach for recognizing human walk-
ing movements using low-level motion regularities and con-
straints. Biomechanical features for classification are auto-
matically extracted from video sequences of walkers. A mul-
tiplicative classification rule using statistical distances is
then used to determine whether an unknown motion is con-
sistent with normal walking patterns. Recognition results
are shown distinguishing walking examples across multiple
speeds from other non-walking locomotions.

1. Introduction

We can immediately recognize anatypicalwalking pat-
tern (e.g., limping) from inconsistencies of that motion with
our strong perceptual category fornormalhuman walking.
Furthermore, the normal walking category itself contains
variations (e.g., stride length increases with walking speed
[8]) which do not affect the classification. Most approaches
to motion recognition have overlooked the dynamic changes
exhibited within a motion category, having only examined
a small number of walkers each moving at a single pace.

In this paper, we describe a motion-based method for dis-
tinguishing normal walking movements at multiple speeds
from other atypical or non-walking locomotions. By mod-
elling low-level dynamic regularities and constraints in nor-
mal walking patterns, a sub-space of human walking mo-
tions is constructed for classification. Such a system would
be particularly useful for automated visual surveillance and
monitoring systems in helping to identify people that may
be injured or that may require assistance by recognizing
their atypical motion patterns.

We begin with a review of related research (Sect. 2) and
briefly describe the underlying motion representation (Sect.
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3). The method used to track the person (Sect. 4) and the
motion features used to characterize the walking gait are
then described (Sects. 5-6). We lastly present the recogni-
tion method and results (Sects. 7-8), and conclude with a
summary of the research (Sect. 9).

2. Related Work on Recognizing Gait

The most common approach to recognition of gait is the
analysis of trajectory information derived from features of
the walking body. The frequency-based approach of [9] ex-
amined the phase relationships of periodic elements for the
task of person identification from walking. Also address-
ing identification, [10] used the spatio-temporal braided pat-
terns of the legs within the XYT volume to detect walking,
and then extracted features of the pattern to identify indi-
viduals. To distinguish children from adults, [5] used corre-
lated stride-based properties of their spatio-temporal walk-
ing styles for classification. Additionally, [2] incorporated a
sequence of body signature skeletons into an HMM frame-
work to determine a posture transition path for recognition.

Certain types of motion recognition can benefit from a
model-based tracking pre-processor, but there are situations
where direct motion recognition with no part tracking is ap-
plicable (e.g., [4]). In [11], the periodic motion of pixels (as
created from walking) was analyzed throughout a sequence
using Fourier techniques. Another image-based periodicity
approach is described in [3], where time-frequency analysis
of a self-similarity measure between images in a sequence
was used to detect and characterize periodic (walking) mo-
tion. In [7], individual walkers were recognized by combin-
ing an Eigenspace transformation and a Fisher Linear Dis-
criminate function on background-subtracted silhouettes.

Our interests focus on thecategorizationof motion to
classify thetypeof movement. We present a low-level ap-
proach to distinguish walking from other non-walking loco-
motions.
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Figure 1. Person tracking in video. (a)-(c) Au-
tomatic identification of head, waist, and feet.
(d) Tracking of runner without rotation step.
(e) Tracking of runner with rotation step.

3. Motion Category Representation

Our overall goal is to represent various types of human
motion with low-level categories to permit efficient recog-
nition from partial (or limited) visual input. We define a
motion category as a parameterization of dynamic regulari-
ties together with any constraints:

Motion Category = Dynamic Regularities+ Constraints

The smoothly varying regularities describe the “genericity”
(or acceptable variations) of the class. The structural con-
straints allow for any fixed values to be included in the rep-
resentation. Multiple categories are separated by disconti-
nuities in the regularity and constraint parameterizations.

To illustrate a simple motion category, consider the class
of pendular motion for a swinging particle at the end of a
light inextensible cord. Thestructural constraintsinclude
the choices for the particle massM , cord lengthL, and
gravity G. The dynamic regularity(for small amplitudes)
consists of the correlation of the period of movementT to
L/G, as defined byT = 2π

√
L/G. We can then predict

(or verify) the period of movementT for a pendulum from
the observed length of the cordL (mass does not effect the
period). We seek to categorize human motion in a simi-
lar manner to classify different types of movements from a
small number of correlated features and constraints.

4. Person Tracking in Video

To track a person in video, we use a method based on
the W4 approach [6] to locate the head, waist, and feet.
The method is best suited to fronto-parallel views of the
walker, but can accommodate slightly different viewpoints.
We begin by extracting the person’s silhouette in each video
frame with a standard background-subtraction technique us-
ing RGB pixel differences, dilation, and removal of small

pixel regions. Then, we fit a line oriented to the principal
axis of the silhouette and un-rotate the silhouette so that the
principal axis is vertical. After applying a bounding box
to the un-rotated silhouette, we vertically separate the head,
torso, and leg regions using average anatomical proportions.

The head point is found as the centroid of the silhouette
pixels in the head region. The waist location within the torso
region is determined from the mean x-value of the silhou-
ette pixels in the torso region and the expected y-coordinate
of the waistline. To locate the feet, the region of the bound-
ing box below the waistline is divided into equal left and
right halves, where each half is assumed to contain one leg.
Within each leg region, the principal axis of the silhouette
pixels within that region is found. The foot points are de-
termined to be the most extreme silhouette pixels in the di-
rection of those lines away from the waist. The data points
are then rotated back to their actual positions in the image,
low-pass filtered, and stabilized (relative to the head point).
Results of the tracking method are shown in Fig. 1.(a)-(c).

We added the rotation step to the W4 method in order
to increase the likelihood of finding all the necessary body
parts, even when the person’s body is oriented so that both
legs are in the same half of the leg region of the bounding
box. Figure 1.(d)-(e) compare the body tracking method of
a runner with and without the rotation step.

5. Low-Level Gait Features

Rather than attempting to match joint angles, limb
lengths, or poses, we employ four motion properties of the
tracked feet locations to demonstrate the approach. Three
features together comprise the dynamic regularities; the re-
maining feature is a structural constraint. Additional fea-
tures showing biomechanical regularities and constraints in
locomotion to extend the model can be found in [8].

5.1. Dynamic Regularity Features

The first three biomechanical features are temporal prop-
erties and are generally independent of the camera position.

• Cycle Time: Tc. One of the most fundamental de-
scriptors of locomotion is the cycle time of a leg, which
decreases with increasing walking speed. Cycle time is
determined by calculating the time difference between
neighboring minimal (or maximal) peaks in each foot’s
x-trajectory.

• Stance/Swing Ratio:τ . Our second feature is the ra-
tio of stance and swing times of a leg. The stance time
is approximated by the front-to-back interval of the
leg, and corresponds to the time difference between
a maximal peak and the subsequent minimal peak in
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Figure 2. Dynamic feature regularities. (a) Tc vs. τ . (b) Tc vs. Tds. (c) τ vs. Tds. Linear prototypes
with ±5σ are shown.

the x-trajectory. Similarly, the swing time is approx-
imated by the temporal interval of the back-to-front
translation of the leg, and is determined by calculating
the time difference between a minimal peak and the
subsequent maximal peak in the corresponding foot’s
x-trajectory. The stance/swing ratio decreases as a per-
son walks faster.

• Double Support Time: Tds. Our next feature approx-
imates the time that both feet are in the stance phase
(double support), and is measured by the time differ-
ence from when one leg begins its return (onset of
stance time in leg 1) to when the other leg starts mov-
ing forward (onset of swing time in leg 2). The dou-
ble support time is determined by the temporal differ-
ence between a minimal peak in one foot’s x-trajectory
and the nearest maximal peak in the other foot’s x-
trajectory. The double support interval approaches
zero as a person walks faster.

5.2. Constraints

In this paper we include only one view-based constraint,
but other physical or motion constraints could be added.

• Extension Angle: θ. The extension angle is the
fronto-parallel angle made from the xy position of the
maximal forward extension of the leg in front of the
body to the most distant extension of the leg behind the
body. We calculate this feature for a given foot as the
angle between the xy coordinates of maximal spatio-
temporal curvature in the front and back halves of the
xy-trajectory for a single walking cycle. This angle is
nearly zero for people during walking.

6. Walking Category

To construct the motion category for walking, we
recorded a video database of 17 male and female walkers
each moving at slow, medium, and fast paces. From the
person tracking output, we computed our motion features
(Tc, τ , Tds, θ) for multiple cycles of each individual. Each
walking cycle was analyzed separately with no averaging of
features over multiple cycles. Each leg was also analyzed
separately.

Three pairwise combinations of the temporal features
were used to construct the dynamic regularities. In Fig. 2.a,
we presentTc vs. τ that characterizes the typical walking
timings for a single leg (correlation ofρ = 0.87). In Fig.
2.b,Tc vs. Tds represents how the two legs move in tempo-
ral relation to one another over multiple speeds (ρ = 0.93).
Lastly in Fig. 2.c, we seeτ vs. Tds that also relates to the
temporal movement of the two legs (ρ = 0.91). The con-
straintθ had a nearly Gaussian distribution centered around
zero degrees (σθ = 1.392).

7. Recognition Method

To determine class membership for a new movement to
this walking category, statistical measures of the new fea-
tures are combined into a single binary classification result.

For the regularity features, the perpendicular Maha-
lanobis distance of the new feature values to linear proto-
types are computed using

Ri =
|αiXi − Yi + βi|

σi

√
α2

i + 1
(1)

with {X1 = Tc, Y1 = τ , α1 = 1.000, β1 = .420} for the
single-leg regularity, and{X2 = Tc, Y2 = Tds, α2 = .281,
β2 = −.191} and {X3 = τ , Y3 = Tds, α3 = .274,



β3 = −.298} for the coupled-legs regularities. Theαi, βi

parameters were determined from training using an Eigen-
vector line fitting process that minimizes the sum of squares
of the perpendicular distances from the training points to the
linear prototype. The standard deviationsσi were computed
as the overall deviation along each regularity (σ1 = .081,
σ2 = .023, σ3 = .027). We show the linear prototype mod-
els with±5σ class boundaries in Fig. 2.

Constraint features are examined using the standard Ma-
halanobis distance. The distance for a newθ to the model is
computed by

Cθ =
|θ − θ̄|

σθ
(2)

with θ̄ = .064 andσθ = 1.392 degrees.
To be classified as typical walking, the regularity and

constraint distances (Ri, Cθ) are thresholded and incor-
porated into the binary resultM using a product classifi-
cation rule to discount those movements having any non-
conforming properties:

M = Ĉθ

∏
i

R̂i, X̂k =
{

1 Xk ≤ 5
0 otherwise

(3)

The result is a single binary membership assignment for the
movement to the walking category (0=reject, 1=accept).

8. Experimental Results

To test the approach, we collected several new ex-
amples of normal walking and other non-walking loco-
motion sequences. The set of typical walking included
slow/medium/fast paces of one person filmed a week apart
from the training sequences and of three new people not
used in training. Additionally, a single sequence from the
walking dataset of [1] and of a 4-year-old child were tested.
We also tested an outdoor sequence in which the walker
moved at a non-fronto-parallel angle relative to the camera.
The non-walking locomotions included video sequences of
people jogging, running, limping, skipping, marching (two
styles), crawling, sidestepping, walking backwards, hop-
ping, and tumbling. We also tested two artificial walking
sequences: a fast pace slowed down by 50% and a slow
pace played at double the normal speed.

The classification results using the gait features and Eqn.
3 were calculated for the sequences. All 15 normal walk-
ing sequences were correctly classified (with mostRi, Cθ

within 2.5σ). Eleven of the 14 non-walking sequences were
correctly rejected (most with at least one regularity or con-
straint distance> 8σ).

The three incorrectly classified sequences were skipping,
high-knee marching, and walking backwards. Skipping and
high-knee marching should have had invalid extension an-
gles since the foot trajectories peak high near the body.

However, imprecise foot tracking when the legs are close to-
gether resulted in inaccurate spatio-temporal curvature cal-
culations, so these sequences were misclassified. We hy-
pothesized that walking backwards would be classified as
non-walking due to different stance/swing ratios or exten-
sion angles. However, the temporal and spatial feature val-
ues are almost identical to those of people walking forward.

9. Summary

We presented an approach for representing and recogniz-
ing walking movements using a small number of low-level
motion regularities and constraints. To construct the walk-
ing category, biomechanical motion features were com-
puted from real video sequences of 17 people walking at
multiple speeds. A multiplicative classification rule us-
ing statistical distances was used to determine whether an
unknown motion was consistent with normal walking pat-
terns. Results using several normal walking patterns and
non-walking locomotions demonstrated the ability of the
approach.
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