
Extracting Pathlets From Weak Tracking Data∗

Kevin Streib James W. Davis
Dept. of Computer Science and Engineering
Ohio State University, Columbus, OH 43210

{streib,jwdavis}@cse.ohio-state.edu

Abstract

We present a novel framework for extracting “pathlets”
from tracking data. A pathlet is defined as a motion region
that contains tracks having the same origin and destination
in the scene and that are temporally correlated. The pro-
posed method requires only weak tracking data (multiple
fragmented tracks per target). We employ a probabilistic
state space representation to construct a Markovian transi-
tion model and estimate the scene entry/exit locations. The
resulting model is treated as a set of vertices in a graph and
a similarity matrix is built which describes broader non-
local relationships between states. A Spectral Clustering
approach is then used to automatically extract the pathlets
of the scene. We present experimental results from scenes of
varying difficulty and compare against other approaches.

1. Introduction

One important task in video surveillance (of many) is to
observe/model an active environment and judge the scene
normalcy. Often the modeling is performed by collect-
ing data over long periods of time and extracting trajec-
tory clusters or semantic regions using trajectory-based
[3, 7, 8, 13, 14, 20] or feature-based [5, 6, 16, 17, 18]
approaches. Unfortunately, many of these algorithms are
problematic when there are a large number of trajectories
to process. Furthermore, many of the extracted semantic
regions suffer from one of two limitations. Namely, a re-
gion may contain several different paths, or regions contain
single paths but overlap in areas where multiple paths in-
tersect spatially and travel in the same direction within the
intersection.

In this work, our goal is to carve the space into “path-
lets”, which we define as contiguous areas with a similar
origin and destination for tracks passing through the region
and that are temporally correlated. Our approach begins

∗Appears in IEEE International Conference on Advanced Video and
Signal Based Surveillance, August 2010.

by tracking objects using a real-time multi-object tracker
based on the well-known Kanade-Lucas-Tomasi (KLT) fea-
ture tracker [11]. Using the KLT tracker typically results
in “weak tracking”, where multiple, and frequently broken,
tracks are found for each target object. We choose such
a tracker because the resulting tracklets are more informa-
tive than pixel-based optical flow and the approach is ca-
pable of tracking large numbers of features on-line in both
sparse and crowded scenes (unlike slower, stronger track-
ers), a necessity when dealing with complex urban environ-
ments. Furthermore, by tracking multiple features on-line,
the true temporal correlation of motion regions can be com-
puted. Additionally, a method capable of extracting pathlets
from short fragmented tracks will also be applicable to the
output of stronger trackers (the reverse is typically not the
case for many algorithms).

From an imposed grid on the image, we quantize the
tracks into a set of location-orientation states. We then pro-
duce a Markovian state transition model and probabilisti-
cally determine the entry/exit states in the scene. Our spa-
tial Markovian assumption holds for weak tracks as long as
there are enough overlapping tracks produced over time on
a path (which holds in typical scenes). Finally, we build
a similarity matrix to define the non-local relationship be-
tween states (based on entry/exit distributions for tracks
in each state and temporal correlation) and use a version
of Spectral Clustering [19] to partition the state space into
clusters (pathlets). By clustering a state space rather than
the trajectories themselves, our approach is not adversely
affected by large numbers of trajectory data (in fact, the
state space is enhanced by more data).

We evaluate our method on five different active urban
scenes with varying degrees of difficulty and compare our
results with trajectory clusters extracted from a trajectory-
based approach [17] and semantic regions extracted from a
feature-based method [5].

2. Related Work
Scene-based activity analysis is typically approached via

algorithms that utilize either motion or appearance features

1



[4, 5, 6, 9, 16, 18] or trajectories [1, 3, 7, 8, 10, 13, 14, 15,
17, 20]. The approaches using motion or appearance fea-
tures analyze activities without relying on tracking. Among
the features that have been used are optical flow [9, 16, 18],
combinations of optical flow and appearance metrics [5],
spatiotemporal gradients [4], and static and moving pixel
comparisons [6]. Furthermore, instead of working at a pixel
level, several of these approaches [4, 6, 9, 18] use features
extracted from small cells or spatiotemporal volumes where
behavior patterns are generally more consistent.

A variety of approaches have been developed utilizing
trajectories to perform scene activity analysis. In [3, 17]
Spectral Clustering is performed on pairwise trajectory sim-
ilarity matrices. An envelope approach is used in [7, 8] to
determine if tracks should be assigned to existing routes or
formed into new routes. In [1] a GMM was used to model
the pdf of transition vectors up to twenty time steps in ad-
vance for each pixel location. A similar approach is pre-
sented in [10] where they use Kernel Density Estimation to
learn a model for the joint probability of a transition be-
tween any two image points and the time taken to complete
the transition. Vector quantization is used in [13] to reduce
trajectories to a set of prototypes. In [15] observations are
treated as words and trajectories as documents which are
clustered via language processing algorithms. Hierarchical
clustering is employed in [14] to combine similar tracks into
HMMs. In [20] scenes are divided into multiple cell blocks,
each potentially containing several motion patterns of tra-
jectories that are parameterized by a quadratic model, and
a GMM is used to extract the primary motion patterns for
a graph-cut algorithm used to group the motion patterns for
each mode.

Several algorithms [3, 5, 6, 7, 8, 13, 14, 16, 17, 18, 20]
extract either paths or semantic regions from the scene.
However, the extracted regions generally have one of two
limitations. Algorithms such as [5, 6] segment the scene
into non-overlapping regions which may cause each region
to contain several different motion patterns. While algo-
rithms such as [3, 7, 8, 13, 14, 16, 17, 18, 20] are capable of
handling multi-directionality by extracting regions for en-
tire paths, the resulting regions may overlap and contain a
similar motion direction since sections of paths may inter-
sect spatially and travel in the same direction throughout
the intersection. Thus, mapping a target’s instantaneous lo-
cation and direction to a unique region is not always possi-
ble. The algorithm presented in [15] does not suffer from
either limitation, but its clustering complexity is related to
the number of tracks. Since we cluster a state space, our
approach has a fixed clustering complexity. Furthermore,
the resulting pathlets capture distinct motion patterns and
can be mapped to uniquely given a target’s instantaneous
location and direction.

3. Probabilistic Scene Model
In our approach, modeling the scene is a three-step pro-

cess consisting of gathering tracklets, generating a proba-
bilistic state space, and estimating the track entry and exit
locations of the scene. Pathlets are extracted directly from
this model.

3.1. Weak Tracking

The “weak tracker” employed in this paper utilizes
the OpenCV implementation of the Kanade-Lucas-Tomasi
(KLT) feature tracker [11]. To limit features/tracks to only
moving objects, we created a motion mask between frames
and employed selected features within this area. The motion
mask is created using a variant of image differencing based
on Weber’s Law (a model of perceptual just-noticeable-
difference [2]), which tends to better handle low-contrast
image differences in shadow regions. To overcome any
erroneous drift or feature matching during tracking, only
those features that move in a continuous direction and lie in
the motion mask are accepted. We refer to this particular
tracker as “weak” because multiple short/broken tracklets
per target are typically produced. Figure 1 shows example
weak tracks. Again, our goal is to be able to employ such
a weak tracker because it is able to track large numbers of
features in real-time, a necessity for online analysis of com-
plex scenes such as a busy and crowded urban environment.

Figure 1. Example tracks for multiple moving objects in an urban
environment.

3.2. Markovian State Space

Motivated by the grid-based approaches of [4, 6, 9, 15,
18, 20], we divide the scene into disjoint cells of size
L × L pixels to reduce the problem dimensionality. The
collected tracks are then mapped into local sets of [grid-
location, motion-direction] states. For each cell a track
passes through, the coordinates of the track within the cell
are approximated by a least-squares line fit whose orien-
tation is quantized into 45◦ orientations. Thus, a state
si = [(x, y) , θ] is defined as an L × L cell location cen-
tered at (x, y) with angle quantization θ. For each track



component to be mapped to a cell, it must traverse the cell
sufficiently (relative to cell size L) and exit from a different
edge than it enters.

Once all of the tracks are quantized into sets of states, a
state transition model is constructed. From the track data,
the count of Markovian transitions, C

(
sj |si

)
, from state

si to a neighboring 8-connected state sj , is computed by
counting the number of actual si-to-sj track connections.
States with insufficient statistics from real data (less than 5
transitions in or out for our experiments) are removed from
the state space.

3.3. Entry/Exit Locations

We next probabilistically estimate the start states (entry
locations) and terminal states (exit locations) of the scene
from the tracks. Since we are using weak tracking (where
fragmented tracks start and stop across the entire scene),
typical algorithms for finding entry/exit locations such as
those presented in [8, 12] will perform poorly. Our ap-
proach is specifically designed to handle weak tracking
data. We start by constructing an image mask of where
tracks can exist by counting the number of trajectories pass-
ing through each pixel in the image. A binary presence im-
age is then created by thresholding low presence pixels. A
median filter is used to remove salt-and-pepper noise and
the remaining regions are dilated. Finally, the pixel coordi-
nates defining the boundary of each substantial region are
found. Ideally, tracks should truly begin and end at loca-
tions on these boundaries. We soften this constraint by al-
lowing those states within a specified distance away from
the boundary to be feasible entry or exit states (we use a
Euclidean distance of 40 pixels in our experiments).

The entry weightWE for a feasible entry state si is cal-
culated asWE = Nstart·(max (0, 1− Nin/Nstart)) ,where
Nstart is the number of tracks that start in si and transition
out to another state, and Nin is the number of tracks that
transition into si. For an ideal entry state, Nin � Nstart,
while Nin � Nstart for any internal non-start state. The
probability of starting in a state, PE (si), is calculated by
normalizing by the sum of entry weights across all feasible
start states.

The procedure for determining the exit weight for each
state is analogous to determining the entry weight. Namely,
the weighted number of stopsWX for a feasible exit state sj
is calculated asWX = Nstop · (max (0, 1− Nout/Nstop)) ,
where Nstop is the number of tracks that transition into
sj and stop, and Nout is the number of tracks that tran-
sition out of sj . After removing any state transitions
accounting for less than 5% of the total transitions out
of state si, we determine the probability of stopping at
si as P

(
sj = ∅|si

)
= WX/ (WX +

∑
l C (sl|si)). If

P
(
sj = ∅|si

)
< 0.5 (more likely to transition than exit)

we set WX = P
(
sj = ∅|si

)
= 0. Finally, we calculate

the probability of transitioning from si to sj as P
(
sj |si

)
=

C
(
sj |si

)
/ (WX +

∑
l C (sl|si)).

The result is a probabilistic state model for entries, tran-
sitions, and exits. The model could be thresholded to make
firm assignments, but we retain the softness for the pathlet
identification process.

4. Pathlet Extraction
Our goal is to extract meaningful pathlets from the scene

to represent detailed and localized path behaviors. If a
similarity measure can be formed between pairs of states(
si, sj

)
, a natural representation of the relationship in our

state space is an undirected graph G = (V,E), where V
and E are the sets of vertices and edges in the graph, re-
spectively. The relationships between the set of vertices
V = {v1, v2, . . . , vn} can be defined by a similarity matrix
W where Wij = Wji and Wij ≥ 0. In our case, path-
lets can be thought of as disjoint subgraphs, or clusters, of
vertices where each vertex represents a state in our model.

4.1. State Similarity Matrix

A similarity metric between states should be high when
the states belong to the same pathlet and low when they do
not. Consequently, we define the similarity metric between
two states (si, sj) as

Wij = Ψ
(
si, sj

)
·R
(
si, sj

)
(1)

which is a combination of component similarity weights
for common origin/destination locations (Ψ) and temporal
cross-correlation (R). Both of the similarity components
have values between 0 and 1. As our probabilistic state
model is a “local” representation (Markovian), we incorpo-
rate broader “non-local” similarity properties here to better
capture the global context of the scene.

Origin/Destination Similarity Ψ
We compare the origin and destination state locations of
tracks passing through two states as one measure of non-
local similarity. Using probabilistic sampling of the state
space model (entries, transitions, exits), we generate ex-
tended tracks (much longer than the tracks typically present
in the original weak tracking data) and determine the start-
ing/ending state locations for those tracks passing through
each state. To sample a trajectory from the model, we
probabilistically choose an entry state si based on sampling
PE (·) followed by repeatedly Monte Carlo sampling the
transition model (inverse CDF method) until an exit state is
selected. We do this repeatedly to populate the space with
thousands of tracks. For each dataset in the experiment sec-
tion the average track length of the sampled tracks was be-
tween 1.77 and 3.13 times longer than the average tracklet
length received from the weak tracker.



The probability of a track through si originating from
start/entry state sEj , PE

(
sEj → si

)
, is found by nor-

malizing the number of sampled tracks passing through
si originating from sEj by the total number of sampled
tracks through si. To reduce the effects of multiple close-
proximity entry states, this distribution is softened by
smoothing across all entry states. This softened probabil-
ity of a track through state si originating from an entry state
sEj is calculated as

P̂E

(
sEj →si

)
=ρ
∑k

l=1 P (sEl →si)·D
(
sEj ,s

E
l

)
·Θ
(
sEj ,s

E
l

)
(2)

for all k feasible entry states, whereD (·) and Θ (·) are used
to measure the proximity and orientation similarity of the
two entry states (defined below) and ρ is a normalizing con-
stant (the sum of P̂E over all feasible entry states).

Letting εij be the Euclidean distance between two
states, the proximity weight is defined as D

(
si, sj

)
=

exp
(
−α · εij

)
if εij ≤ Tdist and 0 otherwise. We set

α = 0.1 in our experiments and vary Tdist (between 3
and 5) depending on the scene and cell size. The orien-
tation weight Θ(si, sj) = max

(
0, cos

(∣∣si (θ)− sj (θ)
∣∣))

measures the difference in the local motion direction of two
states, limiting the state connection to those traveling in a
similar direction (< 90◦ difference).

A probabilistic start/entry distribution metric between si
and sj (measuring their similarity of start distributions) is
then defined as

ΨE

(
si, sj

)
=
∑k

l=1 min
(
P̂E(sEl →si),P̂E(sEl →sj)

)
(3)

across all k possible start states. Conceptually, this met-
ric represents the intersection of the two distributions.
Note, other metrics (e.g., the Bhattacharyya coefficient or
Hellinger distance) could also be used. To compute the
probability of a track through si terminating at destina-
tion/exit state sXj , P̂X

(
sXj ← si

)
, an analogous procedure

is performed. The similarity between exit location distribu-
tions of two states is given as ΨX

(
si, sj

)
, computed as in

Eqn. 3. Finally, we take the minimum of ΨE

(
si, sj

)
and

ΨX

(
si, sj

)
Ψ(si, sj) = min

(
ΨE(si, sj),ΨX(si, sj)

)
(4)

to measure the similarity of the origin/destination distribu-
tion between states.

Temporal Cross-Correlation Similarity R
We also measure the temporal similarity between states to
separate paths that are spatially similar but traversed at dif-
ferent times/rates (e.g., road vs. sidewalk). We form the
temporal trace ν for each state si where νk represents the
number of real tracks (not sampled) mapped to the state

during the kth time interval. To handle the delay be-
tween distant states on a path, the temporal similarity R of
states si and sj is defined as the maximum cross-correlation
(xcorr (a(t), b(t)) = corr (a(t), b(t− τ))) value of their
temporal traces. We use a time interval duration of 5 sec
and maximum time shift window of ±20 sec in our experi-
ments.

4.2. Spectral Clustering

After the state similarity matrix W is constructed for the
state space, the Spectral Clustering algorithm presented in
[19] is used to automatically segment the states into path-
lets. The normalized Laplacian of the similarity matrix W
is used and defined as LN = D−1/2WD−1/2, where D
is the diagonal degree matrix with Dii =

∑n
j=1Wij . The

algorithm uses Z ∈ Rn×c, a matrix of the largest c eigen-
vectors of LN that are rotated to align with the canonical
coordinate system, to define a quality metric for c clusters

qc = 1−

1
n

(∑n
i=1

∑c
j=1

Z2
ij

Mi

)
− 1

c
(5)

whereMi = maxj Z
2
ij . Starting at c∗ = arg maxc q, the al-

gorithm uses this quality metric to automatically determine
the number of clusters c̄ = c̃ − 1 where c̃ is the smallest
value for c such that qc̃ > qc∗ − ε for some small value ε.
Each data point (state) i is then assigned to cluster j where
j = arg maxZ2

ij . See [19] for additional details.

5. Experimental Results

We tested our scene modeling and pathlet segmentation
approach with five urban scenes of varying complexity. An
image depicting each scene is shown in the top row of Fig.
2. Scenes I and II are taken from our camera network and
the tracks were captured in real-time. The remaining video
scenes were from published datasets (Scenes III and IV are
from [5] and Scene V is from [16]). Scene I is a fairly
simple scene consisting of two sidewalks and a one-way
road. Scene II consists of a primary walkway with mul-
tiple secondary branching walkways creating ‘T’ and ‘Y’
splits and merges. Scenes III and V contain bi-directional
traffic moving vertically and horizontally along with sev-
eral pedestrians crossing the roads and walking on the adja-
cent sidewalks. Scene IV depicts a roundabout where traffic
enters and exits from the left, right, and top of the image.
Below each scene image (bottom row) we show a pixel-
wise histogram (presence image) of the tracks collected
from the weak tracker (brighter pixels correspond to more
tracks present). The tracks were then quantized/mapped to
the state space and the state transitions and probabilistic
start/stop locations were computed.



Scene I Scene II Scene III Scene IV Scene V

Figure 2. Five urban scenes. Top row: scene image. Bottom row:
presence image from raw track data.

5.1. Comparative Results

We compare the results of our pathlet approach with two
other methods. The first method is the feature-based ap-
proach of [5] which performs background subtraction to ex-
tract image events (objects), describes the image events via
a 10-D combination of appearance and motion-based fea-
tures, clusters the image events into atomic video events us-
ing K-means, groups the atomic video events into behavior
labels via EM, and extracts semantic regions using Spectral
Clustering on a similarity matrix built by combining the be-
havioral histogram and spatial differences between pixels.
To modify their approach for weak tracking data, we de-
scribe image events by a 4-D feature vector [x y dx dy]T

containing the spatial coordinates and instantaneous dis-
placement of a tracked feature. Since no object bounding
boxes are available, we populate the behavioral histograms
(at each pixel) by centering a disk on each image event and
updating the corresponding behavior count for all pixels
within the inscribed neighborhood with a value ≤ 1 based
on their proportional radial pixel distance from the disk’s
center (forming weighted histograms). To limit the cluster-
ing complexity on large images, we grid the resulting his-
togram image into 4x4 cells (much smaller than our grid
size L) and represent each cell via the sum of the pixel his-
tograms within the cell, removing low activity locations as
described in [5]. Note that in [5] a second pass of the clus-
tering algorithms is performed in each region to extract a
final set of spatially overlapping Gaussian-shaped behavior
labels that are used for scene analysis which are not used in
this paper (we compare to the spatial region segmentation).

The second comparison method is the trajectory cluster-
ing method of [17] which performs Spectral Clustering on
a pair-wise trajectory similarity matrix based on a modified
Hausdorff distance of the tracks. As referenced in [17], the
spatial density distribution of each cluster is thresholded to
provide masks of each cluster region.

Unlike our approach, which has a fixed clustering com-
plexity, the multiple clustering steps (K-means and EM) in
[5] and the clustering of a pairwise track similarity matrix
in [17] are both adversely affected by the number of tracks
(considering that hundreds of thousands of weak tracks can
be accumulated over one day of tracking). To give a fair

Scene Image Size Video Length # of Tracks L Tdist
I 640× 480 15:00 7079 20 3
II 640× 480 15:00 6779 20 3
III 360× 288 3:12 5000 10 5
IV 360× 288 7:38 5000 10 5
V 720× 480 4:36 4778 20 3

Table 1. Image size, length of video (min:sec), and number of
tracks extracted from the five scenes shown in Fig. 2 along with
the cell size and proximity threshold used to extract pathlets via
our proposed algorithm.

algorithm comparison in spite of these limitations in the al-
ternate approaches, we limit the number of tracks used in
all three algorithms for each scene to the values shown in
Table 1 (extremely small tracks were already removed from
the datasets). For convenience, we will refer to our pro-
posed approach as Method 1, the feature-based approach
[5] as Method 2, and the trajectory-based approach [17] as
Method 3 throughout the results section.

For each scene the same track dataset is used to generate
the corresponding similarity matrices for each method.
Spectral Clustering [19] is performed on each similarity
matrix with ε = 0.006 (Sec. 4.2) for all experiments.
We additionally run a connected components algorithm
to separate spatially disjoint clusters into multiple regions
and remove all regions containing low presence (< 1-2%
coverage of the total scene presence image). Figure 3 shows
the resulting pathlets from Method 1, semantic regions
from Method 2, and trajectory clusters from Method 3 for
all five scenes.

Qualitative Analysis
For Scene I, Methods 1 and 3 capture the bi-

directionality of the sidewalks and the vehicular traffic
down the road. Both algorithms also capture movement
(cyclists) traveling the wrong way up the one-way road.
Method 3 also generates a non-coherent cluster containing
a few tracks traveling up the road and crossing the road.
Method 2 is able to capture the main motion areas, but
under-segments them into two regions by combining the left
sidewalk with the road (we would want this algorithm to
produce three regions for this scene). The blocky artifacts
in the pathlets from Method 1 are a result of the grid tech-
nique and could be reduced with a smaller grid size.

In Scene II, the long walkway on the left was rarely tra-
versed due to a temporary fence for construction and hence
is only covered by a pathlet in one direction from Method
1 and is not covered by any semantic region using Method
2. Since Method 3 sometimes generates clusters contain-
ing just a few tracks, it captures the bi-directional nature of
this sidewalk. Method 2 is the only algorithm which cre-
ates a separate region for the branch at the top of the image;
however it splits the bottom section of the main walkway.



Ideally Method 1 would have generated a separate pathlet
for the branch at the top of the image (second row). Unfor-
tunately, the tracker fails frequently at the top of the scene
(see presence image in Fig. 2) causing multiple probabilis-
tic entry locations along the entire branch. These multi-
ple entry locations result in a bleeding artifact in the ori-
gin/destination similarity Ψ, reducing the expected separa-
tion between the origin distribution of states on the branch
with those on the main walkway.

For Scene III, Method 2 does well at extracting regions
for the right half of the scene and the vertical traffic in the
upper left portion of the scene, but over-segments the lower
left portion of the scene into four regions instead of two.
While Method 3 extracts clusters of vertical traffic, there
are three clusters that group trajectories from distinct paths
together. An occlusion (pole) causes both Methods 1 and
3 to model leftward traffic using two regions. Method 1
extracts pathlets for all four directions of traffic crossing
the main intersection, a pathlet for the continuous turn lane
entering the scene on the left from which vehicles travel up
the scene, and a pathlet describing pedestrian crossings.

On Scene IV, Method 1 performs very well, extracting
pathlets for traffic entering at the bottom and traveling both
leftward and upward. Furthermore, there are two pathlets
to describe traffic entering from the top and left, a pathlet
for the area where traffic from these two pathlets merge,
and a final pathlet for when traffic on this pathlet merges
with traffic circling the roundabout. Both Methods 2 and 3
under-segment the scene, resulting in large regions contain-
ing several different motion patterns.

In Scene V, Method 1 is able to extract pathlets for traffic
entering at the bottom of the image, traveling horizontally
across the image, and traveling vertically at the top of the
image, as well as pedestrians moving toward the right of
the image. Method 3 extracts regions for pedestrians from
a small number of tracks where the other two methods
require behavior to be more consistent to be modeled.
Method 3 fails to separate rightward trajectories from those
turning left and traveling vertically up the scene. Method 2
over-segments all of the roadways.

Quantitative Analysis
In addition to the visual qualitative analysis showing the

advantage of our pathlet approach, we use three metrics to
quantitatively compare the results of the three algorithms
and provide the results in Table 2.

The number of regions NR used to describe the scene
(first column of Table 2 for each method) provides a rough
comparative idea if the scene is under or over-segmented.
Values ofNR vary depending on the scene, but can be com-
pared across algorithms. Due to the nature of the similar-
ity matrix constructed in Method 2, the extracted regions
will be non-overlapping (a limitation). Thus, Method 2

should result in fewer regions than Methods 1 and 3 for
bi-directional areas. Methods 1 and 3 typically result in a
similar number of regions NR (i.e., ±1). Looking at Fig.
3, Method 2 over-segments Scenes II, III, and V, and under-
segments Scenes I and IV.

The scene presence coverage Ω (second column of Ta-
ble 2 for each method) measures the percentage of the total
presence from Fig. 2 (bottom row) encompassed by the ex-
tracted region masks. This metric could produce high val-
ues with regions which are qualitatively poor (e.g., a few un-
descriptive large regions containing several paths or several
over-segmented regions which combine to cover a single
path), but provides a measure for how much of the scene ac-
tivity is being captured. Ideally this metric should be high,
but not too high that rare traffic areas are modeled. Based on
Ω, Methods 1 and 3 cover roughly the same amount of ac-
tivity for Scenes I-III, while Method 1 covers more activity
for Scene IV and Method 3 does so for Scene V. The regions
from Method 2 cover the least amount activity in Scenes I
and II, which is likely a result of removing low activity pix-
els, but have comparable coverage for the remaining scenes.

Given the viewpoint and structure of the scenes tested,
we also desire the regions to contain one main segment with
no branches (a single path). In our scenes there are few
pathway regions with complex shapes. As a result, the hori-
zontal and vertical signatures (row and column projections)
of the region masks should be relatively uniform. We cre-
ated histograms of the two signatures for each region using
bins of width L and computed the median and maximum
count of the non-zeros bins. The shape consistency of each
region, SC , is measured as the minimum of the two sig-
nature’s median/maximum ratio. Thus, SC ∈ [0, 1] where
more consistent regions have values closer to 1. The third
column of Table 2 for each method shows the minimum and
mean SC value of the extracted regions.

While Methods 1 and 3 are comparable in the amount
of activity they cover (Ω), the shape consistencies SC of
the two algorithms score much differently. The minimum
SC is always higher from Method 1 than it is from Method
3 (i.e., the most inconsistent region from Method 1 is al-
ways more consistent than the most inconsistent region
from Method 3) and the mean SC from Method 1 is higher
than Method 3 in every scene but Scene I. The undesirable
regions from Method 3 containing several different paths
with slight overlaps (Scene I row 3, Scene III rows 2-4, and
Scenes IV and V row 1 in Fig. 3) are the regions which re-
ceive the lowest values for SC . While Method 2 produces
consistent regions (without branches), it is obvious from
Fig. 3 that the regions are either over-segmented (Scenes II,
III, and V) or incorporate multiple motion patterns (Scenes
I and IV).



Method 1 (Proposed) Method 2 [5] Method 3 [17]
Scene NR Ω SC NR Ω SC NR Ω SC

I 7 97.4 0.600/0.694 2 93.12 0.633/0.714 7 98.94 0.217/0.736
II 7 94.86 0.333/0.649 6 92.73 0.452/0.689 9 95.46 0.243/0.516
III 7 97.56 0.500/0.666 9 96.58 0.450/0.681 6 96.02 0.125/0.504
IV 6 96.27 0.500/0.662 5 96.73 0.600/0.689 6 89.16 0.369/0.579
V 9 87.5 0.370/0.698 15 95.46 0.375/0.635 8 95.74 0.192/0.525

Table 2. Number of regions NR, scene activity coverage percentage Ω, and region shape consistency SC (min/mean) for the five scenes
shown in Fig. 3.

5.2. Discussion

In an overall sense, our pathlets are qualitatively and
quantitatively more accurate at modeling motion patterns
than the regions from the other two methods. Our approach
to extract these pathlets (Method 1) could be considered
a mid-level approach between the lower-level pixel/cell-
based approach of Method 2 and the higher-level trajectory-
based approach of Method 3. Since our method clusters
states, it is not adversely affected by the number of tracks
as are Methods 2 and 3. Furthermore, our method is capable
of working well on weak tracking data. Unlike Method 3,
which sometimes generates clusters containing few trajec-
tories, our approach will not model and emphasize rarely
used paths. Finally, the extracted pathlets from our method
typically only contain one motion pattern to better enable
unique mappings for instantaneous object location and ve-
locity. These characteristics are not guaranteed with Meth-
ods 2 and 3.

6. Summary
We presented a novel framework to extract pathlets from

weak tracking data. Tracks are mapped into a Markovian
state space and entry/exit states are estimated. Pathlets are
generated by applying Spectral Clustering to the state space.
Finally, we compared our approach against a feature-based
and trajectory-based approach using weak tracking data on
five urban scenes and showed that our pathlets provide a
better overall representation of the scene activity.

7. Acknowledgments
This research was supported in part by the US Air

Force Research Laboratory Human Effectiveness Direc-
torate (WPAFB) under contract No. FA8650-07-D-1220.

References
[1] A. Basharat, A. Gritai, and M. Shah. Learning object motion

patterns for anomaly detection and improved object detec-
tion. In Proc. CVPR, 2008. 1, 2

[2] V. Bruce, P. Green, and M. Georgeson. Visual Perception
Physiology, Pyschology, and Ecology. Psychology Press Ltd,
3rd edition, 1996. 2

[3] A. Fu, W. Hu, and T. Tan. Similarity based vehicle trajectory
clustering and anomaly detection. In Proc. ICIP, 2005. 1, 2

[4] L. Kratz and K. Nishino. Anomaly detection in extremely
corwded scenes using spatio-temporal motion pattern mod-
els. In Proc. CVPR, 2009. 1, 2

[5] J. Li, S. Gong, and T. Xiang. Scene segmentation for be-
haviour correlation. In In Proc. ECCV, 2008. 1, 2, 4, 5, 7,
8

[6] C. Loy, T. Xiang, and S. Gong. Multi-camera activity corre-
lation analysis. In Proc. CVPR, 2009. 1, 2

[7] D. Makris and T. Ellis. Path detection in video surveillance.
Image and Vision Computing, 20:895–903, 2002. 1, 2

[8] D. Makris and T. Ellis. Automatic learning of an activity-
based semantic scene model. In Proc. AVSS, 2003. 1, 2, 3

[9] I. Pop, M. Scuturici, and S. Miguet. Common motion map
based on codebooks. In Int. Sym. Vis. Comp., 2009. 1, 2

[10] I. Saleemi, K. Shafique, and M. Shah. Probabilistic model-
ing of scene dynamics for applications in visual surveillance.
IEEE TPAMI, 31(8):1472–1484, 2009. 1, 2

[11] J. Shi and C. Tomasi. Good features to track. In Proc. CVPR,
1994. 1, 2

[12] C. Stauffer. Estimating tracking sources and sinks. In Proc.
Second IEEE Event Mining Workshop, 2003. 3

[13] C. Stauffer and W. Grimson. Learning patterns of activity us-
ing real-time tracking. IEEE TPAMI, 22(8):747–767, 2000.
1, 2

[14] E. Swears, A. Hoogs, and A. Perera. Learning motion pat-
terns in surveillance video using hmm clustering. In Proc.
WMVC, 2008. 1, 2

[15] X. Wang, K. Ma, W. Ng, and W. Grimson. Trajectory anal-
ysis and semantic region modeling using a nonparametric
bayesian model. In Proc. CVPR, 2008. 1, 2

[16] X. Wang, X. Ma, and E. Grimson. Unsupervised activity
perception in crowded and complicated scenes using hierar-
chical bayesian models. IEEE TPAMI, 31(3):539–555, 2009.
1, 2, 4

[17] X. Wang, K. Tieu, and W. Grimson. Learning semantic scene
models by trajectory analysis. In Proc. ECCV, 2006. 1, 2, 5,
7, 8

[18] Y. Yang, J. Liu, and M. Shah. Video scene understanding
using multi-scale analysis. In Proc. ICCV, 2009. 1, 2

[19] L. Zelnik-Manor and P. Perona. Self-tuning spectral cluster-
ing. In NIPS, 2004. 1, 4, 5

[20] T. Zhang, H. Lu, and S. Li. Learning semantic scene models
by object classification and trajectory clustering. In Proc.
CVPR, 2009. 1, 2



I II III IV V

Pathlets from Method 1 (Proposed)

Semantic regions from Method 2 [5]

Trajectory clusters from Method 3 [17]

Figure 3. Extracted pathlets, semantic regions using approach based on [5], and trajectory clusters using [17] for five urban scenes. (Best
viewed in color.)


