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Abstract

The success of any graph-based clustering algorithm de-
pends heavily on the quality of the similarity matrix be-
ing clustered, which is itself highly dependent on point-
wise scaling parameters. We propose a novel technique for
finding pointwise scaling parameters based on Ripley’s K-
function [12] which enables data clustering at different den-
sity scales within the same dataset. Additionally, we provide
a method for enhancing the spatial similarity matrix by in-
cluding a density metric between neighborhoods. We show
how our proposed methods for building similarity matrices
can improve the results attained by traditional approaches
for several well known clustering algorithms on a variety of
datasets.

1. Introduction
Clustering is a fundamental problem in data analysis and

computer vision which has many real-world applications
across a variety of fields. A common method of performing
clustering is to utilize graph-based techniques, which rep-
resent the data points as nodes with weighted edges based
on pairwise similarities. While these techniques all share
the objective of partitioning the graph into meaningful seg-
ments, the methods used to partition the graph vary greatly.

Spectral Clustering (SC) [14, 20] uses the eigenvectors
of the graph Laplacian to separate the data into clusters.
Normalized Tree Partitioning (NTP) [18] removes the spec-
tral relaxation inherent in spectral clustering by partitioning
a tree representation of the graph using the normalized cut
criterion. Markov Clustering (MCL) [17] uses a flow-based
approach to partition the graph. In Authority Shift (AS) [2]
hierarchical clustering is performed using an authority seek-
ing procedure on the graph which utilizes the personalized
PageRank score.

Even though the algorithms vary in how they parti-
tion the graph, the success of any graph-based approach is
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Figure 1. Clustering of two different datasets for scaling parame-
ters based on the 3rd and 10th nearest neighbors. (Best viewed in
color.)

highly dependent on the quality of the similarity matrix be-
ing employed. A popular similarity metric is the Gaussian
kernel which defines the similarity between two points as
wij = exp

(
−d2ij/σ2

)
, where dij is the distance between

points xi and xj , and σ is a scaling parameter which deter-
mines when two points are similar. Unfortunately, when
σ is chosen inappropriately, graph-based clustering algo-
rithms can produce poor results. Thus, choosing an ap-
propriate value for σ is imperative when using graph-based
clustering techniques (and is the focus of this paper).

The most naive, yet widely used, choice for σ is to set
it equal to a constant. In [14] it is suggested to set σ =
β ·max (d), where β ≤ 0.2 and d is the set of all pairwise
distances. Unfortunately, clustering may occur at different
scales in the data and a valid selection for β may not exist.

To circumvent this problem, [20] suggested calculating
a σ for each point xi, defining σi as the distance to the
kth nearest neighbor. To account for the pointwise scal-
ing parameters, the Gaussian kernel is adapted to wij =
exp

(
−d2ij/(σiσj)

)
. While this method allows for defining

varying neighborhood sizes throughout the data, it assumes
that a single selection of k is appropriate across the entire
dataset. In practice this is not always true. Figure 1 shows
two datasets containing the same number of points clustered
using pointwise scaling parameters σi equal to the distance
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to the third (k = 3) and tenth (k = 10) nearest neighbors.
The dataset in the top row is correctly clustered using k = 3,
but incorrectly clustered if k = 10. Conversely, the dataset
in the bottom row is incorrectly clustered using k = 3, but
clusters correctly if k = 10. Intuitively, if the two datasets
were combined, neither scale would yield the correct clus-
tering. Thus, an appropriate and single choice for k does
not always exist.

There have been other approaches proposed for adapting
σ to the data. In [6] the authors attempt to encompass the
neighborhood distribution for a point by setting the point-
wise scaling parameter σi equal to the average distance be-
tween xi and its k nearest neighbors. As with the approach
presented in [20], the success of this algorithm is dependent
on an appropriate selection of k (assuming it exists). In [21]
the authors propose σ2 = d2µ/(lij lji) where dµ is the average
distance between all points in the dataset and lij represents
what number nearest neighbor xj is to xi. Thus, points that
are distant neighbors will have a smaller scaling parameter
than points that are close neighbors. However, this can eas-
ily result in choosing scaling parameters which cause border
points of a cluster to be more similar to points in a nearby
cluster than they are to points in their own cluster.

In this paper we present an approach for automatically
calculating scaling parameters using Ripley’s K-function
[12] which determines σ based on the distribution of points
around xi and xj . By using the K-function, our approach
has the ability of establishing varying neighborhood sizes to
which points are similar, unlike previous approaches which
have constant neighborhood sizes. Additionally, we pro-
pose an approach for improving the standard spatial sim-
ilarity matrix by incorporating the similarity of the point
densities within the neighborhoods. We show how multiple
clustering algorithms can be improved using our approach
and evaluate the results for point set clustering and image
segmentation.

2. Graph-Based Clustering
In graph-based clustering approaches, the relationship

between a set of points X = {xi}Ni=1 is represented by a
graph G = (V,E,W ), where V is the set of N nodes, E
is the set of edges connecting the nodes, and W is the set
of weights corresponding to the strength of the edges. The
pairwise weight wij ∈ W measuring the similarity of xi
and xj is calculated as wij = f (dij , σ), where dij is the
distance between xi and xj and σ is a scaling parameter
which determines the similarity of xi and xj . If dij � σ,
then xi and xj are similar. Conversely, if dij � σ, then xi
and xj are dissimilar. Thus, the success of a graph-based
clustering algorithm relies heavily on an appropriate selec-
tion of scaling parameters. Our approach employs Ripley’s
K-function [12] to determine the value of σ specific to each
pair of points xi and xj .

2.1. Ripley’s K-function

Often used in ecology [15] and geographical epidemiol-
ogy [3], Ripley’s K-function [12] measures the randomness
of a point pattern over a given spatial domain at a specified
scale r. The K-function compares the expected number of
points within a local neighborhood of radius r at any point
in the dataset versus the expected density assuming com-
plete spatial randomness (CSR). For simplicity we will as-
sume a 2D point process, but the K-function is extendable to
higher dimensions. Furthermore, we will refer to the neigh-
borhood of point xi as the circle with radius r centered at
xi within the given spatial domain, and the points within the
neighborhood of xi as its neighbors.

Assuming a homogeneous isotropic point process, the
density λ for a point pattern is calculated as the total number
of points (N) divided by the area (A) of the given domain.
The discrete form of the K-function is defined as

K̂(r) =
1

λN

N∑
i=1

N∑
j=1,j 6=i

Ir (dij) , (1)

where dij is the Euclidean distance between points xi and
xj , and Ir(dij) is an indicator function which is 1 if dij ≤
r (for points xj in the neighborhood of xi). This can be
viewed as the ratio of the expected number of neighbors to
each point in a neighborhood of radius r to the expected
density assuming CSR.

Since each point’s neighborhood is only defined within
the given domain, points close to the domain boundary need
to be handled properly to get an accurate estimate of K̂(r)
through the process of edge correction. In [1] it was sug-
gested to adapt Eq. (1) to

K̂(r) =
1

λN

N∑
i=1

πr2

Āir

N∑
j=1,j 6=i

Id(dij), (2)

where Āir is the area of xi’s neighborhood (the circle with
radius r centered at xi) that lies within the domain. For an
internal point xi whose entire neighborhood lies within the
domain Āir = πr2, thus there is no correction applied to
the number of neighbors of xi. For a point xi whose neigh-
borhood lies partially outside the domain boundary, it is as-
sumed that the area of the neighborhood outside the domain
contains the same density of neighbors as seen in the area
of the neighborhood within the domain. Hence, the num-
ber of xi’s neighbors within the spatial domain is weighted
by 1 over the fraction of xi’s neighborhood size within the
spatial domain (to estimate xi’s total possible number of
neighbors).

Returning to the conceptual explanation of the K-
function (as the ratio of the expected number of points
within a neighborhood of radius r from any point in the
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dataset versus the density assuming CSR), we can reformu-
late Eq. (2) as

K̂(r) =
1

λ
·
(
λ̂πr2

)
, (3)

where

λ̂ =
1

N

N∑
i=1

1

Āir

N∑
j=1,j 6=i

Ir (dij) (4)

is the expected (average) edge-corrected density estimate
within a circular neighborhood of radius r.

Looking at Eq. (3), if points adhere to CSR then λ̂ = λ
and K̂(r) = πr2. Furthermore, if λ̂ < λ the average neigh-
borhood density is smaller than expected (i.e., points are
dispersed) and K̂(r) < πr2. Conversely, if λ̂ > λ the
average neighborhood density is higher than expected (i.e.,
points are clustered) and K̂(r) > πr2. To test if the data
statistically deviates from CSR, in practice it is common to
compare K̂(r) to a threshold quantifying the computed K-
function scores from several Monte Carlo samples of ran-
dom data. We determine the threshold T using the p-value
(i.e., the probability of receiving a value K̂(r) > T is p)
to determine if the expected density estimate indicates clus-
tering occurs. Other statistical measures such as the Maha-
lanobis distance could be used.

To compute the K-function for a point process, the spa-
tial domain of the points and the neighborhood radius must
be specified. Since clustering may occur in small neigh-
borhoods but not in larger neighborhoods or vice versa, the
K-function is generally computed across multiple scales (r
values) to determine if clustering exists within the data at
any scale. We now explain how the K-function can be ex-
ploited to find appropriate scaling parameters for clustering.

2.2. Scaling Parameter Calculation

To run the K-function on a point process, the spatial do-
main of the process needs to be defined. Typically, the K-
function is used to determine if clustering exists anywhere
within the point pattern for a given scale. Hence, the do-
main encompasses the entire point process. Instead of using
the K-function in the standard fashion, we employ the K-
function to determine the largest domain around xi which
adheres to CSR.

To test a domain around the point xi, choosing a circular
region centered at xi has several advantages. First, the size
of the domain can be described based on the distance to the
kth nearest neighbor. Second, choosing a circular domain
enables the K-function to be scale invariant. In practice
it is common to run the K-function over a range of scales
(r values). If we normalize the circular domain for point
xi to a unit circle (by dividing by the distance to the kth

nearest neighbor), we can use a fixed range of r values in
the K-function to test for clustering. This also enables the

(a) (b) (c)

Figure 2. (a) Circle-Circle intersection diagram. (b) Two-cluster
dataset where a dense square is surrounded by sparse noise and (c)
the corresponding context windows for selected points.

use of precomputed Monte Carlo K-function scores used
to determine if clustering occurs. We will refer to the val-
ues of r as the microscales since they are the scales em-
ployed to test for clustering for each circular domain input
to the K-function. We search for clustering at normalized
microscales r = {0.1, 0.2, . . . , 1} in our experiments.

Finally, by choosing a circular domain, what could eas-
ily be a complicated task of calculating Āir in Eq. (2) sim-
plifies to finding the overlapping area of two circles (the
domain circle centered at xi, and the microscale neighbor-
hood circle centered on the point whose neighbors are be-
ing counted), which has a closed-from solution. As shown
in [19], let ρ, r1, r2, and Ā be the distance between circle
centers, radii of the circles, and overlapping area, as dis-
played in Fig. 2(a). Assuming r1 ≥ r2 with the two circles
partially overlapping, the formula for computing the over-
lapping area Ā is

Ā = r21 cos−1

(
ρ2 + r21 − r22

2ρr1

)
+

r22 cos−1

(
ρ2 − r21 + r22

2ρr2

)
− 1

2
[ (−ρ+ r1 + r2) (5)

(ρ− r1 + r2) (ρ+ r1 − r2) (ρ+ r1 + r2) ]
1
2 .

With the circular domain and microscales r at which the
K-function tests for clustering defined, all that remains is
finding the largest value of k where the domain around xi
adheres to CSR. Since the value of k defines the domain
size for each point, we will refer to the values of k as the
macroscales. Determining the value of k∗i which defines the
largest domain around xi adhering to CSR is equivalent to
finding the largest macroscale such that K̂(r) is within the
statistical threshold computed from the Monte Carlo sam-
ples for all values of k < k∗i (i.e., K̂(r) ≤ T ∀ r, ∀ k < k∗i ).
In our experiments we approximate the full search by test-
ing at a subset of macroscales. Furthermore, to reduce the
likelihood of clustering each outlier point by itself, in prac-
tice we set the minimum value of k to be a small value
greater than 1. For simplicity, we will refer to the set of
points within the selected domain of xi corresponding to its
chosen macroscale k∗i as its “context window” Ci.

Figure 2(b) shows a dataset where a dense square is sur-
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rounded by sparse noise. The context windows from our
approach for a few points selected within this dataset are
shown in Fig. 2(c). The K-function finds the largest do-
main around each point that adheres to CSR. As our goal is
to determine an appropriate pointwise scaling parameter σi
for each xi, we set σi to the radius of macroscale k∗i (which
ensures that all of the points in Ci are similar to xi).

Our approach is based on the assumption of local CSR
in point datasets. Though the point distribution may not be
completely CSR across an entire cluster (e.g., Gaussian),
smaller neighborhoods within the cluster can be well ap-
proximated as CSR.

It should be noted that our approach is similar in concept
to the Probabilistic Shift algorithm [13] which attempts to
find neighborhoods of isotropic densities and then clusters
points using shift vectors. However, there are two major
differences. First, they determine the isotropy of neighbor-
hoods by performing a sign test on the difference of force
magnitudes computed at two adjacent neighborhood sizes.
Since there is no clear intuition for the significance value
of the sign test, the authors run the test at several scales
and combine the results. Our K-function approach has clear
intuition for determining how well a given neighborhood
adheres to CSR by comparing the density of the neighbor-
hood to Monte Carlo samples of random data. Second, they
use a computationally expensive approach to build similar-
ity matrices using transition probability matrices received
from shift vectors. We build similarity matrices directly
using the distance between points and our computed scal-
ing parameters. Intuitively, it may be possible to employ
our neighborhood finding approach to improve Probabilis-
tic Shift.

3. Similarity Matrices
Once all of the pointwise scaling parameters are com-

puted, the similarity between points can be calculated
to construct the similarity matrix. A common choice
for the weighting function is the Gaussian kernel where
wij = exp

(
−d2ij/σ2

)
[14] (the Laplacian kernel wij =

exp (−dij/σ) could also be used). In [20] they employ
pointwise scaling parameters and adapt the Gaussian ker-
nel to wij = exp

(
−d2ij/σiσj

)
. However, in the case where

one scaling parameter is significantly larger than the other,
multiplying the scaling parameters together could cause the
points to become more similar than desired. This artifact
can be avoided by setting σ = min (σi, σj).

When using our approach to compute the scaling pa-
rameters, simply comparing the scaling parameters for the
chosen macroscales of xi and xj could cause two points
to be falsely similar when their neighborhoods contain a
significantly different number of points. Thus, we use
σ = min

(
σγi , σ

γ
j

)
, where γ = min

(
k∗i , k

∗
j

)
is the min-

imum of the number of neighbors in context windows Ci

and Cj , and σγi is the distance to the k = γ nearest neigh-
bor of xi. We thus define the spatial similarity between two
points as

wij = exp
(
−d2ij/min(σγi ,σ

γ
j )

2
)
. (6)

3.1. Density Enhanced Similarity

In certain datasets, some inter-class distances are much
smaller than some intra-class distances. For example, points
on one side of the dense outer ring in Dataset 6 (Fig. 4) are
much closer to points in the sparse internal area than they
are to points on the other side of the dense ring. In fact,
points in the dense ring are only similar to a small propor-
tion of the other points in the ring. While the spatial sim-
ilarity matrix in Eq. (6) reduces the inter-class similarity,
it does nothing to enhance the intra-class similarity. Thus,
clustering algorithms have a tendency of splitting clusters,
such as the dense ring of Dataset 6 (Fig. 4), into several
sections. To overcome this tendency, the intra-class simi-
larity must be increased. One way of doing this is to add a
parameter αij to Eq. (6) designed to strengthen intra-class
weights with

wij = exp
(
−αij ·

(
d2ij/min(σγi ,σ

γ
j )

2
))
. (7)

To define αij , we employ the expected densities λ̂i and
λ̂j in the respective domain of each point (recall Eq. 4).
We use λ̂i corresponding to the largest microscale of the
selected macroscale k∗i (un-normalized to give the true den-
sity measure) to represent the expected density estimate of
xi. To reduce noise effects, we compute a set of smoothed
expected density estimates λ̃, where λ̃i is calculated by
smoothing the expected densities (λ̂ values) of points in
the context window Ci using a spatial Gaussian kernel with
standard deviation set to 1/3 the radius of the context win-
dow Ci. We then calculate αij as

αij = | λ̃i−λ̃j |/(
√
σ̃iσ̃j+ε), (8)

where σ̃i = median
(
| λ̃i − λ̃l∈Ci,l 6=i |

)
quantifies the sim-

ilarity of the expected densities for points within the context
window Ci, and ε is a small constant to avoid dividing by
zero. We summarize the overall approach in Algorithm 1.

Re-examining Eq. (8), if λ̃i ≈ λ̃j for xi ∈ c1 and
xj ∈ c2, where c1 and c2 are two spatially disjoint clus-
ters, αij → 0, hence wij → 1. Consequently, it is feasible
for the output of a clustering algorithm to provide a clus-
ter containing multiple disjoint sub-clusters. To ensure the
final clusters are spatially connected we separate spatially
disjoint clusters by running a connected components algo-
rithm on each cluster, where xi is only connected to points
within its context window Ci, after clustering is performed.
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Algorithm 1 Build K-function Based Similarity Matrix
Input: Point set X , Macroscale set K, Microscale setR,

p-value corresponding to threshold T
for i = 1 . . . N

for k ∈ K
D = distance to kth nearest neighbor
C =

{xj∈X : dij≤D}
D , λ = (k + 1) /π

for r ∈ R
K̂(r) = 1

λ(k+1)

∑
j∈C

π
Ājr

∑
l∈C,l 6=j Id(djl)

if K̂(r) ≤ T ∀r ∈ R or k = kmin
k∗ = k, σki = D, Ci = D · C,
λ̂i = K̂(r = 1)/D2

else
Clustering exists, stop searching for Ci.

if Add density to W
for i = 1 . . . N

Compute λ̃i by smoothing λ̂ values of points in Ci
σ̃i = median

(
| λ̃i − λ̃j∈Ci,j 6=i |

)
αij = | λ̃i−λ̃j |/(

√
σ̃iσ̃j+ε)

else
αij = 1

γ = min
(
k∗i , k

∗
j

)
Compute W where wij = exp

(
−αij

(
dij

min(σγi σ
γ
j )

)2
)

Output: Similarity matrix W , Context windows C

4. Experiments

We compare the graph-based clustering results from AS
[2], SC [20], MCL [17], and NTP [18] (see Sect. 1) on point
set data when using similarity matrices built with a constant
scaling parameter (σ = 0.05 · max(d), where d is the set
of all pairwise distances) [14], scaling parameters based on
a constant number of nearest neighbors (we use k = 7 as
suggested in [20]), and our two K-function techniques de-
scribed in Sect. 3 (Eqs. (6) and (7)). We do not compare
against Probabilistic Shift [13] since it employs similarity
matrices built using iterative transition probability matrices
rather than the standard Gaussian kernel.

We run the K-function with feasible macroscales ofK =
{5, 10, 20, 30, 40, 50} nearest neighbors and a statistical
threshold T corresponding to a p-value of p = 0.005 over
10,000 Monte Carlo samples of random data. Thus, we de-
fine a point process as adhering to CSR if K̂(r) lies within
99.5% of the K-function scores from the Monte Carlo simu-
lations. We will refer to the spatial similarity matrices built
using a constant scaling parameter, scaling parameter equal
to the distance of the kth nearest neighbor, scaling param-
eters found using the K-function, and density-enhanced K-

Dataset 1 Dataset 2 Dataset 3
F NMI RI F NMI RI F NMI RI

AS [2] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
SC [20] 0.96 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00

MCL [17] 0.96 0.92 0.93 0.89 0.84 0.88 0.98 0.96 0.97
NTP [18] 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00

Table 1. Quantitative results from partitions of WK for datasets
shown in Fig. 3. Highest metric value for each dataset is in bold.

function similarity matrix as Wc, Wn, WK , and WKd , re-
spectively.

We tested each of the clustering algorithms with the dif-
ferent similarity matrices on several datasets consisting of
a combination of Gaussian and uniform distributions. We
ran the algorithm/scaling parameter combinations on 100
instances of each dataset and computed the average results.
For each instance we run all of the algorithms for several
different numbers of clusters and the result which yields the
highest average F-measure (F = 2 · (P ·R)/(P +R), P =
precision and R = recall) across the true clusters (ground
truth is known) is chosen as the result for the algorithm.
Thus, the results reported are the best each clustering al-
gorithm produced on a dataset with respect to F-measure.
To quantify the clustering results we used the average F-
measure (F ) across the true clusters, and also report the
normalized mutual information (NMI) [10] and Rand in-
dex (RI) [11] values. Values closer to 1 correspond to better
performance for each metric. We refer readers to [10] and
[11] for details on NMI and RI, respectively. Finally, to
quantify the quality of the similarity matrices themselves
(before clustering), we compute Sq as the ratio of average
intra-class similarity weights to average inter-class similar-
ity weights for each instance and report the average value
across the 100 iterations.

We have made the code for constructing the
datasets and K-function similarity matrices available
at http://www.cse.ohio-state.edu/˜jwdavis/Archive/CVPR-
11-ImprovingGraphBasedClustering.zip.

4.1. Separated Point Set Clustering

Our first set of experiments examines classic point sets
as shown in Fig. 3. These datasets are adapted from [2],
where the data has been made fuller to enable density-based
calculations. For space constraints, and since naively con-
structed similarity matrices have been shown to work previ-
ously [2, 20] on contrived datasets such as those in Fig. 3,
we limit the results and comparison in this section to var-
ious algorithms using only WK for the similarity matrix.
Table 1 shows the cluster results for the four graph-based
algorithms using WK . Based on the results, AS and NTP
appear to be the most applicable to these types of datasets,
with SC performing slightly worse.
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AS [2]

SC [20]

MCL [17]

NTP [18]

Dataset 1 Dataset 2 Dataset 3

Figure 3. Resulting clusters of Datasets 1-3 when partitioningWK

using four graph-based algorithms. (Best viewed in color.)

4.2. Noisy Point Set Clustering

While there is not a significant difference in the cluster-
ing of the datasets in Fig. 3 for the various similarity ma-
trices, many real-world datasets do not exhibit such well-
defined and separable clusters. To demonstrate the chal-
lenges of clustering in noise, we created three new datasets,
depicted in Fig. 4, and show the superiority of clustering
using the K-function similarity matrices (WK and WKd ).
Dataset 4 consists of a dense square encompassed by a
sparse noise cluster. Dataset 5 consists of two adjacent
squares (where the left cluster has three times the point den-
sity of the right cluster) amidst noise. Finally, Dataset 6
consists of a dense core, sparse area, and dense outer ring.
Due to space constraints, we only show the clustering re-
sults of SC, as the F-measure of its clusters are among the
highest for all but one dataset/similarity matrix combina-
tion. Table 2 shows the results for all of the clustering al-
gorithm/similarity matrix combinations for the three noisy
datasets depicted in Fig. 4. Recall that a connected com-
ponents algorithm based on the context windows is used to
separate spatially disjoint sub-clusters when using WKd .

Table 3 shows the average Sq (the ratio of average intra-
class weight to average inter-class weight) values of the four
similarity matrices for the three datasets. The quality of
WK is much higher than Wc and Wn for all three datasets.
Furthermore, the quality is enhanced by including density
(WKd ) as described in Sect. 3.1 for Datasets 4 and 5 (as
expected). In Dataset 6 the densities of the dense ring and
core are similar to each other. Hence, the inter-class simi-
larity between points in these two regions is high in WKd .
This causes the quality of WKd to be less than that of WK ,
which does not increase the inter-class similarity between
these two regions.

Based on Table 2, it is apparent that using WKd provides

Dataset 4 Dataset 5 Dataset 6
F NMI RI F NMI RI F NMI RI

AS

WKd 0.99 0.90 0.97 0.96 0.90 0.97 0.95 0.83 0.95
WK 0.97 0.86 0.95 0.85 0.79 0.91 0.70 0.39 0.53
Wn 0.68 0.40 0.70 0.76 0.67 0.83 0.49 0.24 0.46
Wc 0.52 0.24 0.60 0.51 0.43 0.77 0.53 0.34 0.63

SC

WKd 0.99 0.91 0.98 0.98 0.91 0.98 0.96 0.86 0.96
WK 0.98 0.89 0.97 0.96 0.90 0.97 0.71 0.39 0.50
Wn 0.64 0.28 0.63 0.84 0.70 0.83 0.54 0.27 0.44
Wc 0.81 0.52 0.76 0.69 0.59 0.86 0.53 0.37 0.60

MCL

WKd 0.94 0.81 0.92 0.95 0.87 0.94 0.81 0.48 0.57
WK 0.88 0.71 0.89 0.89 0.78 0.90 0.77 0.44 0.56
Wn 0.75 0.58 0.75 0.86 0.74 0.85 0.50 0. 40 0.64
Wc 0.67 0.46 0.70 0.60 0.56 0.75 0.48 0.29 0.52

NTP

WKd 0.99 0.90 0.97 0.89 0.74 0.85 0.69 0.35 0.49
WK 0.98 0.87 0.96 0.87 0.74 0.85 0.72 0.41 0.53
Wn 0.75 0.38 0.69 0.79 0.64 0. 81 0.56 0.28 0.46
Wc 0.58 0.07 0.53 0.61 0.38 0.68 0.55 0.34 0.61

Table 2. Quantitative results from partitions of datasets shown in
Fig. 4. The two highest values are in bold.

WKd

WK

Wn

Wc

Dataset 4 Dataset 5 Dataset 6

Figure 4. Resulting clusters of Datasets 4-6 from SC [20] when
partitioning WKd , WK , Wn, and Wc. (Best viewed in color.)

the best clustering results on all three datasets for all clus-
tering algorithms with the exception of clustering Dataset 6
with NTP. However, the results in Table 2 show that NTP
does not cluster Dataset 6 well using any similarity matrix.
Furthermore, using the spatial similarity matrix WK im-
proves the results of the clustering algorithms over the other
spatial similarity matrices Wc and Wn in all three datasets.
By design, the RI score is lower when there is more dis-
parity between the number of clusters in two comparing
clusterings. Consequently, the clusters resulting from WK
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WKd WK Wn Wc

Dataset 4 287.301 250.955 43.117 19.294
Dataset 5 166.862 117.482 76.013 14.008
Dataset 6 17.454 32.893 12.727 13.031

Table 3. Average similarity matrix quality Sq of WKd , WK , Wn,
and Wc for datasets shown in Fig. 4.

(which separates the sparse points from the dense ring and
core, but splits the outer ring into several segments) have
a tendency of scoring lower than those from Wc or Wn

(which group the sparse points with dense points thereby re-
sulting in fewer clusters). However, the F values show that
the clusters resulting from WK adhere to the ground truth
clusters more accurately than the clusters resulting fromWc

and Wn.

4.3. Image Segmentation

In addition to point set data, we compare results from
using WK and Wc to segment the 300 images from the
Berkeley image segmentation database [7]. Here we only
compare to Wc as it is the standard scaling technique used
for segmentation [2, 18].

We employ the technique presented in [9] to fragment
each image into approximately 1600 superpixels. After
smoothing the image slightly with a Gaussian filter to re-
duce edge noise, we represent each superpixel by its mean
chrominance values of the YCbCr color space. We set
β = 0.05 for Wc and run the K-function with macroscales
of K = {50, 75, . . . , 300}. Here the smallest macroscale is
set larger than normal to account for the fact that, perceptu-
ally, humans would not tend to segment an image because of
small color deviations. Finally, we only allow connections
between neighboring superpixels in the similarity matrices.

We segment both of the similarity matrices using the top-
down approach of NTP. Instead of attempting to find the
optimum number of partitions for each similarity matrix,
we compared the image fragments resulting from the first
M partitions of WK and Wc over a range of M and deter-
mined how well they adhere to ground truth (provided in the
database). Intuitively, the more fragments adhere to ground
truth, the more successful merge algorithms such as [4] will
be at generating accurate final image segments.

We quantitatively compare the segmentation results
against human annotations using probabilistic rand index
(PRI) [16], variation of information (VoI) [8], global con-
sistency error (GCE) [7], and boundary displacement error
(BDE) [5]. The results are shown in Table 4. Higher values
of PRI and lower values of VoI, GCE, and BDE correspond
to more accurate segmentation.

We first analyze the results as a function of the number of
segments M . For M = 20, Wc is more accurate according
to a majority of the metrics. ForM = 30,Wc andWK have

(a)

(b)

(c)

(d)

(e)

Figure 5. Segmentation results. (a) Input image and first (b) 20
and (c) 50 segments of WK , and (d) 20 and (e) 50 segments of
Wc, using NTP. (Best viewed in color.)

equal share of winning metrics. Finally, forM = 40 and 50,
WK is more accurate according to a majority of the metrics.
Next, we compare the results across each metric. Using Wc

results in a lower GCE across all numbers of partitions. The
BDE is also lower using Wc when M ≤ 30. However,
as the number of partitions increases, using WK yields a
lower BDE. Furthermore, the partitions of WK result in a
lower VoI than those from Wc in all cases, and a higher
PRI in every case but one. Moreover, PRI and VoI could be
considered more important, as they are believed to be most
correlated with human performance in segmentation [18].

Figure 5 shows the first 20 and 50 segments of WK and
Wc using NTP. Based on the results, it appears that using
Wc tends to result in equally sized segments, hence when
several segments are given, the image appears very frag-
mented. Contrarily, WK does not seem to result in equally
sized segments. Thus, instead of fragmenting the image
when a large number of partitions is specified, little seg-
ments representing fine details are extracted. We provide
additional segmentation results using WK in Fig. 6.
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Figure 6. Input image and first 20 and 50 segments of WK using
NTP. (Best viewed in color.)

M PRI VoI GCE BDE

20
WK 0.7003 2.2392 0.2279 19.4532
Wc 0.7179 2.9844 0.2062 16.3876

30
WK 0.7235 2.5112 0.2320 17.2900
Wc 0.7093 3.3856 0.1756 16.4653

40
WK 0.7312 2.7832 0.2097 16.2849
Wc 0.7041 3.6972 0.1553 16.4991

50
WK 0.7272 3.0625 0.1846 15.9498
Wc 0.7007 3.9496 0.1417 16.6074

Table 4. Quantitative segmentation results from NTP on the Berke-
ley image database [7].

5. Summary

We proposed a novel technique to compute pointwise
scaling parameters for graph-based clustering algorithms
using Ripley’s K-function. Our approach searches for the
largest domain around each point that adheres to CSR which
then defines the local neighborhood and scale for each
point. We incorporated the adaptive scaling parameters in
the standard Gaussian distance form for a spatial similarity
matrix, and also provided a method of strengthening intra-
class similarity using the expected densities across each
point’s domain. We showed that multiple graph-based al-
gorithms can be improved using our proposed method, and
evaluated results for point set clustering and image segmen-
tation. This research was supported in part by AFRL under
contract No. FA8650-07-D-1220.
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