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Abstract

There has been a recent and increasing interest in com-
puter analysis and recognition of human motion. Previ-
ously we presented an efficient real-time approach for rep-
resenting human motion using a compact “Motion His-
tory Image” (MHI). Recognition was achieved by statisti-
cally matching moment-based features. To address previ-
ous problems related to global analysis and limited recog-
nition, we present a hierarchical extension to the original
MHI framework to compute dense (local) motion flow di-
rectly from the MHI. A hierarchical partitioning of motions
by speed in an MHI pyramid enables efficient calculation
of image motions using fixed-size gradient operators. To
characterize the resulting motion field, a polar histogram of
motion orientations is described. The hierarchical MHI ap-
proach remains a computationally inexpensive method for
analysis of human motions.

1. Introduction

The tracking and recognition of human motion, ac-
tion, and events using computer vision has recently gained
widespread interest in both academic and industrial re-
search, with much emphasis on real-time systems [7, 21,
20, 14, 1, 24]. The applied significance for machines capa-
ble of human motion recognition can be found in automatic
surveillance and monitoring systems, video content analy-
sis, and Perceptual User Interfaces [26]. With the emer-
gence of increasingly faster computers enabling real-time
video analysis, there will be a growing role for computer
recognition of human motion and activity.

Previously, we developed a real-time approach for rep-
resenting human movement that recursively integrates the

�
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motion throughout a video action sequence into a single
“Motion History Image” (MHI) [9, 3]. For recognition,
higher-order moment features computed from the template
were statistically matched to trained models. The approach
was used within several interactive virtual environments re-
quiring computer interpretation of the participant’s motions
(e.g., [4, 10, 5]). Though the approach has proven a use-
ful real-time method in constrained situations, it still has a
number of limitations related to the global image feature
calculations and specific label-based recognition.

In this paper, we address these limitations by extending
the approach with a mechanism to compute a dense (local)
motion vector field directly from the MHI for describing the
movement. Raw motion information is not globally affected
by minor occlusions and may be favored in recognition sit-
uations when a precisely labeled action is not required or
even possible. For example, a system may be designed to
respond to leftward motion, but may not care if a person,
hand, or car created the motion. The main contribution of
this new approach is the use of a hierarchical MHI repre-
sentation that compensates for the varying speeds that are
common to articulated human motion.

We begin with an overview of the general MHI frame-
work (Sect. 2). Then we describe a gradient-based mech-
anism for extracting motion flow (Sect. 3) within a hier-
archical MHI pyramid representation (Sect. 4). From the
motion gradients, motion orientation histograms are con-
structed and evaluated as a means of movement character-
ization (Sect. 5). Lastly, we discuss additional capabili-
ties and the system implementation (Sect. 6), followed by a
summary of the research (Sect. 7).

2. Motion History Images

In prior work we developed the basic MHI framework
for representing and recognizing human motions [9, 3]. The
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Figure 1. Top row: Keyframes of an arm
stretching exercise movement. Bottom row:
MHIs corresponding to keyframes in the top
row.

method focuses on accumulating and recognizing holistic
“patterns of motion” rather than trajectories of structural
features. Similar use of templates for characterizing motion
include work by [22, 19, 12], but are constrained to very
particular domains (e.g., periodicity, facial motion). Our
general template method is targeted at representing arbi-
trary human (and other) movements. The strength of the
approach is the use of a compact, yet descriptive, real-time
representation capturing a sequence of motions in a single
static image (similar to [18]). The MHI is constructed by
successively layering selected image regions over time us-
ing a simple update rule:
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else if
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where each pixel (x,y) in the MHI is marked with a current
timestamp � if the function � signals object presence (or
motion) in the current video image

����	���'�
; the remaining

timestamps in the MHI are removed if they are older than
the decay value �(#)% . This update function is called for
every new video frame analyzed in the sequence.

The function � that selects a pixel location in the input
image for inclusion into the MHI can be arbitrarily spec-
ified. Since the template representation captures both the
position and temporal history of a moving object, many pos-
sibilities for selecting regions of interest are applicable. De-
tectors may include background subtraction, image differ-
encing, optical flow, edges, stereo-depth silhouettes, flesh-
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Figure 2. Effect of altering the decay parame-
ter % (in seconds) in Eqn. 1.

colored regions, etc. With an object selection process for� (e.g., background subtraction), the representation can ac-
commodate slowly moving regions (

!
1 pixel/frame) that

would otherwise be missed by image differencing or stan-
dard optical flow. For the results presented here, we used a
threshold-difference background subtraction method.

To illustrate the construction of an MHI, keyframes from
a sequence of a person performing an “arm stretch” move-
ment and the corresponding (cumulative) MHIs are pre-
sented in Fig. 1 ( % ��,'+ 2/2 sec.). For display purposes the
timestamp pixel values in the templates are linearly mapped
to graylevel values 0–255. Here the brightness of a pixel
corresponds to its recency in time (i.e., brighter pixels are
the most current timestamps). Depending on the value cho-
sen for the decay parameter % , an MHI can encode a wide
history of movement (See Fig. 2).

Our initial approach to recognition with MHIs [9] was
to extract several higher-order scale and translation invari-
ant moment features [16] (also from a binarized version)
and statistically match them to stored model examples using
the Mahalanobis distance [25]. Though successful in con-
strained situations with single and multiple cameras, a limi-
tation with that recognition method was the holistic genera-
tion (and matching) of the moment features computed from
the entire template. Any occlusions of the body or errors
from the implementation of � resulted in serious recog-
nition failures. Also the recognition method was limited
to only label-based (token) recognition, where it could not
yield any information other than specific identity matches
(e.g., it could not report that “upward” motion was occur-
ring at a particular image location). This led us to consider
a more localized approach to motion analysis of the MHI.

3. Motion Gradients

From Eqn. 1, the MHI layers the � regions over time in
such a way that the visual appearance of the layered regions
gives the impression of motion directly from the intensity



gradients in the template. It is quite apparent from MHI-
70 in Fig. 1 that the upward progression of movement is
captured in the dark-to-light intensity gradients.

Since motion can be perceived from the displayed times-
tamp gradients in the template, one could theoretically con-
volve gradient masks with the timestamp values in the MHI
to extract a motion vector at each pixel (this is similar in
concept to computing normal flow along brightness con-
tours [15]). We demonstrated this basic concept in [8, 11].

The use of a discrete fixed-sized gradient mask to calcu-
late the template’s motion vectors, though, has an inherent
bias to particular motion speeds, where the motion displace-
ment (gradient) must appear within the spatial resolution of
the gradient mask. For example, the standard 3 � 3 Sobel
gradient masks

��� � �� # 1 � 1# , � ,# 1 � 1
��	��
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limit the range of recoverable motion to a 2-pixel maximum
object displacement in each dimension. The convolution of
3 � 3 gradient masks (or masks of similar dimension) will
therefore not produce motion vectors at faster moving re-
gions because no overlapping or layered object regions are
visible within the window. If we were to simply employ
larger spatial gradient masks, this would alternatively re-
duce the granularity of measurements attainable in slower
moving regions.

We need an adaptable mechanism to appropriately ex-
tract the MHI motions of different velocities. One approach
could employ multiple, competing gradient masks of dif-
ferent spatial coverage. Our approach instead is to exploit
the gradient information with a hierarchical representation
using fixed-size gradient operators.

4. Hierarchical MHIs

Much like the work on hierarchical motion estimation,
stereo matching, and image coding using image pyramids
[2, 23, 6], we extend the original MHI representation into
a hierarchical pyramid format to provide us with a means
of addressing the gradient calculation of multiple image
speeds. An image pyramid is constructed by recursively
lowpass filtering and sub-sampling an image (i.e., power-of-
2 reduction with anti-aliasing) until reaching a desired size
of spatial reduction. With a pyramid representation, two im-
ages having large motion displacements between them will
have smaller displacements when compared at increasingly
higher (reduced) pyramid levels. This permits us to use
fixed-size gradient masks in each pyramid level (along with
some constraints) to calculate motions of different speeds.
The result is a hierarchy of motion fields where the resulting
motion computed in each level is tuned to a particular speed
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Figure 3. Image pyramids. (a) � pyramid of
a person silhouette. (b) MHI pyramid created
from (a).

(with faster speeds residing at higher levels). In addition,
the spatial reductions in the pyramid generation help to fill
in any small gaps that may have been missed by � .

Unfortunately, we cannot simply convert the MHI di-
rectly into a pyramid using the anti-aliasing reduction tech-
niques described. Since the MHI is composed of times-
tamps rather than graylevels, anti-aliasing the border val-
ues of the motion regions with the null background (or re-
gions missed by � ) under a lowpass operation will corrupt
the timestamp values. Alternatively, the � silhouette im-
age itself has no such temporal sequencing and it can be
transformed directly into a pyramid and used to create the
targeted MHI pyramid. Since � is required to produce a
binary image for Eqn. 1, we post-convert each grayscale� pyramid level into a binary image by thresholding the
anti-aliased images above zero (equivalent to dilating each
image by half the size of the blur window). A binary � im-
age pyramid for frame 35 of the arm stretching movement
is shown in Fig. 3(a). To create the corresponding MHI
pyramid, each level from the � pyramid is used to update
an MHI of that particular resolution. This indirect method
of generating the MHI pyramid remains computationally ef-
fective and can be done in parallel, resulting in the pyramid
shown in Fig. 3(b).



4.1. Motion orientation and speed

Before calculating the motion orientations and speeds in
each level of the MHI pyramid using the gradient masks, a
few constraints are initially required. First, the boundaries
of the motion regions should not be examined by the gra-
dient operators because of their adjacency to the null back-
ground values. We therefore impose an 8-connectedness
test for each timestamp pixel to verify that it is “interior” to
the motion region. Similarly, we do not examine the cur-
rent � silhouette timestamps ( � ). We additionally constrain
the

���
or
� �

gradient to have an absolute value above some
minimum to ensure that � 2 object regions are being lay-
ered as a ramp (rather than a step of uniform region) within
the gradient mask. For the implementation a threshold of
1/(2 � FPS) is used. An upper bound on the gradient can also
be enforced to discount those large temporal changes be-
yond some reasonable delay (e.g., 10/FPS).

Unlike the standard reintegration component (warp, ex-
pand, re-estimate) in the motion estimation of [2], we do not
require an iterative propagation of the course-to-fine motion
measures back to the size of the original MHI. Instead, for
each pixel we 1) choose the pyramid level that passes the
gradient constraints, 2) compute the motion from that level,
and 3) scale the result to the size of the original image. If
multiple pyramid levels pass the constraints in Step 1), then
we choose the level � with the minimum acceptable tempo-
ral disparity (finest temporal resolution):

� �
	�������������
	������� � �� �
	����� ��� � �� �
	����� � � (2)

The resulting motion orientation � and speed � com-
puted from level � for pixel

�
	�����
and scaled to level-0

follows with
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where
	 � � 	 � , �

,
 � �  � , �

, and velocities
#

are

# ���
	����� � ,$�&% �, � � �� ��	 � �� � � (5)

# � �
	����� � ,$�&% �, � � �� ��	 � �� � � (6)

The numerator in the velocity calculation corresponds
to the 2-pixel spatial extent of a 3 � 3 gradient window in
level-L scaled to the size of the original image. The de-
nominator represents the change in time visible in the gra-
dient window. For example, an object seen in level-2 mov-
ing a horizontal distance of 1 pixel every frame (at 30 Hz)
corresponds to

# � ��	���'��� �('�*) �*+ ��,-,(, � 1 ,/� pixels/sec ./
pixels/frame in the original image.
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Figure 4. Sub-sampling process. (a) Original
level-0 image. (b) Sub-sampling level-0 pro-
duces level-1. (c) Smoothed version of (b).

Since we are in effect using sub-sampled dilated � im-
ages to create the MHI pyramid, we need to first smooth
“inside” the aliased motion regions in each level of the MHI
pyramid to accommodate those timestamp values deleted
between the even numbered locations during sub-sampling
in the � pyramid. We illustrate this with a 1-D example in
Fig. 4. In the top row we have a collection of timestamps
at level-0 in an MHI pyramid. These values correspond to a
3-pixel wide object moving rightward at 3 pixels/frame. Af-
ter sub-sampling, only the timestamps in bold from level-0
survive to level-1. None of the locations in level-0 pass the
min-value gradient constraint. In level-1, the valid gradient
at the middle location (using Eqn. 5) produces a velocity
of 2 pixels/frame (

/ � � , � 1 � ) when in fact the motion is 3
pixels/frame. This is a result of no anti-aliasing while con-
structing the pyramid. But if we apply a 3 � 1 average mask
to level-1 (post reduction) to extend the gradient informa-
tion (See Fig. 4(c)), the timestamps can be used to recover
the correct velocity (

/ � � , � � , � �*2 ).
In Fig. 5(a) we show the selected pyramid levels (using

Eqn. 2 with the validation constraints) for each pixel in the
arm raising MHI from Fig. 1. As expected with arc motion,
the radially distant regions have a faster speed and are thus
calculated at a higher pyramid level. In Fig. 5(b) we plot
a histogram of the speeds computed using Eqn. 4. The
resulting motion field is displayed in Fig. 5(c) and captures
the overall expected pattern and organization of motions,
with the larger motion vectors most radially distant from
the point of rotation.

When body motions become extremely fast between
frames, the approach requires multiple pyramid levels to re-
duce the displacements for calculating the proper gradients.
A problem that can arise is illustrated with the MHI for
a jumping-jack exercise movement as shown in Fig. 6(a).
The level-0 MHI shows the quickly moving arms appearing
strobed and unlayered. The actual pixel distance between
the small hand region in consecutive frames is quite large
— approximately 12 pixels. The pyramid approach cannot
accommodate these small, fast arm motions for the size of
the regions becomes too small in the higher pyramid levels
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Figure 5. (a) Pyramid levels assigned to pix-
els in the MHI (three-level pyramid with level-
0=light-gray, level-1=medium-gray, and level-
2=black). (b) Histogram of calculated pixel
speeds. (c) Resulting motion field.

to be analyzed1. In Fig. 6(b) we show the motion com-
ponents that are recoverable with the approach using three
pyramid levels, capturing mostly the final arm motions and
the legs kicking out. The approach can however signal the
non-recoverable fast motion that does not pass the gradient
constraints in the upper-most level of the pyramid (See Fig.
6(c)). This way, the approach can announce that additional
faster motion is present, but not recoverable.

5. Motion Orientation Histograms

Once the motion field for the MHI has been computed
(e.g., Fig. 5(c)), several recognition methods could be ap-
plied to characterize particular movements. In the gesture
recognition work of [13], a single histogram of image edge
orientations of a user’s hand was used to recognize various
static gestures, with dynamic gestures formed by concate-
nating histograms of individual poses. We follow this ap-
proach and develop a motion orientation histogram by ac-
cumulating the orientations � of the motion flow computed
from the MHI pyramid (this method could be extended to
incorporate speed as well).

In the top row of Fig. 7 we present cumulative MHIs
for the arm stretching movement at frames 25, 45, and

1Inside blurring followed by the 8-connected check effectively erodes
regions at each level by approximately 2 pixels.

15 20 25 30 35 40 45 50

30

35

40

45

50

55

60

65

(a) (b) (c)

Figure 6. Jumping-jack movement. (a) Level-
0 MHI. (b) Resulting motion field using three
pyramid levels. (c) Regions identified with
speeds beyond pyramid range.

70. The corresponding cumulative motion orientation his-
tograms plotted in polar form are shown in the bottom row
of Fig. 7. The histograms are quantized by 5 degrees and
smoothed with a 5-tap Gaussian filter. The motion from
frames 0–25 appears as movement at 125

�

, from 0–45 the
motion extends clockwise to 60

�

, and from 0–70 includes
the remaining rightward motion.

We examined several different movements from the
database of exercise activities used in [9]. In Fig. 8, we
present the final keyframe, MHI, and polar motion orienta-
tion histogram for the movements. There are many similari-
ties in the actions, where moves (a) and (b) have general up-
ward motion (move (b) also has downward motion), moves
(c) and (d) have upward arcing motion, and moves (e) and
(f) possess diagonal downward motion. It is clear from the
polar motion orientation histograms that these movements
are significantly different from one another, which may not
be entirely expected given the coarse nature of the MHI rep-
resentation and histogram features.

For recognition, an unknown polar histogram can be nor-
malized and compared to a model histogram using the Eu-
clidean � � norm distance metric as a measure of similarity.
The comparative � � distances for the movements in Fig. 8
are shown in Table 1. To handle linear changes in perfor-
mance speed during recognition, the approach outlined for
the original MHI framework using a backward-looking time
window remains applicable [9].

Since histograms ignore the spatial configuration, move-
ments comprised of the same motion vectors, no matter
where they appear in the template, appear similar in a polar
motion orientation histogram. As shown in Fig. 9, side-
ways leaning and sitting from a particular viewpoint have
very similar polar motion orientation histograms but quite
different body configurations (actions).

To test the sensitivity of the representation to changes
in view angle, we examined two different movements each
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Figure 8. Top row: Key-frames from six aerobic exercise movements. Middle row: MHIs for the
movements. Bottom row: Polar plots of motion orientation histograms computed using an MHI
pyramid.
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Figure 7. Cumulative MHIs and polar motion
orientation histograms. (a) Frames 0-25. (b)
Frames 0-45. (c) Frames 0-70.
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Figure 9. Movements having similar polar mo-
tion orientation histograms but different ac-
tion. (a) Sideways lean. (b) Sitting.
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Figure 10. Reflection discrimination in the po-
lar motion orientation histograms.

��� ��� � 1 � 0 ��� � 2���
0.000 0.205 0.205 0.155 0.338 0.370���

– 0.000 0.085 0.089 0.207 0.262� 1 – – 0.000 0.105 0.243 0.294� 0 – – – 0.000 0.269 0.301���
– – – – 0.000 0.260� 2 – – – – – 0.000

Table 1. Euclidean � � norm ��� 	 � # 	�
��� mea-
sures for normalized polar plots in Fig. 8.

performed from different viewpoints. In Fig. 10, we show
MHIs for ��� � �

views of a forward arm-lift movement. The
motion calculation and polar motion orientation histograms
capture the subtle differences between these motions caused
by reflection, as shown in the bottom row in Fig. 10. In Fig.
11, we show the MHIs for � # 2/� � ��� ��� � 2/� ���

views of a side
arm-lift movement. The polar motion orientation histogram
representation quite distinctly captures the differences re-
sulting from the view-based changes.

To report the effect of occlusion on the representation,
we blocked out a region in the MHI containing motion
(prior to pyramid generation), computed the polar motion
orientation histogram, and compared the results with the un-
occluded version. In Fig. 12(a) we show the MHI for the
arm stretching movement with a 44 � 44 pixel motion region
removed. The calculated motion field for the occluded MHI
is shown in Fig. 12(b). From the motion field, the polar mo-
tion orientation histogram was computed and is displayed
in Fig. 12(c). For comparison, refer to the un-occluded his-
togram in Fig. 7(c). The occlusion does not preclude the
calculation of the remaining visible motions in the MHI,
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Figure 11. View change discrimination with
� # 2/� � � � � � � 2/� ���

views of the same movement.
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Figure 12. Occlusion example. (a) MHI with
occlusion region. (b) Motion field computed
from occluded MHI. (c) Polar motion orienta-
tion histogram of occluded MHI.

and thus the two versions are similar except for the missing
occlusion data. The normalized � � distance between the
histograms is 0.056 and is much smaller than the distances
of the un-occluded motion to the other exercise movements
in Fig. 8. A shape-based characterization will have a quite
different response.

6. Discussion

In addition to employing the motion orientation, the mo-
tion speed could be utilized for the task of motion segmen-
tation. Earlier work [5] presented a segmentation of regions
in an MHI using a downward-stepping floodfill algorithm
over the motion regions to identify areas of motion directly
attached to body parts. With the pyramid representation,
each level in the MHI hierarchy has associated with it mo-



tion of the same energy, thus providing a possible means
of segmentation by clustering motion regions in the same
pyramid level (similar to the layers work of [27]). The rela-
tive differences of motion between levels may be applicable
for differentiating multiple objects or motions.

We are currently implementing the hierarchical MHI ap-
proach in C++ using the highly optimized routines pro-
vided in the Intel Image Processing Library (IPL) and Open
Source Computer Vision (OpenCV) library [17]. Many of
the MHI functions and other necessary operators have al-
ready been incorporated into these packages. The main ad-
vantage to using the Intel libraries in terms of hardware is
that faster processing is now accessible on standard PC-
based platforms rather than on specialty systems or costly
workstations. With this infrastructure, we are seeking stable
real-time performance for a system that can be easily ported
and made available to other researchers or developers.

7. Summary

We presented a useful hierarchical extension for com-
puting a local motion field from the original MHI repre-
sentation. To alleviate sensitivities to minor occlusion and
limitations from global analysis, we developed a gradient-
based motion pyramid method to extract local motion flow
directly from the MHI. The MHI was transformed into an
image pyramid to permit efficient fixed-size gradient masks
to be convolved at all levels of the pyramid to extract mo-
tion information at a wide range of speeds. Polar histograms
of the motion orientations were used to characterize sev-
eral human movements. The hierarchical MHI approach
remains a computationally inexpensive algorithm to repre-
sent, characterize, and recognize human motions in video.
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