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Abstract

We present a new background-subtraction technique fusing contours from thermal and visible imagery for persistent object detection
in urban settings. Statistical background-subtraction in the thermal domain is used to identify the initial regions-of-interest. Color and
intensity information are used within these areas to obtain the corresponding regions-of-interest in the visible domain. Within each
region, input and background gradient information are combined to form a Contour Saliency Map. The binary contour fragments,
obtained from corresponding Contour Saliency Maps, are then fused into a single image. An A* path-constrained search along watershed
boundaries of the regions-of-interest is used to complete and close any broken segments in the fused contour image. Lastly, the contour
image is flood-filled to produce silhouettes. Results of our approach are evaluated quantitatively and compared with other low- and high-

level fusion techniques using manually segmented data.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

One of the most desirable qualities of a video surveil-
lance system is persistence, or the ability to be effective at
all times (day and night). However a single sensor is
generally not effective in all situations (e.g., a color camera
at night). To attain persistence, we present a new back-
ground-subtraction technique to segment foreground
objects that relies on the integration of two complementary
bands of the electromagnetic spectrum, long-wave infrared
(thermal) and visible light.

Thermal (FLIR) and color video cameras are both
widely used for surveillance. Thermal cameras detect
relative differences in the amount of thermal energy
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emitted/reflected from objects in the scene. These sensors
are therefore independent of illumination, making them
more effective than color cameras under poor lighting con-
ditions. Color optical sensors on the other hand are obliv-
ious to temperature differences in the scene, and are
typically more effective than thermal cameras when objects
are at “‘thermal crossover” (thermal properties of the object
are similar to the surrounding environment), provided that
the scene is well illuminated and the objects have color sig-
natures different from the background.

In order to exploit the enhanced potential of using both
sensors together, one needs to address the computer vision
challenges that arise in both domains. While color imagery
is beset by the presence of shadows, sudden illumination
changes, and poor nighttime visibility, thermal imagery
has its own unique challenges. The commonly used ferro-
electric BST (chopper) thermal sensor yields imagery with
a low signal-to-noise ratio, uncalibrated white-black
polarity changes, and the “halo effect” that appears around
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Fig. 1. Thermal image showing bright halo around dark person regions.

very hot or cold objects (see Fig. 1, showing a bright halo
around dark (colder) person regions in a hot environment).
The halo effect is caused due to the AC-coupling in ferro-
electric focal plane arrays, that results in a droop/under-
shoot [29] in the response to uniformly hot and cold
objects in the scene. Gain and level settings, typically used
to obtain high contrast imagery with sharp object bound-
aries, further enhance this haloing effect and make auto-
matic shape segmentation from thermal imagery very
difficult.

These challenges of thermal imagery have been largely
ignored in the past by algorithms (“hot spot” techniques)
based on the highly limiting assumption that the target
object (aircraft, tank, person) is much hotter than the
surrounding environment. For surveillance and other
applications involving the monitoring of people, this
assumption is valid only in certain conditions like cooler
nighttime environments (or during Winter); it is not
always true throughout the day or for different seasons
of the year.

We propose an enhanced background-subtraction algo-
rithm using both visible and thermal imagery. The
approach makes use of region- and gradient-based process-
ing to highlight contours that are the most salient within,
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and across, the two domains. The approach is also well-
suited to handle the typical problems in both domains
(e.g., shadows, thermal halos, and polarity changes). The
method does not rely on any prior shape models or motion
information, and therefore could be particularly useful for
bootstrapping more sophisticated tracking techniques. The
method is based on our previous approach [11,10] for
object detection in thermal imagery.

In Fig. 2, we show a flowchart of the proposed algorithm.
We start by identifying preliminary regions-of-interest
(ROIs) in the two domains via standard Background-
Subtraction. In this stage, the ROIs obtained in the thermal
domain are used to localize the background-subtraction
operation in the visible domain, shown by the dotted arrow
in the flowchart. Next, in the Contour Extraction stage, we
identify salient contour segments corresponding to the fore-
ground object(s) within the ROIs of both domains by utiliz-
ing the input and background gradient information. We
then Fuse the contours from corresponding ROIs using
the combined input gradient information from both
domains. In the Silhouette Creation stage we first close
and complete the contours using an A* search algorithm
constrained to a local watershed segmentation and then
flood-fill the contours to create silhouettes. In the final
Post-Processing stage we eliminate regions based on a min-
imum size threshold, and also use temporal filtering to
remove sporadic detections. We then assign to each remain-
ing silhouette a confidence value representative of how dif-
ferent it is from the background.

As shown in the figure, the entire pipe-line can be
divided into three main processing levels. The low-level
stage (Stage I) of processing deals directly with raw pixel
intensities, the mid-level stage (Stage II) involves the extrac-
tion and manipulation of features, and the high-level stage
(Stage III) refines the results and operates on decisions
made by the lower levels. The level at which a fusion algo-
rithm combines information from the different input sen-
sors can play a vital role in object-detection performance.
Our algorithm is a mid-level fusion technique as it fuses
information at the contour level. The contour features
extracted allow the algorithm to focus on high intensity
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Fig. 2. Flowchart of proposed fusion algorithm.
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contrasts in either domain without being affected by halos
and shadows. In our method, the lower stage of the pipe-
line is used to focus attention on relevant image regions,
and the higher stage is used only to improve the final
object-detection results after fusion is performed at the
mid-level.

Adopting a fusion strategy that combines information at
the feature (contour) level enables us to avoid the draw-
backs associated with low- and high-level fusion algo-
rithms. Low-level algorithms combining raw intensities of
pixel-regions are prone to poor results since the fusion pro-
cess is unable to distinguish between image characteristics
that are desirable (high contrasts) and those that are not
(shadows). In high-level algorithms, the results obtained
after independently processing the different input channels
are usually fused using some kind of voting scheme. While
this might be wviable in multi-spectral imagery, such
schemes do not apply well to situations when there are only
two input channels, as is the case in the current study. Fur-
ther, high-level fusion techniques are typically computa-
tionally expensive, since each input channel is processed
independently until the last stage of the pipeline.

We demonstrate our approach using a single set of
parameters across six challenging thermal and color video
sequence pairs. The sequences, recorded from two differ-
ent locations, contain large variations in the visible and
thermal domains (e.g., illumination, shadows, halos, ther-
mal gain settings, etc.). We also quantitatively analyze the
results obtained by our algorithm using a set of manually
segmented images. First we investigate if our algorithm
indeed improves object detection performance by fusion
of thermal and visible contours over using either domain
independently. We then provide evidence of the short-
comings of competing low- and high-level fusion algo-
rithms, using a comparative evaluation of object detection
results.

The remainder of this paper is described as follows. We
begin with a review of related work in Section 2. We then
describe the main components of the proposed method.
The low-level stage of our algorithm is presented in Section
3 where we describe the detection of initial regions-of-inter-
est. In Section 4, we explain the contour extraction process
and the generation of silhouettes. Section 5 then describes
the last, high-level, processing stage of the pipeline, where
we refine results by eliminating noisy detections. Next, in
Section 6, we present experimental results. Lastly, we con-
clude with a summary of the research and discuss future
work in Section 7.

2. Related work

Research performed in the fields of object detection and
image fusion are both relevant to the current study. We first
examine background-subtraction and object detection
approaches proposed in both the visible and thermal
domains. Related approaches in image fusion are discussed
next.

2.1. Background-subtraction and object detection

In the visible domain, several object detection schemes
that rely on some form of background-subtraction have
been proposed. Here “foreground” regions are identified
by comparison of an input image with a background
model. Much research in this area has focussed on the
development of efficient and robust background models.
In the basic statistical approach, a distribution for each
pixel (over time) is modeled as a single Gaussian [50,20],
and then any new pixel not likely to belong to the distribu-
tion is detected as a foreground pixel. A Mixture of Gaus-
sians was proposed in [45] to better model the complex
background processes of each pixel. The Mixture of Gaus-
sians approach was also examined in other work [21,36].
Other background-subtraction methods based on non-
parametric statistical modeling of the pixel process have
also been proposed. In [15], kernel density estimation
was used to obtain the pixel intensity distributions. A var-
iable-bandwidth kernel density estimator was proposed in
[31]. Another non-parametric approach is the code-book
based technique recently presented in [24]. The time series
analysis of input video is another technique used to create
dynamic background models. Kalman filters were used in
[55], and an auto-regressive model was used in [32]. Weiner
filters were employed in the three-stage (pixel/region/
frame) Wallflower approach [47].

Many object detection algorithms focussing on the ther-
mal domain directly use background-subtraction methods
developed for the visible domain. The presence of halos
in thermal imagery will severely impair the performance
of each of the above methods as the halo artifact is
typically much different than the expected background.
Since the halo surrounding a person would also be detected
as part of the foreground, the result would not provide an
accurate localization of the person silhouette, when
ironically the person shape is most easily distinguishable
to human observers because of the halo (halos are at
opposite polarity to the object [13]). Some of these methods
(e.g., [20,19]) have been tested with thermal imagery, but
the limited nature of the examples examined does not
provide a comprehensive evaluation.

The unifying assumption in most other person-detection
algorithms aimed at the thermal domain is the belief that
humans are warmer than their surroundings, and hence
appear brighter, as “hot-spots”. In [23] and [2], a threshol-
ded thermal image forms the first stage of processing after
which methods for pose estimation and gait analysis are
explored. In [34], a simple intensity threshold is employed
and followed by a probabilistic template. A similar
approach using Support Vector Machines is reported in
[51]. The use of the strong hot-spot assumption can also
be found in other work related to object detection and
tracking in thermal imagery [3,7,52]. The underlying hot-
spot assumption will be violated in imagery recorded at dif-
ferent environmental temperatures and in most urban
environments.
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2.2. Fusion

Image fusion techniques have had a long history in com-
puter-vision and visualization. We categorize related work
into three types, based on the processing level (low, mid,
high) at which fusion is performed.

Traditionally, low-level techniques have been used to
combine information from co-registered multi-sensor
imagery. Improving upon simple techniques such as pixel
averaging, multi-resolution schemes similar to the pyra-
mid-based approaches of [46,35,6] were proposed. More
recently, wavelet analysis has emerged as the method of
choice in most multi-resolution frameworks [28,39]. Exam-
ples of other low-level techniques include the biologically
motivated model based on human opponent color process-
ing proposed in [17]. A PCA-based technique measuring
pixel variances in local neighborhoods is used in [8].
Pixel-level combinations of spatial interest images using
Boolean and fuzzy-logic operators are proposed in [14],
and a neural networks model for pixel-level classification
is used in [25].

Mid-level fusion techniques have mostly relied on first
and second order gradient information. Some of these tech-
niques include directly combining gradients [40], determin-
ing gradients in high dimensions [44], and analyzing
gradients at multiple resolutions [43,37]. Other features,
such as the texture arrays [5], have also been employed.
Model-based alternatives to feature-level fusion have also
been proposed such as the adaptive model matching
approach of [16], and the model-theory approach of [53].
Other mid-level fusion techniques such as the region-based
methods of [27,54,38] make use of low-level interactions of
the input domains.

High-level fusion techniques generally make use of Bool-
ean operators or other heuristic scores (maximum vote,
weighted voting, m-of-n votes) [9,48] to combine results
obtained from independently processing the input chan-
nels. Other “soft” decision techniques include Bayesian
inference [1,22] and the Dempster—Shafer method [4,30].

Most of these fusion techniques aim at enhancing the
information content of the scene, to ease and improve
human interpretation (visual analysis). However, the
method we propose is designed specifically to enhance the
capabilities of an automatic vision-based detection system.
Some techniques such as [14,16,5], proposed for Automatic
Target Recognition systems, have also been evaluated in
terms of object detection performance. These techniques
however are not generally applicable to the detection of
non-rigid person shapes, and other large, multi-modal
objects common in the urban environments considered in
this work. Other techniques, such as [17], have been shown
to improve recognition performance when used as inputs to
separate target recognition modules. In contrast, our
approach tightly integrates the fusion of information with
the process of object detection, thus resulting in a single
pipeline that exploits different sensors for improving object
detection.

3. Stage I: low level processing

In this initial stage of processing, our algorithm starts by
registering the two input streams. Then, using standard
background-subtraction, our algorithm identifies initial
regions-of-interest in the thermal domain. These are then
used to cue the selection of corresponding regions from
the visible domain.

3.1. Image registration

Our algorithm requires the two input image streams to
be registered. For a particular camera location, we first
manually select a set of corresponding feature points from
a pair of thermal and visible images. Using these points we
compute the homography matrix [18] to register each ther-
mal image of the sequence with the corresponding visible
image. In Fig. 3(a) and (b), we show a pair of visible and
thermal images. Fig. 3(c) shows the thermal image after
registration. In Fig. 3(d), we show the result of a pixel-wise
max operator used to combine the images before registra-
tion. Note the large mis-alignment in the two views. The
result after registration is shown in Fig. 3(e).

3.2. Initial region detection

We begin by identifying regions-of-interest (ROIs) in
both domains (thermal and visible). The background in
the thermal domain tends to be more stable over time, as
it changes more slowly with environmental variations.
Standard background-subtraction in the thermal domain
is thus more reliable and generally produces regions that
encompass the entire foreground object and the surround-
ing halo. Therefore we first use background-subtraction to
obtain the ROIs in the thermal domain, and extract the
corresponding ROIs from the visible domain. We use a sin-
gle Gaussian at each pixel to model the background. Other
statistical approaches to model the background, such as
Mixture of Gaussians [45] or code-book techniques [24],
could also be used, but will not be sufficient to address
the halo artifact in thermal imagery and the presence of
object shadows in visible imagery. As discussed in [13],
halos and object shadows co-occur with foreground
objects. Hence, just as foreground objects appear distinct
from the background, so too would the halos and shadows
caused by them.

To bootstrap the construction of proper mean/variance
background models from images containing foreground
objects, we first capture N images in both the thermal
and visible domains. We begin by computing a median
image (I,eq) from the N thermal and visible intensity
images. The statistical background model for each pixel
(in thermal or visible intensity) is created by computing
weighted means and variances of the N sampled values
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Fig. 3. Image registration. (a) Visible image. (b) Original thermal image. (c) Registered thermal image. (d) Pixel-wise max of images (a) and (b). (e) Pixel-

wise max of images (a) and (c).
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The farther I{(x,y) is from I,.q(x,y), the smaller its contri-
bution. In our experiments, we used a standard deviation
o = 5 (a pixel-wise @, learned from the N frames could also
be used). Using these weights to compute the statistical
background model enables us to obtain strong background
models without requiring training images to be completely
devoid of foreground activity. For longer sequences, the
background model can be updated using schemes, as in
[45], with
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where the subscript ¢ denotes time and p is the update fac-
tor (typically p < 1).

Having computed the statistical background model
for the thermal domain (using Egs. (1) and (2)), we obtain
the foreground pixels, D", for an input thermal image using
the squared Mahalanobis distance

U —pler)? S 72

N@»‘{l o (5)

0 otherwise

Since further processingin either domainislimited to the fore-
ground pixels chosen at this stage, a liberal threshold (Z) that
yields all of the object regions (and portions of the back-
ground around the object) is preferred over a more aggressive
setting (perhaps deleting portions of the foreground object).
Several different thresholds and their effect on the overall per-
formance are examined in our experiments (Section 6). To ex-
tract the thermal ROIs from the selected foreground pixels,
we apply a 5 x 5 dilation operator to the background-sub-
tracted image D' and employ a connected components algo-
rithm. Any region with a size less than approximately 40 pixels
is discarded (for a 320 x 240 image).

Ideally, we could simply use D" to represent the ROIs in
the visible domain, DY, as well. However, the image regions
in the visible domain corresponding to DT may contain
unwanted artifacts such as shadows, or may be void of
intensity or color information differentiating them from
the background. Thus, for the visible image of the input
image pair, we perform an additional color/intensity back-
ground-subtraction within image regions identified using
D'. While any background-subtraction scheme that mini-
mizes the effect of shadows can be used, we employ a simple
technique that exploits the fact that a shadow lowers surface
luminosity without changing chrominance characteristics.

For each visible image region corresponding to a region
in DT, the intensity component is used to identify pixels
(D) that are statistically brighter than the background,
and the normalized RGB components are used to detect
pixels (Dcep) different in color from the background. For
the intensity component, a mean/variance model is com-
puted using Eqs. (1) and (2), while the mean/covariance
model of the normalized color-space is computed directly
from the initial set of N visible images (without the weights
in Eq. 3) and can be updated over time using Eq. 4. The vis-
ible domain ROIs are then obtained by a pixel-wise union
of Dy and D¢, followed by a 5 x 5 dilation operator, sim-
ilar to the thermal domain.
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For the pair of input images in Fig. 4(a) and (b), we
show the computed D' and DY in Fig. 4(c) and (d), respec-
tively. The squared Mahalanobis distance thresholds for
the thermal, luminance, and color channels were set at
10, 15, and 4, respectively for this example. Using DT to
localize the identification of ROIs in the visible domain
enables us to use thresholds that maximize detection of
object pixels within specific regions without incurring any
penalty for false detections that occur elsewhere in the
image (thus the thresholds need not be precise). The result
of applying background-subtraction to the entire visible
image, with the same liberal threshold as used for
Fig. 4(d), is shown in Fig. 4(e). In spite of using the same
thresholds, intensity fluctuations and other image/sensor
characteristics result in a large number of spurious detec-
tions. However, using the thermal ROI (Fig. 4(d)) as a
mask permits a reasonable result in the visible image with-
out the large number of false positives. If the thresholds
were changed to reduce the spurious detections in
Fig. 4(e), more person regions will be lost, which would
be detrimental. Fine tuning the background-subtraction
method could be used to reduce the false positives, but this
would have to be done on a case-by-case basis. Using the
thermal ROIs as a mask enables us to set a liberal and
generalized threshold that ensures detections in the
visible domain correspond mostly to the desired person
regions. Obviously, more detailed background-subtraction
approaches (including shadow removal) could be used,
but as we will show, the quality of detection obtained by this
overlay method is adequate. Having obtained D", the sub-
sequent stages of our algorithm make use of only the inten-
sity components of both the thermal and visible domains.

4. Stage II: mid-level processing

In this stage of the pipeline, our algorithm relies on
(input and background) gradient information within the

selected ROIs. First these gradients are manipulated to
highlight salient object boundaries in the thermal and visi-
ble domains. Binary contour features are then extracted
from this representation in either domain and combined
into single fused contour image. These contours are then
closed and completed to form silhouette regions.

4.1. Contour extraction

We first examine each ROI in the thermal and visible
domains individually in an attempt to extract gradient
information corresponding only to the foreground object.
For each ROI, we form a Contour Saliency Map (CSM)
[10], where the value of each pixel in the CSM represents
the confidence/belief of that pixel belonging to the bound-
ary of a foreground object.

A CSM is formed by finding the pixel-wise minimum of
the normalized input gradient magnitudes and the normal-
ized input-background gradient-difference magnitudes
within the ROI

vt = min (Ul =BG, =BG

where I, and I, are input gradients, BG, and BG,, are back-
ground gradients, and the normalization factors, Max; and
Max;_pg, are the respective maximum magnitudes of the
input gradients and the input-background gradient-differ-
ences in the ROI. The range of pixel values in the CSM
is [0,1], with larger values indicating stronger confidence
that a pixel belongs to the foreground object boundary.
The motivations for the formulation of the CSM are
that it suppresses (1) large non-object input gradient
magnitudes (as they have small input-background
gradient-difference magnitudes), and (2) large non-
object input-background gradient-difference magnitudes
(typically from thermal halos or diffuse visible shadows).
Thus, the CSM preserves the input gradients that are both

Fig. 4. Region detection. (a) Input thermal image. (b) Input visible image. (c) D. (d) D". (e) Background-subtraction results in the visible domain using

same thresholds as in (d).
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strong and significantly different from the background. The
approach is equally applicable to both thermal and visible
imagery. We compute the CSM for all ROIs in both the
thermal and visible (intensity) domains.

We show the CSM construction for a thermal and visi-
ble ROI in the top and bottom rows Fig. 5, respectively.
The gradients were calculated using 7 x 7 Gaussian deriva-
tive masks.

4.1.1. Thinning

Our next step is to produce a thinned (1-pixel thick con-
tours) representation of the CSM, which we call the tCSM.
As the CSM does not represent a true gradient image, stan-
dard non-maximum suppression methods that look for
local peaks along gradient directions (as used in the Canny
edge detector) cannot be directly applied. However, by the
composite nature of the CSM, maxima in the CSM must
always co-occur with maxima in the input gradients. There-
fore we can use the non-maximum suppression result of the
input gradients as a thinning mask for the CSM. In Fig. 6,
we show a CSM, the non-maximum suppression thinning
mask (derived from the input gradients in Fig. 5(b)), and
the final tCSM computed from the multiplication of the
CSM with the thinning mask.

4.1.2. Thresholding

After thinning, we threshold the tCSM to select the most
salient contour segments. We use the competitive clustering
technique of [13] in both the thermal and the visible
domains. Though the approach was originally motivated
by object properties in the thermal domain, it is not exclu-
sive to thermal imagery. The technique first clusters tCSM
pixels based on saliency and then discards the lowest clus-
ter. To ensure that the lowest cluster contains background
contour fragments, it was observed in [13] that it is best to
use 2 clusters when the object regions are unimodal and 3
when they are multimodal. This observation holds irrespec-
tive of the nature (thermal or visible) of the imagery.

Instead of trying to estimate the modality of the input,
every tCSM is clustered (using K-means) twice, into 2

Fig. 6. CSM thinning. (a) CSM. (b) Non-maximum suppression of input
gradient magnitudes. (c¢) tCSM.

and 3 saliency groups corresponding to the unimodal and
multimodal cases, and thresholded by setting all pixels in
the lowest cluster to 0 (the remaining pixels are set to 1).
The cluster centers in the K-means algorithm are initialized
to the minimum and maximum tCSM values in the two
cluster case, and to the minimum, median, and maximum
tCSM values in the three cluster case. The optimal binary
image is then chosen from the two thresholded tCSMs,
B, and Bs. To rank the two binary images we form a qual-
ity measurement Q using the average contour length (ACL)
and coverage (C). The ACL is computed by averaging the
lengths of the individual contours obtained from a
region-growing procedure applied to the thresholded
tCSM. We use the average distance of the perimeter pixels
of the ROI to the closest pixel in the thresholded tCSM as
an inverse measure of C (a lower C thus indicates better
coverage). The hypothesis is that an optimally thresholded
tCSM should contain contours of relatively high average
length that also “cover” the ROI sufficiently well.

Thus the quality of a thresholded image B; is evaluated
using

ACL(B))

B)=(1-a)-

O(B) =(1-2) (max(ACL(Bz),ACL(B3))>
. < C(8) )
max(C(B,), C(B;))

The binary image (B>, B3) that maximizes Q is chosen as the
best thresholded result, which we represent as tCSM,, the
subscript b denoting that the tCSM is binary.

Essentially, Q is a weighted sum of the normalized ACL
and coverage values. The weighting factor o determines the

Fig. 5. Contour saliency in the thermal (top row) and visible (bottom row) domains. (a) ROI. (b) Input gradient magnitudes. (c) Input-background

gradient-difference magnitudes. (d) CSM.
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influence of each of the factors on Q. Empirically, we found
that if the ACL of one of the images is less than half of the
other, then there is little need to rely on C. On the other
hand, if the two ACLs are quite similar, then C should
be the most influential factor. In other words, the weight
o should be a function of the ratio of the two ACLs

_ min(ACL(B,), ACL(8;)) 7
"= max(ACL(B,), ACL(B3)) 7

and, when r> 0.5, « should be ~1, and when r <0.5, «
should be ~0. We therefore express o non-linearly as a sig-
moid function centered at 0.5 given by

1

YT f e hr03)

(8)
where the parameter f controls the sharpness of the non-
linearity (we use f§ = 10).

In Fig. 7(a)—(c), we show a thermal ROI with unimodal
person pixels and the competing binary images, B, and Bs,
respectively. The resulting quality values are Q(B») = 0.993
and Q(B3) = 0.104. Thus, as expected due to the unimodal
nature of the person pixels, B, was selected as the correct
thresholded image. In this example, the large difference in
the ACL (r = 0.154) of the two images resulted in it being
the dominating factor in the quality evaluation. In
Fig. 7(d)—(f), we show a thermal ROI with multimodal per-
son pixels and its binary images, B, and Bs. The resulting
quality values were Q(B;) = 0.103 and Q(B3) = 0.255, and
as expected, B3 was correctly selected. The dominant qual-
ity factor here was the coverage, since the ACLs were sim-
ilar (r = 0.893).

Fig. 8 shows examples of the thresholding technique
for the visible domain. A unimodal ROI is shown in
Fig. 8(a), with the competing binary images B, and B;
shown in Fig. 8(b) and (c), respectively. As shown, the
competing binary images are similar, and their quality
values are Q(B,) =0.184 and Q(B;) = 0.395. Here, unlike
in the thermal domain (Fig. 7(a)-(c)), we find that both
candidates had almost equal ACLs (r = 0.752), thus mak-
ing C the dominating factor. This can be attributed to the
absence of the halo artifact in visible imagery, which
ensures that, when objects appear unimodal, the tCSM
values are tightly clustered around 0 (background) and
1 (object gradients). Thus, unlike the thermal domain,
the middle cluster in B3 does not contain noise fragments,
and in fact contributes to the better quality of B;. How-
ever, the presence of diffused shadows could simulate con-
ditions similar to halos in the thermal domain, and the

middle cluster would then contain unwanted contour frag-
ments (affected by the shadow). Since we employ a shad-
ow-removal stage prior to the formation of the tCSM,
this scenario seldom occurs, and both B, and B are gen-
erally good candidates for the final binary result. In
Fig. 8(d), we show a visible ROI with multimodal person
pixels. The resulting quality values of its binary images,
shown in Fig. 8(e) and (f) are Q(B,)=0.316 and
0(B3) = 0.674, respectively. Similar to the corresponding
case in the thermal domain, the ACLs were comparable
(r=0.714), and the dominant quality factor here again
was C.

4.2. Contour fusion

We now have binary contour fragments corresponding
to the same image region in both the thermal and the visi-
ble domains. Within their respective domains, these con-
tours lie along pixels with the most salient object
gradients. Based on the complementary nature of the sen-
sors, we anticipate that these salient contours, when com-
bined, would provide a better, less broken, delineation of
the object boundary. Our next task is thus to combine
the contours into a single fused image from which we will
form silhouettes.

Since the tCSMs of either domain only contain contours
that reliably represent salient object boundaries, the fused
result can contain a// contour features from both domains.
We thus combine information from the two sensors by per-
forming a simple union of their individual contributions
using

tCSM, = tCSM; U tCSM 9)

While this provides a simple way to benefit from the com-
plementary nature of the sensors, sensor redundancy can
sometimes be problematic. Contour fragments from the
thermal and visible domain belonging to the same edge
may not always perfectly coincide with each other (due to
imperfect registration, differences in the sensors, etc.). In
order to complete and close these contour fragments for
the creation of silhouettes, we require that the contour
fragments be only 1-pixel thick. Hence, if two contour frag-
ments lie adjacent to each other (instead of over each other)
in the tCSMy,, we would like to preserve only the contour
corresponding to the stronger gradient. The final tCSM,,
therefore needs to be further “aligned’ such that only those
contour fragments that correspond to gradient maxima
across both domains are preserved.

Fig. 7. Contour selection in thermal domain. (a) Unimodal ROI. (b) B, (selected). (¢) Bs. (d) Multimodal ROL. (e) B,. (f) B; (selected).
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Fig. 8. Contour selection in visible domain. (a) Unimodal ROI. (b) B.. (¢) Bs (selected). (d) Multimodal ROL. (e) B,. (f) B; (selected).

To achieve this, we first create a combined input gradi-
ent map from the foreground gradients of each domain.
Gradient direction and magnitude information for a pixel
in tCSMy, is selected from either the thermal or the visible
domain depending on it being present in the tCSME or
tCSMl\)/ (if present in both, the gradient information at that
pixel can be taken from either domain). Since we now have
an orientation and magnitude at every contour pixel in the
tCSM,,, we apply a local non-maximum suppression algo-
rithm to perform a second thinning to better align the
tCSM,,. This results in a set of contours that are the most
salient in the individual domains as well as across the
domains. In Fig. 9(a) and (b), we show corresponding
ROIs in the thermal and visible domains. Fig. 9(c) and
(d) shows the tCSM,, before and after alignment, respec-
tively. In Fig. 9(e), we show the final contours obtained
after alignment (Fig. 9(d)) overlaid on the result of the
raw union of contours (Fig. 9(c)) from the thermal and vis-
ible domains. While in the top row of Fig. 9(c) the contour
image appears complete, in most cases the union of con-
tours from the two sensors leaves several gaps in the con-
tour image (as shown in the corresponding figure in the
bottom row). The contours in Fig. 9(d) appear more “bro-
ken” than in Fig. 9(c), but since they are 1-pixel thick, they
can now be effectively completed and closed.

4.3. Contour completion and closing

While contour information from the two channels
are often complementary, the contour fragments in

the combined tCSM,; are still mostly broken (see
Fig. 9(d)) and need to be completed (i.e., the contours
have no gaps) and closed (i.e., the contour figure is
equivalent to the closure of its interior) before we can
apply the flood-fill operation to create silhouettes. To
achieve this, we use the two-part method originally pro-
posed in [11,10]. The algorithm first attempts to con-
nect any gaps in the figure using an A™ search
algorithm to grow out from each gap endpoint towards
another contour pixel. Next, all contours in the figure
are closed.

To limit the search space and constrain the solution to
have meaningful path completions/closings, the method
makes use of the Watershed Transform (WT) [49]. When
the WT is applied to a gradient magnitude image, the
resulting watershed lines are found along the edge ridges,
and divide the image into closed and connected regions/
cells (basins). Thus there is a high degree of overlap
between the watershed lines of a gradient (magnitude)
image and the result after non-maximum suppression.
Based on this relationship, the WT of the combined input
gradient map (from Section 4.2) is used to provide a mean-
ingful completion guide to connect any broken contours in
the tCSM,,.

In Fig. 10(a), we show the combined input gradient map
corresponding to the ROIs in the second row of Fig. 9.
Fig. 10(b) and (c) show the WT of this image overlaid on
the thermal and visible ROIs, respectively. In Fig. 10(d),
we show the corresponding tCSM,, overlaid on the WT
lines. This image shows the overlap between the tCSM,

Fig. 9. Fused binary contours. (a) Thermal ROI. (b) Visible/intensity ROI. (c¢) Fused binary contours before alignment. (d) Fused binary contours after
alignment. (e) Contours from (d) (white) overlaid over contours from (c) (gray).
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Fig. 10. Watershed analysis. (a) Combined input gradient map. (b)
Overlay of watershed lines on thermal ROI and (c) visible ROI. (d)
Superposition of tCSM,, on watershed lines.

and the WT lines, and also the suitability of the watershed
lines as appropriate completion guides for the broken con-
tours of the tCSM,,.

4.3.1. Valid contour selection

To eliminate small stray contour fragments present in
the tCSM,, that may harm the completion/closing process,
a coarser segmentation of the ROI is obtained using a
basin-merging algorithm on the watershed partition. The
basin merging algorithm uses the Student’s ¢-test with a
confidence threshold of 99% to determine whether the pix-
els for two adjacent basins in the ROI are similar (merge)
or significantly different (do not merge). Starting from the
two most similar basins, pairs of basins are merged until
no two neighboring basins pass the similarity test. The
merged version of the WT generates a lower resolution
segmentation of the ROI. We shown an example before
and after basin merging in Fig. 11. Other merge algo-
rithms could also be applied [33,26].

This coarser resolution WT is used to validate the con-
tour segments of the thresholded tCSM, by eliminating
any small noisy fragments that might exist. Based on the
merged WT, the binary tCSM,, is partitioned into distinct
segments that divide pairs of adjacent basins. A tCSM,, seg-
ment is considered valid only if its length is at least 50% of
the length of the WT border separating the two basins. If a
segment is deemed invalid, its pixels are removed from the
thresholded tCSM,,. The intuition behind the process is
that, at least half of the boundary between two neighboring
regions must be reinforced, otherwise the tCSM,, pixels on
the boundary are likely to be noise. We show a threhsolded
tCSM,, overlaid on the merged WT in Fig. 12(a) and show
the result after the validation process in Fig. 12(b). Notice
that several small fragments are removed after the valida-
tion process. The merged WT is used only for this step, to
validate the contours in the tCSMy, and the remaining com-
pletion/closing processes employ the original WT.

4.3.2. Contour completion

The first part of the method attempts to complete any
contour gaps using the watershed lines as plausible connec-
tion pathways for the tCSMy,. Each “loose’ endpoint of the
contour segments (found using 3 x 3 neighborhood analy-
sis) is forced to grow outward along the watershed lines
until another contour point is reached. To find the optimal
path, the A* search algorithm [42]is employed such that the

Fig. 11. Basin merging. (a) Original WT overlaid on ROI. (b) Merged WT
overlaid on ROI.

Fig. 12. Contour validation. (a) tCSM,, overlaid on merged watershed
lines. (b) tCSM,, after contour validation.

the expected cost through the current pixel location to reach
another contour point is minimized. The Euclidean distance
from the current pixel location to the location of remaining
thresholded tCSM contour pixels is used as the heuristic
cost function. Each gap completion search uses only the ori-
ginal contour pixels (not including any new path points) so
that the order of the gap completion does not influence the
final result. Again, the valid search paths are restricted to
only the watershed lines. Further details of the approach
are provided in [13]. We show a tCSM,, in Fig. 13(a) and
the completion result in Fig. 13(b). The un-completed con-
tour in the foot region of the middle person and the other
un-closed contour segments (shown in white) will be
addressed in the following closing operation.

4.3.3. Contour closing

Next all those contours not part of a closed loop are
identified (by region growing along the contours). Such
contours either have a remaining external “loose” end
(not completed in the previous step) or connect other
closed loops. Given an un-closed contour, the nearest pair
of points that lie on closed loops connected by this contour
are chosen. Any other path connecting these points will
close the region. As in the previous step, the A* algorithm
limited to the watershed lines is used to find such a path. In
order to ensure that only a minimum number of new con-
tour pixels are added to the figure by the new path, no pen-
alty (step cost) is assigned for moving along existing
contour pixels during the A™ search. The process of con-
tour closing is repeated until no new pixels are added to
the image between successive iterations. We show example
closing results in Fig. 13(c).

After the completion and closing procedures, a simple
flood-fill operation is employed to create the silhouettes.
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Fig. 13. Contour completion, closing, and flood-filling. (a) Original tCSM,,. (b) Completed contour result (white lines are new paths). (c) Closed result of

(b) (white lines are new paths). (d) Flood-filled silhouettes.

We present the final flood-filled silhouettes for the closing
result of Fig. 13(c) in Fig. 13(d).

5. Stage III: high-level processing

In this stage, we weight each resulting silhouette with a
contrast value, €, representative of how distinct that region
is from the background scene in either domain. For each
silhouette, we first compute the ratio of the maximum
input-background intensity difference within the silhouette
region to the full intensity range of the background image
BG, in both the thermal and visible domains. We then
assign the higher of these two values as the contrast value
of the silhouette.

| max (7 (sil)) — max(BG'(sil)) ||
( max(BG') — min(BG') ) (10)

%(sil) = max

ie{T,V}
where sil represents a particular silhouette region detected
in the input image I. The contrast (or confidence) level
(%) for each silhouette could also be determined by more
robust methods, such as estimating the divergence of each
silhouette distribution from the background distribution.
However, due to the large dynamic range of our images,
this simple method was effective. The contrast value pro-
vides the flexibility to a human operator (e.g., for human-
in-the-loop surveillance monitoring) to select/show only
the most confident detections. A user-selected threshold
on % could easily be used to remove any minimal-contrast
(noise) regions.

To further improve detection results, we also make use
of limited temporal information. A 3-tap temporal median
filter is applied to blobs across frames {/,_i, I;, 1,41} to
ensure that sporadic detections are eliminated. The filter
preserves only those silhouette regions in the current frame
that were also detected at least once in a local temporal
window. Though our approach is simple, it is effective
and does not burden the pipeline with excessive memory/
computational requirements. A deeper median filter (say
5- or 7-tap), or more complex temporal consistency algo-
rithms, along with grouping/clustering of small silhouette
blobs, could also be employed. We also note that similar
temporal information could be used to better facilitate
the identification of ROIs in Stage I of the algorithm.

In Fig. 14, we show the results of this processing stage.
Fig. 14(c) shows the initial silhouette regions detected for
the pair of images shown in Fig. 14(a) and (b). In

Fig. 14(d), we show the result of removing sporadic incon-
sistent detections using the median filter and assigning con-
trast values (darker silhouettes denote detections with
lower confidence).

6. Experiments

To examine our contour-based fusion approach, we
tested our method with six challenging thermal/color video
sequence pairs recorded from two different locations at
different times-of-day, with different camera gain and level
settings. We also analyzed our method quantitatively with
a comparison to alternate approaches. The thermal
sequences were captured using a Raytheon 300D ferroelec-
tric BST thermal sensor core, and a Sony TRV87 Handy-
cam was used to capture the color sequences. The image
sizes were half-resolution at 320 x 240. The number of
frames in each sequence is Sequence-1:2107, Sequence-
2:1201, Sequence-3:3399, Sequence-4:3011, Sequence-
5:4061, and Sequence-6:3303. Example images from this
dataset, one from each sequence, are shown in the top
two rows of Fig. 15(a)—(f). The sequences were recorded
on the Ohio State University campus during the months
of February and March 2005, and show several people,
some in groups, moving through the scene. Sequences 1,
2, and 3 contain regions of dark shadows cast by the build-
ings in the background. There are also frequent (and dras-
tic) illumination changes across the scene. The images of
Sequences 4, 5, and 6 were captured on a cloudy day, with
fairly constant illumination and soft/diffuse shadows. To
incorporate variations in the thermal domain, the gain/
level settings on the thermal camera were varied across
the sequences.

6.1. Qualitative analysis

Examples of silhouettes extracted using the proposed
fusion-based background-subtraction method are shown
in the bottom row of Fig. 15(a)—(f). To demonstrate the
generality and applicability of our approach, the silhou-
ettes were obtained using the same parameter/threshold
settings for all sequences (squared Mahalanobis distance
thresholds of 10, 15, and 4 for the thermal, luminosity,
and color channels, respectively). The results demonstrate
that the algorithm is able to generate reasonable silhouette
shapes even when objects are difficult to discern individually
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Fig. 14. High-level processing. (a) Input thermal image. (b) Input visible image. (c) Detected silhouette regions. (d) Silhouette regions after high-level

(post-) processing.

Fig. 15. Visual inspection of detection results of the proposed approach across different images and scenarios. (a) Sequence-1. (b) Sequence-2. (c)
Sequence-3. (d) Sequence-4. (e) Sequence-5. (f) Sequence-6.

in the two input channels. In Sequences 1, 2, and 3 the
algorithm is unaffected by the sudden changes in illumina-
tion in the visible domain. It is also able to ignore shadows
of people in the scene. The variation in thermal gain set-
tings across these sequences did not pose any problems.
Sequences 4, 5, and 6 contained more stable illumination
and diffused shadows. The thermal domain contained
images that showed a slight halo artifact. The correspond-
ing silhouettes extracted show that our algorithm was effec-
tive in handling these conditions. Examining the resulting
silhouette images across all 6 sequences, we also see that

the contour completion and closing method is able to effec-
tively separate multiple people within a single ROI.

Some visible and thermal regions containing people are
shown in the three rows of Fig. 16(a) and (b), respectively.
In the visible (Fig. 16(a)) and thermal (Fig. 16(b)) image
pair shown in the top row, we see an example of the con-
trast between the two domains. The visible image shows
a challenging case where the person appears dark and is
in shadow. In the corresponding thermal image, the person
regions appear white hot, possibly due to the lower temper-
atures in the shade. In the middle row, different person
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Fig. 16. Three example person regions. (a) Visible domain. (b) Thermal domain. (c) Final fused contours. (d) Contours present in both domains (dark

gray), only in thermal domain (gray), and only in visible domain (white).

regions appear at varying contrasts from the background
in both the visible and thermal domains. Observe, however,
that regions of high or low contrasts in one domain do not
correspond to similar contrasts in the other domain. In the
third row, we see that the person regions are more clearly
delineated in the visible domain than in the thermal
domain.

In Fig. 16(c), we show the results of the proposed
approach, before contour completion, for the three exam-
ples. The extracted contours provide a reasonable, albeit
incomplete, trace of the boundary of the person regions
shown in Fig. 16(a) and (b). In Fig. 16(d), the contours
have been color-coded to show the contribution of either
domain to the final fused contour image. Contours in white
are those obtained from the visible domain, those in gray
are obtained from the thermal domain, and those in dark
gray are common to both domains. The contour image in
the top row of Fig. 16(d) is composed of information from
the thermal domain alone. This is because the visible ROI,
extracted from the corresponding image in Fig. 16(a), con-
tained no usable contour information. The contours in the
second row of Fig. 16(d) are obtained almost equally from
the visible and thermal domains. Portions of the torso, that
are not clearly distinguishable in the visible image, are out-
lined by contours from the thermal domain, while the leg
regions are mostly outlined by contours from the visible
domain. In the third row, we see an example where the con-
tours from the visible domain provide most of the shape
information of the person region. Here, the thermal
domain contributes contours that are mainly internal to
the person regions.

In order to determine the usefulness of our fusion
approach, and to enable comparison with other algo-
rithms, we use object-detection performance as a common

yardstick. To quantitatively measure object-detection per-
formance, we obtained a manual segmentation of the per-
son regions in 60 image-pairs from our dataset (~10
image-pairs spanning each of the 6 sequences). For each
of the 60 image-pairs, three people hand-segmented the
person regions (silhouettes), in both the thermal and visible
domains. Results of the hand-segmentation of each pair of
images by each person were combined using an element-
wise logical OR operation to obtain the final manual sil-
houette image. The median silhouette images across the 3
participants were used in the algorithm evaluation. Exam-
ples, one from each sequence, are shown in the top row of
Fig. 17.

Using the manually segmented images, we performed
two sets of experiments. The first experiment was used to
ascertain if object detection performance is improved using
our fusion approach, as opposed to using either of the two
sensors independently. The second set of experiments com-
pared our approach with other potential methods for
fusion-based background-subtraction. These methods
include both low-level (pixel-based) and high-level (deci-
sion-based) schemes, which together with our mid-level
(gradient-based) approach, make up a rich testbed of
fusion techniques.

6.2. Experiment 1: fusion vs. independent sensors

The aim of this experiment is to demonstrate the efficacy
of our fusion algorithm for object detection. As a measure
of efficacy, we computed the improvement in object-detec-
tion that our algorithm achieved by using thermal and vis-
ible imagery together, over using either of the sensors
independently. The performance of our algorithm was thus
examined under three different input scenarios, thermal
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Fig. 17. Visual comparison of detection results of the proposed approach for across different images and input scenarios.

and visible imagery, only thermal imagery, and only visible
imagery. We measured Recall and Precision for each sce-
nario using the set of 60 manually labeled images as ground
truth. Recall (or Sensitivity) refers to the fraction of object
pixels that are correctly detected by the algorithm, while
Precision (or Positive Predictive Value) represents the frac-
tion of detections that are in fact object pixels. In all our
experiments we use the F-measure [41], which is the har-
monic mean of Precision and Recall, as an indicator of
the quality of performance

F= 2R (11)
P+ R

In a Precision—Recall graph, higher F-measures correspond

to points closer to (1, 1), representing maximum Recall and

Precision.

In this experiment, we compared the three input
scenarios over a large number of parameter settings. The
parameters we varied were the ‘internal’ background-
subtraction thresholds (corresponding to the squared
Mahalanobis distance thresholds for the thermal, luminos-
ity, and color channels), and the ‘external’ threshold (on
the contrast value %). The internal thresholds (e.g., as used
in Eq. 5) were varied in the following ranges: [5,6,...,12]
for the thermal, [10,11,...,16] for the luminosity, and
[2,4,...,8] for the color components. These values resulted
in 245 possible parameter settings. Other statistics-based
methods could also be used to determine the optimal
thresholds. For each internal parameter setting, the

external parameter was varied between 0 and 1, and
assigned the value giving the highest F-measure of Preci-
sion and Recall. Examples of detection results for the three
input scenarios (thermal and visible, thermal alone, and
visible alone) are shown in rows 2, 3, and 4 of Fig. 17.
The corresponding ground truth silhouettes for these
examples are shown in the top row of Fig. 17. In Tables
1-3, we show comparisons between Recall, Precision, and
the F-measure for the three scenarios for a particular set
of internal parameters (thresholds for thermal, luminosity
and color set at 10, 15, and 9, respectively). The external
threshold was set independently for each input scenario,
such that the F-measure was maximized.

From column 2 of Table 1 we see that, using only the
thermal domain, the Precision values for all sequences
are close to 1. This shows that the proposed algorithm is
effective in extracting object silhouettes despite issues

Table 1

Comparison of Precision values

Sequence Tand V T 14 % over T % over V'
Seq-1 0.914 0.938 0.459 —2.56 99.13
Seq-2 0.874 0.926 0.215 —5.62 306.52
Seq-3 0.905 0.922 0.773 —1.84 17.07
Seq-4 0.955 0.958 0.983 —0.31 —2.85
Seq-5 0.957 0.966 0.954 —0.93 0.31
Seq-6 0.937 0.941 0.952 —0.43 —1.57
Overall 0.916 0.939 0.498 —2.45 83.94
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Table 2

Comparison of Recall values

Sequence Tand V T V % over T % over V
Seq-1 0.714 0.607 0.313 17.63 128.12
Seq-2 0.719 0.6668 0.130 7.64 453.07
Seq-3 0.655 0.569 0.218 15.11 200.46
Seq-4 0.734 0.718 0.122 2.23 501.63
Seq-5 0.809 0.777 0.148 4.12 446.62
Seq-6 0.78 0.663 0.439 17.65 77.67
Overall 0.722 0.645 0.233 11.94 209.87
Table 3

Comparison of F-measure

Sequence Tand V T vV % over T % over V'
Seq-1 0.802 0.737 0.372 8.774 115.402
Seq-2 0.789 0.776 0.162 1.654 386.925
Seq-3 0.760 0.704 0.340 7.994 123.462
Seq-4 0.830 0.821 0.217 1.124 282.401
Seq-5 0.877 0.861 0.256 1.805 242.169
Seq-6 0.851 0.778 0.601 9.437 41.674
Overall 0.808 0.765 0.317 5.596 154.361

including the halo artifact and the inversion of polarity.
This also demonstrates that the algorithm is capable of
generating good object detection performance when the
visible domain provides little or no information, such as
in nighttime environments. In fact, as we show in [13], even
better performance could be achieved using cooler night-
time sequences (or hotter daytime sequences), since the
thermal properties of person regions would be significantly
different from that of the environment. The addition of
information from the visible domain does not improve
the Precision further, and in fact results in a marginal per-
centage degradation of Precision, as shown in column 4 of
the table. The relatively poor performance obtained from
using only the visible sensor is to be expected given our
simple background model and the presence of shadows
and drastic illumination changes occurring throughout
the sequences. Without the use of a thermal mask (Section
3.2), extracting ROIs in the visible domain using the same
set of thresholds for all 6 sequences results in a large num-
ber of spurious detections (see Fig. 4). In the visible domain
(column 3), Sequences 1-3 have low Precision due to pres-
ence of sharp shadows and drastic illumination changes,
while Sequences 4-6 have high Precision due to more
benign conditions. Incorporating information from the
thermal domain results in a large percentage improvement
for Sequences 1-3, while the Precision drops slightly for
sequences 4 and 6, as shown in column 5. Overall, using
our approach, fusion of thermal and visible imagery results
in a very small (~2%) percentage degradation of Precision
compared to using only the thermal domain, and a large
(~84%) percentage improvement when compared to using
only the visible domain.

The benefits of fusing information becomes apparent
while comparing Recall values, shown in Table 2. Examin-

ing columns 4 and 5, we see that, for all six sequences,
fusion of thermal and visible imagery results in large per-
centage improvements over using either domain indepen-
dently. Overall, there is almost a 12% gain in Recall over
the thermal domain, and the Recall of the visible domain
is more than doubled.

Table 3 shows the maximum F-measure of the Precision
and Recall for each input scenario. Column 4 shows that
our fusion-approach generates measurable performance
gains over using only thermal imagery for all sequences.
The positive change in overall performance shows
that the improvement in Recall brought about by fusion
with the visible domain outweighs the marginal loss
incurred in Precision. Further, we see from column 5 that
our approach improves results dramatically by using both
the thermal and visible domains over using only the visible
domain.

The performance gains shown in Tables 1 and 2 are not
peculiar to the aforementioned threshold values. In
Fig. 18(a)—(c), we show Precision—Recall plots for three dif-
ferent internal parameter settings. The thermal, luminosity,
and color squared Mahalanobis distance thresholds (e.g.,
as used in Eq. 5) are [8,13,6], [10,15,10], and [9, 14, 8] for
Fig. 18(a)—(c), respectively. Each plot shows the inter-de-
pendence of Precision and Recall as the external threshold
(on contrast %) is varied. The highlighted points corre-
spond to the thresholds that yield the highest F-measure.

Examining the three curves plotted in each of the fig-
ures, we see that for all the parameter settings shown, the
detection results obtained by fusing thermal and visible
imagery using our method are superior to using either kind
of imagery individually. In Table 4, we show the highest F-
measure obtained for seven of the many internal parameter
settings we tested. As shown by the results in the table, our
algorithm generated better detection performances when
using both thermal and visible imagery for the majority
of parameter settings. The last column in the table shows
the standard-deviation of the performance of each input
scenario across the different parameter settings. A higher
standard deviation signifies a higher sensitivity to the
threshold values, and hence lower consistency or robust-
ness. As expected, the visible domain is the least consistent
of the three cases. The thermal domain, on the other hand,
shows the most consistent results across the various set-
tings. In comparison, the fusion of the two domains by
the proposed algorithm produces fairly consistent results.
In spite of the highly sensitive visible domain, our method
is able to exploit the robustness of thermal imagery to pro-
duce results that are closer in consistency to the thermal,
than the visible, domain.

6.3. Experiment 2: comparison with other methods

In this experiment we compare the proposed algorithm
with other potential fusion-based background-subtraction
methods. Our mid-level algorithm combines information
from the two domains at the gradient (or contour) level.
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Fig. 18. Precision—Recall graphs for three different threshold settings for
thermal, luminosity, and color channels. (a) [8,13,6]. (b) [10,15,10]. (¢)
[9,14,8].

In order to encompass the broadest range of techniques, we
compare our method with lower- and higher-level fusion
algorithms. The two low-level (pixel-level) fusion tech-
niques we use are simple averaging and the PCA-based
technique proposed in [8]. These techniques generate fused
imagery which can be then be used as the input stream for
background-subtraction algorithms. The high-level
(decision-level) technique we employ is the logical OR-ing
of binary silhouettes, obtained after background-subtrac-
tion is performed independently in both domains. In
order to determine which background-subtraction tech-
niques to use for comparison, we note that these can be
roughly categorized as either parametric or non-parametric
approaches. From among the former, we consider Gauss-
ian-based modeling methods and choose the single Gauss-
ian model [50] for comparison, since it is a simple technique
that is still widely used, and because we employ this tech-
nique to generate the initial ROIs in our method. The more
complex Mixture of Gaussians [45] model could also be
used, but would be equally ineffective against halos and

object shadows found in thermal and visible imagery (halos
and shadows co-occur temporally and spatially with fore-
ground objects). From the non-parametric class of back-
ground-subtraction algorithms, we use the code-book
based approach proposed in [24]. This recent technique
has been shown to generate comparable or better results
than the popular Mixture of Gaussians approach. The full
set of competing methods can be enumerated as follows:

1. PCA-based fusion + Gaussian back-sub: Fusion is per-
formed by computing a region-wise weighted average
of the input sensors. The weights for each circular region
are determined using PCA of the pixel-intensities of the
input images (for details see [8]). We use the method to
fuse each color component of the visible domain with
the thermal channel resulting in a fused image stream
with three components. Background-subtraction is per-
formed using a mean-covariance (3-dimensional) Gauss-
ian model. Based on visual inspection of the fusion
results, we set the standard deviation of the low-pass fil-
ter used in the technique to 2, and the radius of the cir-
cular regions to 5.

2. Average + Gaussian back-sub: Pixel-wise averages are
computed for each color channel with the corresponding
thermal channel. As in Method 1, a 3-dimensional
mean-covariance Gaussian model is used for back-
ground-subtraction.

. Proposed algorithm: As described in Sections 3-5.

4. Gaussian back-sub in each domain + OR-ing of silhou-
ettes: 1-d and 3-d Gaussian background models are built
for the thermal and visible domains, respectively. The
background subtraction results are combined using a
pixel-wise logical OR operation.

5. Code-book back-sub in each domain + OR-ing of silhou-
ettes: The code-book technique [24] is used to build
the background models for the thermal and visible
domains. As in Method 4, the background-subtraction
results are combined using pixel-wise logical OR.

[98)

For Methods 1, 2, and 4 we also employ the same shad-
ow-removal approach described in Section 3.2, where
pixels darker in luminosity and similar in chrominance
with the background are discarded. To ensure a fair
comparison, contrast values (%) were computed for silhou-
ettes generated by each method. Further, the internal
parameters for all the methods were set to guarantee the
best performance on the testset. In Methods 1-4, each

Table 4

Overall F-measure values for different threshold settings for thermal, luminosity, and color

Method Setting-1 Setting-2 Setting-3 Setting-4 Setting-5 Setting-6 Setting-7 a
[5,10,4] [6,11,5] [7,12,6] [8,13,7] [9,14,8] [10,15,9] [11,16,10]

Thermal and visible  0.781 0.792 0.798 0.807 0.804 0.808 0.803 0.0096

Thermal only 0.772 0.773 0.771 0.771 0.769 0.765 0.763 0.0040

Visible only 0.659 0.575 0.513 0.456 0.405 0.373 0.374 0.1087
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background-subtraction threshold was varied over a wide
range. For each of the large number of resulting parameter
sets, we plotted the Precision—Recall curve by varying the
threshold on %. The best F-measure of the curve was used
as the summary statistic for the particular parameter set.
For each method, the parameter settings with the highest
summary statistic were then chosen as the internal param-
eters. It should be noted that for these methods, the exact
same parameters were used for all the 6 sequences and
for both the thermal and visible input channels. For
Method 5, the several parameters pertaining to the code-
book technique [24] (el, €2, o, 5, K, Period, parameters
used for post-processing and extreme point detection, and
parameters used for the layered background model updat-
ing) were handpicked by the authors of [24] for each of the
6 different sequences and fine-tuned individually for the
thermal and visible domains. Thus, for Method 5, only
the threshold on % was chosen based on the highest F-
measure.

In Fig. 19, we show the best Precision—Recall curves for
the 5 methods. The curves are generated by varying the
threshold on @, and the point with the highest F-measure
is highlighted. For each method, the Precision and Recall
values corresponding to this point are shown in Table 5.
The last column of the table shows the Precision, Recall
and F-measure computed over the entire testset of 60
images. Examples of detection results of the five methods
are shown in rows 2-6 of Fig. 20. To enable a visual
comparison, the corresponding ground-truth data is shown
in row 1 of the figure. From Table 5, we see that among the
low-level techniques, Method 1 has a slightly better
F-measure than Method 2. Both methods have low detec-
tion rates, and less than 65% of the pixels detected lie on
target. This shows that while these methods might be useful
as visualization aids, they are not very effective at facilitat-
ing automatic object detection via background-subtraction.
We see that the highest Recall value is obtained by Method
4. This is because background-subtraction in the thermal
domain is very successful at accounting for almost all of
the person pixels present in the testset. However, this

—%— Method 1
—— Method 2
0.9 —+— Method 3
—&— Method 4
—%— Method 5
0.8 QO Best point

0.71 R

Precision

0.6 R

0.4 1

‘
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Recall

Fig. 19. Best Precision-Recall plots for five different methods.

technique is unable to effectively handle the halo artifact
common in thermal imagery. As a result, a large number
of pixels around the objects are incorrectly detected. In
the visible domain, the presence of shadows and illumina-
tion changes causes further problems for the background-
subtraction technique (as such statistical techniques do
not directly model shadow/illumination properties as in
the code-book method), resulting in a number of false
alarms. Since silhouettes from both domains are combined
using a simple logical OR, the false detections from both
domains contribute to the low Precision values for Method
4. The code-book technique for background-subtraction
used in Method 5 generates more balanced results. The
higher Precision indicates that the technique is able to deal
with issues such as halos and shadows more effectively than
the statistical background-subtraction approach. However,
this comes at the cost of Recall, which is lower than that of
Method 4. The better overall performance can also be
attributed to the fact that the parameters used in the
code-book technique were fine-tuned for each sequence
for the thermal and visible domains.

Among all the methods, the highest F-measure is
achieved by the proposed algorithm (Method 3). It has a
considerably higher Precision than the competing methods,
showing that it is best able to deal with the challenges of
both domains, namely halos, shadows, and illumination
changes. At the same time, it also has a Recall rate of more
than 75%, second only to Method 4, which, as discussed
earlier, has a large false positive rate.

6.4. Discussion of experiments

A number of salient properties of our algorithm are
brought forth in these experiments. In Experiment 1, we
start by showing that our algorithm is able to exploit the
presence of two complementary input modalities to
improve object detection performance. The overall detec-
tion results (rated using the F-measure) when both thermal
and visible imagery are used are always better than when
only one domain is present (see Table 3). We regard this
as a fundamental requirement of a fusion technique,
whereby fusion of a number of sensors does not
degrade performance over using any one of the input
modalities alone. Another useful quality of our algorithm
demonstrated by this experiment is the graceful degrada-
tion of performance as any one of the input sensors
becomes unavailable. Next, we show that the improvement
brought about by the proposed mid-level fusion technique
is robust to large variations in parameter settings. In spite
of the rapidly changing nature of visible imagery, our
algorithm is able to exploit the stability of thermal imagery
to generate results that are reasonably consistent over a
wide parameter space (see Table 4).

As discussed earlier, fusion can be performed at several
stages in an object-detection pipeline. Experiment 2 com-
pares our mid-level, contour-based technique against a
wide variety of methods, including low- and high-level
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Table 5
Comparison of Precision (P) and Recall (R) values of different fusion methods across different sequences
Method Seq-1 Seq-2 Seq-3 Seq-4 Seq-5 Seq-6 Overall
Low-level Method 1 R 0.454 0.649 0.489 0.518 0.440 0.518 0.505 F=0.504
P 0.519 0.402 0.498 0.694 0.601 0.613 0.503
Method 2 R 0.336 0.586 0.422 0.547 0.279 0.344 0.410 F=10.491
P 0.747 0.442 0.562 0.895 0.836 0.771 0.613
Mid-level Method 3 R 0.756 0.754 0.683 0.759 0.823 0.814 0.755 F=0.828
P 0.908 0.890 0.900 0.958 0.965 0.931 0.916
High-level Method 4 R 0.883 0.928 0.908 0.882 0.957 0.965 0.910 F=0.748
P 0.688 0.518 0.590 0.712 0.748 0.668 0.635
Method 5 R 0.772 0.561 0.543 0.925 0.932 0.914 0.733 F=0.755
P 0.747 0.568 0.915 0.910 0.909 0.915 0.779

Manually segmented silhouettes.

- =
3
1 ;A .
L]

Method 1: Low-level fusion using PCA-based method.

Method 2: Low-level fusion using pixel averages.

Method 3: Mid-level fusion using proposed method.

Method 4: Decision level fusion using Gaussian back-sub.

—_— \ -
3

Method 5: Decision level fusion using code-book back-sub.

Fig. 20. Visual comparison of detection results of five different methods across different images and scenarios.

schemes. This empirical evaluation shows that, for object
detection using thermal and visible imagery, our contour-
based approach avoids many of the pit-falls of low- and
high-level techniques (see Table 5). A mid-level fusion

strategy is best suited to exploit the favorable characteris-
tics of both input modalities and protect against the unde-
sirable artifacts. The salient contour features we extract
enables us to focus on high contrasts in either domain while
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avoiding difficulties arising due to halos and diffused shad-
ows. Further, the lower-level interaction (see Fig. 2)
between the background-subtraction results of the two
domains enables us to overcome issues in the visible
domain pertaining to sudden illumination changes (as dis-
cussed in Section 3.2).

6.5. Computational cost

Since our algorithm processes each ROI identified with-
in an image individually, the frame-rate is heavily depen-
dent on the number of ROIs found in each image. The
burden of finding the ROIs in either domain is dependent
on the background subtraction technique used. As dis-
cussed (Section 3.2), satisfactory background-subtraction
results can be obtained from the relatively stable, single
channel, thermal domain, using only simple techniques (such
as the mean-variance model). Background-subtraction in
the visible domain is inherently more expensive due to the
presence of three color channels (RGB). However, in our
method, once the thermal ROIs are obtained, background-
subtraction in the visible domain is performed only within
the thermal ROIs, and not over the entire image, thereby
providing a reduction in computation cost.

Once the ROIs have been identified, the most expensive
components of the algorithm are the search and validation
methods used in contour completion and closing. The
expensive Watershed Transform [49], used in contour com-
pletion and closing, however does not contribute signifi-
cantly to the overall processing time since it is only
applied in small ROIs (rather than the entire image). Using
un-optimized Matlab code on a 2.8 GHz Pentium 4 com-
puter, we experienced typical processing times in the range
of 0.8-5.5 s per ROI to generate the final fused silhouettes
depending on the complexity of the ROI (number of peo-
ple, modality).

7. Summary

We presented a new contour-based method for combin-
ing information from visible and thermal sensors to enable
persistent background-subtraction in urban scenarios. Our
approach handles the problems typically associated with
thermal imagery produced by common ferroelectric BST
sensors such as halo artifacts and uncalibrated polarity
switches, using the method initially proposed in [11]. The
problems associated with color imagery, namely shadows
and illumination changes, are handled using standard tech-
niques that rely on the intensity and chromaticity content.

Our approach first uses statistical background-subtrac-
tion in the thermal domain to identify local regions-of-in-
terest containing the foreground object and the
surrounding halo. Color and intensity information is then
used within these regions to extract the corresponding
regions-of-interest (without shadows) in the visible domain.
The input and background gradients within each region are
then combined into a Contour Saliency Map (CSM). The

CSM is thinned using a non-maximum suppression mask
of the individual input gradients. The most salient contours
are then selected using a thresholding strategy based on
competitive clustering. The binary contours from corre-
sponding regions of the thermal and visible image are then
combined and thinned using the input gradient informa-
tion from both sensors. Any broken contour fragments
are completed and closed using a watershed-constrained
A”™ search strategy and flood-filled to produce silhouettes.
Each silhouette region is then assigned a confidence value
based on its contrast with the background. Lastly, noisy sil-
houette regions are eliminated in a post-processing stage.

Experiments were conducted with six challenging ther-
mal/color video sequences recorded from different loca-
tions and at different times-of-day. Our algorithm
generated promising results using a single set of parame-
ters/thresholds across all 6 sequences. We used a set of
60 manually segmented images to perform a thorough
quantitative analysis based on the Precision and Recall
values of the detected silhouette regions. We first
demonstrated that our algorithm is able to effectively
exploit information from the thermal and visible domains
to improve object detection performance. We showed that
our algorithm generates improved object detection perfor-
mance when using thermal and visible imagery together,
over using either domain independently. The fact that these
performance gains were obtained over a wide range of
parameter settings also demonstrated the robustness (con-
sistency) of our approach. In another experiment we com-
pared our mid-level fusion algorithm with other potential
low- and high-level fusion methods for background-sub-
traction. Our algorithm consistently generated the best
detection performance (in terms of the F-measure), provid-
ing empirical evidence for the superiority of our algorithm.

To further improve our results, we plan to include
motion information into the saliency map and employ
shaped-based models for better figure completion. We also
recognize the burden of building background models inde-
pendently for each domain, and are exploring methods that
would enable us to avoid background-subtraction in the
visible domain (RGB channels). In the future, we would
also like to combine other mid-level fusion techniques (Sec-
tion 2) into a background-subtraction framework to enable
comparisons with our proposed algorithm. Further, as the
approach is not limited to only extracting silhouettes of
people, we will also evaluate the method for detecting other
objects of interest (e.g., vehicles and animals).
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