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Abstract. In this chapter, a new feature-level image fusion technique
for object segmentation is presented. The proposed technique approaches
fusion as a feature selection problem, utilizing a selection criterion based
on mutual information. Starting with object regions roughly detected from
one sensor, the proposed technique aims to extracts relevant information
from another sensor in order to best complete the object segmentation.
First, a contour-based feature representation is presented that implicitly
captures object shape. The notion of relevance across sensor modalities is
then defined using mutual information computed based on the affinity be-
tween contour features. Finally a heuristic selection scheme is proposed
to identify the set of contour features having the highest mutual infor-
mation with the input object regions. The approach works directly from
the input image pair without relying on a training phase. The proposed
algorithm is evaluated using a typical surveillance setting. Quantitative
results, and comparative analysis with other potential fusion methods are
presented.

1 Introduction

Vision applications, such as video surveillance and automatic target recognition,
are increasingly making use of imaging sensors of different modality. The expec-
tation is that a set of such sensors would benefit the system in two ways; first,
the complementary nature of the sensors will result in increased capability, and
second, the redundancy among the sensors will improve robustness. The chal-
lenge in image fusion is thus combining information from the images produced by
the constituent sensors to maximize the performance benefits over using either
sensor individually.

In order to better quantize the performance benefits, and to enable the use
of fusion algorithms in automatic vision systems, we adopt in our work a more
“goal-oriented” view of image fusion than is traditionally used. Instead of merely
improving the context (or information) present in a scene, we focus on the specific
task of using image fusion to improve the estimation of the object shape (as
defined by a silhouette, or a boundary).
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Fig. 1. Flowchart of proposed fusion method.

We propose a novel solution to this task, one that approaches fusion as essen-
tially a feature-selection problem. Our approach is applicable to any combina-
tion of imaging sensors, provided that the sensors are co-located and registered.
The processing pipeline and the main computation stages of our algorithm are
shown in the flowchart of Fig. 1. As can be seen from the flowchart, the feature
extraction stage of our algorithm is preceded by an object segmentation routine
employed in only one of the input sensors (denoted by sensor A). The object seg-
mentation routine is used only to bootstrap the feature selection process, and
hence any method that provides even a rough, incomplete object segmentation
can be employed at this stage. Contour-based features are then extracted from
the rough object segmentation results of sensor A and from the corresponding
image region of sensor B. These features are then used within a mutual infor-
mation framework so as to extract a subset of features from sensor B that are
most relevant (complementary and redundant) to the features obtained from the
initial segmentation of sensor A.

In order to estimate the probability distribution required for computing the
mutual information across sets of features, we present a method that relies on
the regularities in shape and form found in most objects of interest. We extend
the notion of affinity, originally defined to measure the smoothness of the curve
joining two edge elements [37], to our contour features. Using this affinity mea-
sure, we formulate conditional probability distributions of contour features from
sensor A with respect to sensor B. We then compute the mutual information
between contour features from the two sensors based on these conditional dis-
tributions. Then we identify the set of contour features from B that maximize
the mutual information with the features from A. The contours from sensor A
overlaid with the selected contours from sensor B form the fused result, which
can then be completed and filled to create silhouettes.

Image fusion algorithms can be broadly classified into low-, mid-, and high-
level techniques based on their position in the information processing pipeline.
As can be seen from Fig. 1, based on such a classification, the proposed algo-
rithm can be categorized as a goal-oriented, mid-level fusion technique relying
on contour-based features. Apart from the proposed algorithm, there have been
several other approaches adopted for the purpose of fusing information across
two imaging sensors. Next, we briefly outline two of the other popular fusion
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strategies that could potentially be employed with the specific aim to provide
robust and accurate object segmentation.

1.1 Alternate Fusion Methodologies

Image blending: Perhaps the most commonly used approach for fusion is to
first to create a single, fused image stream by blending images from each of
the sensors [7, 34, 19]. Object location and shape is then obtained by applying
relevant detection and segmentation algorithms to the fused image stream. In
Fig. 2(a) we show the main processing stages typically employed by algorithms
adopting this strategy. Such approaches have two potential drawbacks. First,
since the fusion procedure simply blends image pairs at a low-level (pixel-level),
the fused image is likely to contain unwanted image artifacts found in each of the
two imaging domains. For example, when combining images from the thermal
and visible domains, the resulting fused image can contain both shadows (from
the visible domain) and thermal halos [9] (found in thermal imagery). Second,
since the image characteristics of the fused stream depend on the fusion tech-
nique applied, such approaches typically require specialized object segmentation
algorithms in order to obtain satisfactory results.
Union of features: Another popular approach is to defer the fusion of informa-
tion to a later stage in the pipeline. Such approaches typically employ complete
image segmentation routines in each image stream and then combine the seg-
mentation results across the sensing domains. These techniques can either be
high-level or mid-level, depending on whether the fusion occurs at the decision
level or at the feature level. In decision level fusion, binary segmentation re-
sults are obtained independently in each domain and the final result is obtained
by combining the individual silhouettes [36]. In feature level fusion, features ex-
tracted from the individual segmentation results are utilized to generate the final
result. In this work, we employ for comparison a feature level fusion approach
[10]. The flowchart of this method is shown in Figure 2(b). As can be seen from
the figure, such an approach has the undesirable property of requiring object
segmentation routines to be employed independently in the different imaging
domains. Since the features are extracted from the segmentation provided in
each sensor, the combined result is obtained by simply performing a union of all
the features obtained from both sensors. Thus the final result is susceptible to
errors in segmentation from both domains.

Based on the described flowcharts (Figs. 1, 2), we note that the proposed ap-
proach has the potential to provide clear benefits over these alternate methods.
Being a feature-level technique, it does not face the issues that hamper low-level
image blending techniques. Additionally, the proposed approach completely de-
couples the process of segmentation from fusion. Thus any “off-the-shelf” seg-
mentation routine could be used in any one sensor to bootstrap the process.
Compared to the feature-union method, the proposed approach provides the ob-
vious benefit of requiring object segmentation in only one sensor. Further, given
that the imaging domains employed in fusion systems are generally complemen-
tary in nature, different segmentation algorithms are likely to be effective in each
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Fig. 2. Flowcharts of alternate fusion methods (a) Image blending. (b) Union of fea-
tures.

domain. While the final result in the feature-union technique will be limited by
the worse of the two segmentation results, the proposed fusion technique enables
the user to employ only the better of the two segmentation results to bootstrap
the fusion process. Depending on the application, factors such as persistence,
signal-to-noise ratio, and the availability and complexity of the segmentation
scheme can influence which sensor should be chosen for providing the initial
segmentation.

1.2 Outline

We begin by reviewing in Sect. 2 related work in image fusion. We then present
the different aspects of the proposed algorithm, starting with Sect. 3, where we
describe the contour-based features used in the algorithm. In Sect. 4 we de-
scribe the process of computing the mutual information between different sets
of contour features, and in Sect. 5 we describe the contour selection procedure.
Then, in Sect. 6, we demonstrate the approach for a video surveillance appli-
cation using a thermal and color camera as the two input sensors. Based on
manually segmented object regions we show the efficacy of the proposed method
by comparing segmentation performance using the fusion algorithm over using
either input sensor independently. We also compare our algorithm against the
two alternate fusion methods introduced earlier, and discuss the advantages of
our approach over these other methods. Finally, in Sect. 7 we summarize our
approach and provide directions for future work.
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2 Related Work

Image fusion techniques have had a long history in computer-vision and visu-
alization. We categorize related work into three types, based on the processing
level (low, mid, high) at which fusion is performed.

Traditionally, low-level techniques have been used to combine information
from co-registered multi-sensor imagery. Improving upon simple techniques such
as pixel averaging, multi-resolution schemes similar to the pyramid-based ap-
proaches of [34, 23, 4] were proposed. More recently, wavelet analysis has emerged
as the method of choice in most multi-resolution frameworks [18, 27]. Examples
of other low-level techniques include the biologically motivated model based
on human opponent color processing proposed in [13]. A PCA-based technique
measuring pixel variances in local neighborhoods is used in [7]. Pixel-level com-
binations of spatial interest images using Boolean and fuzzy-logic operators are
proposed in [11], and a neural networks model for pixel-level classification is used
in [16].

Mid-level fusion techniques have mostly relied on first and second order gra-
dient information. Some of these techniques include directly combining gradients
[28], determining gradients in high dimensions [33], and analyzing gradients at
multiple resolutions [30, 25]. Other features, such as the texture arrays [3], have
also been employed. Model-based alternatives to feature-level fusion have also
been proposed such as the adaptive model matching approach of [12], and the
model-theory approach of [38]. Other mid-level fusion techniques such as the
region-based methods of [17, 39, 26] make use of low-level interactions of the
input domains.

High-level fusion techniques generally make use of Boolean operators or other
heuristic scores (maximum vote, weighted voting, m-of-n votes) [8, 36] to combine
results obtained from independently processing the input channels. Other “soft”
decision techniques include Bayesian inference [1, 14] and the Dempster-Shafer
method [2, 20].

Most of these fusion techniques aim at enhancing the information content of
the scene, to ease and improve human interpretation (visual analysis). However,
the method we propose is designed specifically to enhance the capabilities of
an automatic vision-based detection system. Some techniques such as [11, 12,
3], proposed for Automatic Target Recognition systems, have also been evalu-
ated in terms of object detection performance. These techniques however are
not generally applicable to the detection of non-rigid person shapes, and other
large, multi-modal objects common in the urban environments considered in this
work. Other techniques, such as [13], have been shown to improve recognition
performance when used as inputs to separate target recognition modules.

Recently [10] proposed a mid-level fusion algorithm also designed with the
aim of improving object segmentation. However, their fusion technique was spe-
cific to a thermal and color camera, and required background modeling in both
domains (see Fig. 2(b)). Our proposed method is an improvement on both counts.
First, the current algorithm is independent of the methods used for detecting
the initial object regions. Thus as long as the required contour features can be
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Fig. 3. Feature extraction. (a) Input image. (b) Gradient magnitudes. (c) Thinned
binarized edges. (d) Extracted contour features overlaid on input image.

reliably extracted from the images produced by both sensors, the fusion proce-
dure is unaffected by the modality of the sensors (far infrared, long wavelength
infrared, short wavelength infrared, etc.). Second, the current algorithm only
requires the prior ability (via method of choice) to detect object features in any
one sensor modality.

3 Contour Features

Based only on the preliminary object segmentation obtained from sensor A, our
goal is to be able to extract relevant information from sensor B, such that the
combined result is a better estimation of the object shape. The crucial step in
this process is choosing the appropriate features. The importance of first-order
gradient information in estimating the shape and appearance of an object is well
known [6, 21]. We exploit this information by extracting features that capture
the location, orientation, and magnitude of the object gradients.

We first obtain a thinned representation of the gradient magnitude image
using a standard non-maximum suppression algorithm. The thinned edges are
then broken into short, nearly linear contour fragments based on changes in the
gradient direction. A contour fragment is obtained by traversing along a thinned
edge using a connected-components algorithm until a change from the initial
edge orientation is encountered. To ensure contour fragments of reasonable size,
the edge orientations are initially quantized into a smaller number of bins. We
represent a contour fragment by a feature vector c = [p1, p2, Emag], where p1

and p2 are the coordinates of the two end-points, and Emag is the mean edge
magnitude along the contour. The set of all contour features {c1, . . . cn} forms
the feature representation of the object.

In Fig. 3 we show an example of the feature extraction process. Figure 3(a)
shows the input image, and figures 3(b) and (c) show the gradient magnitudes
and the thinned binary edges respectively. The short, linear contour features
extracted for this examples are shown overlaid on the input image in Fig. 3(d).
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The features were obtained by quantizing the edge orientations into 4 equal sized
bins.

4 Estimating Feature Relevance

Having extracted the contour features, our goal now is to select features from
sensor B that are relevant to the features in sensor A. Mutual information is
considered to be a good indicator of the relevance of two random variables [5].
This ability to capture the dependence, or relevance, between random variables
has recently led to several attempts at employing mutual information in feature
selection schemes [15, 24, 35].

4.1 Preliminaries

Denoting two discrete random variables by X and Y , their mutual information
can be defined in terms of their probability density functions (pdfs) p(x), p(y),
and p(x, y) as

I(X; Y ) =
∑

x∈X

∑

y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
(1)

Based on entropy, the mutual information between X and Y can also be
expressed using the conditional probability p(x|y). The entropy, H, of X is a
measure of its randomness and is defined as H(X) = −∑

x∈X p(x) log p(x).
Given two variables, conditional entropy is a measure of the randomness when
one of them is known. The conditional entropy of X and Y can be expressed as

H(X|Y ) = −
∑

y∈Y

p(y)
∑

x∈X

p(x|y) log p(x|y) (2)

The mutual information between X and Y can be computed from the entropy
terms defined above by

I(X; Y ) = H(X)−H(X|Y ) (3)

Let us associate random variables S1 and S2 with the sensors A and B re-
spectively. Let C1 denote the domain of S1, and C2 the domain of S2. In order
to use either Eqn. 1 or Eqn. 3 to compute the mutual information between S1

and S2 we first need to define the domains, C1 and C2, and then estimate the
appropriate probability distribution functions. A discretized version of the full
contour feature space of A, and similarly of B, are natural choices for C1 and C2

respectively. In general, obtaining the pdfs, especially the joint and the condi-
tionals, of the contour features ci ∈ C1 and cj ∈ C2 is a difficult task. Indeed, it
is this difficulty that primarily impedes the use of mutual information in feature
selection schemes [35, 24].

Nevertheless, a typical approach would be to estimate these distributions
using a large training data set consisting of manually segmented objects im-
aged using the sensors in question. The difficulty of generating such a data set
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Fig. 4. Toy example illustrating the relevant processing stages. (a) Detected object
contours from sensor A. (b) Contours obtained from sensor B. (c) Relative affinity
values of contours in (b) with respect to a contour (shown in white) from (a). (d) Set
of contours selected from (b). (e) Overlay of contours from (a), shown in gray, with the
selected contours (d).

aside, such an approach has several drawbacks. Importantly, different pdfs will
need to be estimated for different object classes in the training set, and there
is no guarantee that these would generalize well for novel objects. This is espe-
cially cumbersome given the enormous computation and memory requirements
of non-parametric estimation techniques. Further, the well-known issue of scale
(bandwidth) selection [22] in these methods becomes compounded in high di-
mensional spaces such as ours.

Instead of relying on a training data-set to learn the distributions of features,
we propose a different approach to the problem. Drawing on the observation re-
garding the “natural structure” of the world, we make the assumption that ob-
jects of interest have continuous, regular boundaries. Based on this assumption,
we seek to define relationships between samples from S1 and S2 that will enable
us to identify the set of contours from sensor B with the highest relevance to
sensor A.

In the context of fusion, we propose that a set of features has high relevance
to another, if it provides both redundant and complementary information. The
choice of contour features (Sect. 3) enables us to further define relevance as the
ability of a set of features to coincide with, and complete object boundaries that
have been only partially captured by another set. We now address the issue of
computing contour feature relevance and folding it into a mutual information
framework.

4.2 Contour Affinity

Assume that the pair of images shown in Fig. 4(a) and (b) represent the contour
features of a rectangular box imaged using two sensors. Let Fig. 4(a) represent
the object contours from sensor A, and Fig. 4(b) the set of contours obtained
from sensor B. Note that the contour features from sensor A are obtained after
an initial segmentation step, and hence lie along the boundary of the rectangular
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box. On the other hand, the feature extraction from sensor B is not preceded
by any object segmentation and hence the features are extracted directly from
the entire image region.

Visualizing the contour features extracted from sensor A in image-space, as
in Fig. 4(a), we see that the contour fragments form an incomplete trace of the
boundary of the viewed object. As described earlier, we desire the subset of
contour features from sensor B that provides the best completion of the broken
contour image formed by the features from sensor A.

Perceptual (and computational) figure completion is a very active field of
research, and several figure completion studies, such as [37, 32], have used an
“affinity” measure between a pair of edge elements to compute how likely it is
that they belong to the same underlying edge structure. The concept of affinity
is related to the energy of the simplest curve passing through two edge elements.
One popular method of determining the lowest energy (smoothest) completion
between two edge elements is minimizing the elastica functional, which defines
energy as the integral of the square of curvature along the curve. We borrow this
notion of affinity and adapt it to deal with contours of finite size instead of the
dimension-less edge elements used in the literature.

Consider a pair of contours c1 and c2, as shown in Fig. 5, and hypothesize the
simplest curve connecting c1 and c2. Any such connection would join one of the
end-points of c1 to an end-point of c2. Since c1 and c2 have two end-points each,
all such curves fall into one of four categories based on which two end-points are
connected. Consider one such curve, shown by the dotted line in Fig. 5, between
an end-point of c1 and an end-point of c2. Further, consider the vector joining
the ends of the curve, pointing from the end-point of c1 to the end-point of c2.
As shown in Fig. 5, let θ1 denote the angle between this vector and the unit
vector at the end-point of c1, directed away from the contour along the tangent
at c1. Let θ2 denote the angle from c2, analogous to θ1. Finally, let r denote the
Euclidean distance between the two end-points of c1 and c2. These quantities,
θ1, θ2, and r are computed for each of the four possible sets of curves between
end-points of c1 and c2.

We define the contour affinity, Aff(c1, c2), between two contours c1 and c2

as the maximum affinity value over the four possible sets of curves. Following the
analytical simplification for the minimization of the elastica functional presented
in [32], the affinity for a particular curve set is defined as

A = e(−r/σr) · e(−β/σt) · e(−∆/σe) (4)

where β = θ2
1 +θ2

2−θ1 ·θ2 and ∆ = |Ec1
mag−Ec2

mag| (the absolute difference in the
intensity of the contours). We write the normalization factors σr, σt, and σe as
σr = R/f1, σt = T/f2, and σe = E/f3, where R, T , and E equal the maximum
possible value of r, β, and ∆, and (f1, f2, f3) are weights that can be used to
change the relative influence of each term in the affinity calculation.

Contour pairs that are in close proximity, lie along a smooth curve, and
have comparable intensities will have high affinity values. Consider the pair-wise
affinity measurements between contour features taken one at a time from C2, and
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Fig. 5. Computation of contour affinity.

the set of contour features C1. If a particular contour feature c2 ∈ C2 lies along
the object boundary, it would have very high affinity values with neighboring
contours features in C1. If c2 represents a non-object contour (e.g., background
edge), unless it is in close proximity to some object contour, aligns well with
it, and has similar intensity values, we expect that it would have a low affinity
value with all the contours features in C1.

Figure 4(c) shows the relative difference in affinity between the short contour
shown in white (selected from Fig. 4(a)) and the other contours (from Fig. 4(b)).
The brighter the contour, the higher the affinity. For this computation of affinity,
we used the weights f1 = 5, f2 = 5, and f3 = 0 (the intensity of the contours in
this example were generated randomly).

4.3 Estimation of Conditional Probability using Contour Affinity

As stated earlier, affinity captures the possibility that two contours belong to the
same underlying edge structure. If we assume that one of the contours belongs
to an object boundary, one can interpret the affinity between two contours to
be an indication of the probability that the second contour also belongs to the
object boundary. In other words, the affinity between c1 and c2 can be treated
as an estimate of the probability that c1 belongs to an object given that c2 does.

Consider once again the random variables S1 and S2. Let C1, the domain of
S1, now contain contour features extracted only from the current input image
from sensor A. Similarly let C2, the domain of S2, contain contour features
extracted from the corresponding image from sensor B. Based on the pair-wise
affinity between contours of C1 and C2, we define

P (c1|c2) =
Aff(c1, c2)∑

ci∈C1
Aff(ci, c2)

(5)

where P (c1|c2) ≡ P (S1 = c1|S2 = c2).

4.4 Computing Mutual Information

The definition of the conditional probability in Eqn. 5 enables us to measure the
conditional entropy between S1 and any contour cj ∈ C2. Using Eqn. 2, this can
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be expressed as

H(S1|cj) = −p(cj)
∑

ci∈C1

p(ci|cj) log p(ci|cj) (6)

where the distribution p(cj) can be considered as a prior expectation of observing
a given contour feature. Similarly, assuming p(ci) to be a known distribution
(e.g., uniform), the entropy of S1 can be computed as

H(S1) = −
∑

ci∈C1

p(ci) log p(ci) (7)

Using Eqns. 6 and 7 in Eqn. 3 we can measure the mutual information
I(S1; cj). In order to obtain an estimate of the full joint mutual information
I(S1;S2), we consider each contour independently and use the approximation
suggested in [24], which is the mean of all mutual information values between
contour features cj ∈ C2 and S1

I(S1; S2) =
1
|C2|

∑

cj∈C2

I(S1; cj) (8)

If we assume the prior distribution of contours features p(ci) and p(cj) to be
uniform, the entropy of S1 (Eqn. 7) is constant. Maximizing the mutual infor-
mation is then equivalent to finding the set of features from S2 that minimizes
the conditional entropy H(S1|S2). In other words, we seek those contours fea-
tures from S2 that minimize the randomness of the object contour features in
S1. Rewriting Eqn. 8 using Eqns. 6 and 7, and using the assumption of uniform
distributions for p(ci) and p(cj), the conditional entropy of S1 and S2 can be
expressed as

H(S1|S2) ∝
∑

cj∈C2

(
−

∑

ci∈C1

p(ci|cj) log p(ci|cj)

)

where the term in parenthesis can be interpreted as the entropy of the distri-
bution of affinity between cj and the contours in C1. This is indeed the notion
of relevance we wish to capture since, as described in Sect. 4.2, the entropy of
affinity values is expected to be low only for cj lying on object boundaries.

5 Contour Feature Selection using Mutual Information

We now address the issue of selecting the most relevant set of contour features
from S2 based on S1. This problem statement is very reminiscent of the feature
selection problem [24, 15], and the intuition behind the solution is also similar.
We seek the subset of contours from S2 that maximizes the mutual information
between S1 and S2.
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The problem of finding the subset that maximizes the mutual information is
intractable since there are an exponentially large number of subsets that would
need to be compared. An alternate greedy heuristic involves a simple incremental
search scheme that adds to the set of selected features one at a time. Starting
from an empty set of selected features, at each iteration, the feature from S2

that maximizes Eqn. 8 is added to the set of selected features. This solution,
as proposed in the feature selection literature [24, 15], has one drawback in that
there is no fixed stopping criteria, other than possibly a user-provided limit
to the maximum number of features required [24]. Obviously, this is a crucial
factor that would impede the use of this greedy selection scheme in most fusion
applications.

We present here a modified version of the greedy algorithm that addresses
the need for a reliable stopping criterion. Initially, the set C2 contains contour
features that lie along the object boundary as well as a potentially large number
of irrelevant contour features due to sensor noise and scene clutter. We start
by computing the mutual information, Ifull, between S1 and S2. The algorithm
is based on the observation that removing a relevant contour feature from C2

should reduce the mutual information (< Ifull), while removing an irrelevant
feature should increase the mutual information (> Ifull). We iterate over all
the individual contours in C2 and select only those contours that reduce the
mutual information when removed from C2. The outline of the complete feature
selection algorithm is as follows:

1. Compute Ifull = I(S1; S2), where S1 and S2 are random variables defined
over C1 and C2 respectively

2. For each cj ∈ C2

(a) Cj
2 ← C2 \ {cj}

(b) Compute Ij = I(S1;S
j
2), where Sj

2 is defined over Cj
2

3. Select all cj such that Ij ≤ Ifull

Figure 6 shows the normalized mutual information values (Ij) in descending
order for the synthetic example images shown in Fig. 4(a) and (b). The dashed
horizontal line in the figure corresponds to Ifull, and can be considered to be
the minimum mutual information required between S1 and S2. The result of
the contour selection procedure for this example is shown in Fig. 4(d). As can
be seen, apart from a few internal contours, the subset of contours selected is
reasonable. Figure 4(e) shows the contours from sensor A (Fig. 4(a)) overlaid
in gray with the selected contours from sensor B. The slight misalignment in
the contours from the two sensors was done intentionally to demonstrate the
robustness of the algorithm to small errors in sensor registration.

While using Ifull as the threshold in the contour selection procedure is effec-
tive, it can sometimes, due to inaccuracies in the estimation of the pdfs, prove to
be too strict a threshold in real-world cases. A better threshold can be obtained
in practice. Observing the profile of mutual information values Ij in descending
order, we often see that there is a sharp drop (corresponding to the separation of
object and non-object contours) in the mutual information at some value Ij = IT
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Fig. 6. Variation of mutual information values (Ij) for different Cj
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in the vicinity of Ifull such that IT ≥ Ifull. Using IT instead of Ifull in Step
3 of the above algorithm typically results in the selection of a better subset of
contours.

We show two real world examples of the contour feature selection scheme in
Fig. 7 and also compare using IT and Ifull as the thresholds. Figures 7(a) and (b)
show the contours extracted from the corresponding sub-images obtained from a
thermal (sensor A) and visible sensor respectively. In Fig. 7(c) we show the set of
contours selected using Ifull as the threshold. The contours selected using IT as
the threshold are shown in Fig. 7(d). The variation of the (normalized) mutual
information values Ij for different Cj

2 is shown in Fig. 7(e). The dashed horizontal
line corresponds to Ifull. The solid line represents IT , the point ≥ Ifull in the
mutual information profile with the largest drop. The mutual information profile
corresponding to the first example shown in Fig. 7 shows a distinctive drop at IT .
Under conditions of high clutter, the profile of mutual information values may
not contain a point with a distinctly large drop. However, as demonstrated by
the second example of Fig. 7, the described heuristic still provides a reasonable
separation of object/non-object contours in such cases.

6 Experiments

To test our feature-level fusion approach, we consider a video surveillance sce-
nario that employs a pair of co-located and registered cameras. This setting
enables us to evaluate the ability of our fusion approach to improve the shape
segmentation of objects found in typical urban surveillance scenarios. The two
sensors used are a ferroelectric thermal camera (Raytheon 300D core) and a color
camera (Sony TRV87 Handycam). We analyzed several different thermal/color
video sequence pairs recorded from different locations at different times-of-day.
The sequences were recorded on a university campus, and show several people,
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Fig. 7. Examples of contour feature selection based on variation of mutual information.
(a) Contours from sensor A (thermal domain). (b) Contours from sensor B (visible
domain). (c) Contours selected from sensor B using Ifull. (d) Contours selected from
sensor B using IT . (e) Variation of mutual information values (Ij) for different Cj

2

sorted in descending order.
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(a) (b) (c) (d)

Fig. 8. An example input. (a) Thermal sub-image. (b) Visible sub-image. (c) Initial
object contours detected from (a). (d) Thinned gradient magnitudes from (b).

some in groups, moving through the scene. We show an example of a typical
image pair, cropped to a person region, in Fig. 8(a) and (b).

We begin by describing the choices made for the internal parameters of our
algorithm, and providing a visual/qualitative assessment of the fusion results.
Then, in Sect. 6.1, we present a detailed quantitative evaluation of the algorithm,
including comparative analysis with other competing fusion techniques.

To choose the “reference” sensor (A) for our algorithm, we considered the
nature of the application and the ease of obtaining an initial segmentation. The
need for persistence in a surveillance application, and the ease of background
modeling in the relatively stable thermal domain [9], prompted us to choose the
thermal camera as sensor A.

We employ the contour-based background subtraction scheme using Contour
Saliency Maps (CSM) [9] along with a minimal threshold to directly obtain a
preliminary detection of object contours from the thermal domain. For ease of
computation, we break the corresponding thermal and visible input images into
sub-images based on the regions obtained from background-subtraction in the
thermal domain. Each thermal sub-image consists of contours that belong to a
single object, or objects that were close to each other in the input image. The
matching visible sub-image consists of all the thinned gradient magnitudes of the
image region containing the object(s). In Fig. 8(c) and (d) we show an example
of the sub-image pair corresponding to the image regions shown in Fig. 8(a) and
(b).

These sub-image pairs form the input to our fusion algorithm. We first ex-
tract contour features from each sub-image as described in Sect. 3. We used
4 orientation bins with centers at 0, 45, 90, and 135 degrees, and a standard
connected-components algorithm. For every pair of contour features from both
domains, we then estimate the probability of a contour feature in the thermal
domain conditioned on the occurrence of a feature from the visible domain (as
described in Sect. 4.3). For the computation of contour affinity (Eqn. 4), in all
the experiments, we used f1 = 5, f2 = 5, and f3 = 15.

The set of contour features from the visible domain that are most relevant
to the object contour features from the thermal domain are chosen using the
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steps outlined in Sect. 5. The final fused result is then obtained by overlaying
these contour features selected from the visible domain with the contour features
originally detected in the thermal domain. In case of misalignments that could
arise due to small registration errors, standard morphological techniques are used
to ensure that all contours are 1-pixel thick.

Given the contour feature sets C1 and C2 extracted from the two sensors,
computing the mutual information involves obtaining the pair-wise affinity be-
tween contours and takes order of O(mn) time, where |C1| = m and |C2| = n.
Determining the most relevant subset of features from C2 is an iterative proce-
dure that has a worst case running time of O(m). In our experiments, the three
stages of the algorithm, namely extraction of features, computation of mutual
information, and selection of the relevant subset of features, took on an average
0.43 seconds per input sub-image pair on a 2.8 GHz Intel P4 machine, using
software written partly in Matlab and C.

We show several examples of the fusion results in Fig. 12. All images have
been shown in binary to improve clarity. Figure 12(a) shows the detected con-
tours obtained from the thermal domain. The Fig. 12(b) shows the thinned
gradients from the visible domain. The set of contours selected by our algorithm
from the visible domain are shown in Fig. 12(c). Figure 12(d) shows the final
fused result obtained by overlaying Fig. 12(c) with Fig. 12(a). Overall, the re-
sults are satisfactory. The algorithm selects contours that both strengthen and
complement the set of input object contours. In general, the outer boundaries
of the fused result are a reasonable approximation of the true object shape. In
spite of the presence of shadows and illumination changes, the proposed fusion
framework is effective in obtaining a reasonable contour segmentation in the vis-
ible domain, that further improves the original segmentation acquired from the
thermal sensor.

After the sub-images of an image pair have been processed, the resulting
fused image contains contours extracted from both domains that best represent
the objects in the scene. Several different vision applications can benefit from
improvements in such a result, especially those that rely on the notion of object
shape. Shape could be either extracted directly from the contours, or after using
figure completion methods (such as [9]) on these contours. Examples of such
applications include activity recognition, object classification, and tracking.

6.1 Quantitative Evaluation

As stated in Sect. 1, the challenge for any fusion algorithm is to utilize informa-
tion from two or more sources so as to maximally improve the performance of the
system over using either sensor individually. In this section we analyze how our
fusion algorithm stands up to this challenge for the task of shape segmentation.
The quantitative evaluation is based on the manual segmentation of the object
regions in 73 images-pairs obtained from several thermal/color video sequences.
Results of the hand-segmentation (by multiple people) of each pair of images
were combined using an element-wise logical-OR operation to obtain the final
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manually segmented images.

Experiment 1: Fusion vs. Independent sensors
Since the final result of our algorithm is a set of contours, let us assume that
we have available a module that can generate a closed shape (a silhouette) from
such input. For evaluation, we propose then to use this module to generate a
segmentation from three different sets of contours,

– Set T: contours from the thermal sensor initially detected as lying along the
object,

– Set V: subset of contours from the visible sensor selected by the fusion algo-
rithm,

– Set TV: overlay of the thermal and visible contours.

The comparison of the shape segmentation achieved in each of the above scenar-
ios will provide valuable information that can be used to judge the validity of
the proposed approach. Several approaches for contour-based figure completion
exist. For the purpose of this evaluation, we make use of the method suggested
in [9] to complete and fill the shape.

The set of 73 image-pairs generated a total of 208 useable sub-image pairs
(a simple size criterion was used to eliminate sub-images that contained per-
son regions that were too small). For each sub-image, the shape segmentation
corresponding to the three sets of contours enumerated above were obtained.
Examples of the silhouettes obtained from Set TV are shown in Fig. 12(e). To
enable a visual assessment of the segmentation result, we show in Fig. 12(f) the
manual segmentation of the image regions. Corresponding to each example, we
also note the F-measure value obtained by comparing the generated silhouette
(Fig. 12(e)) against the manually marked ground truth (Fig. 12(f)).

To quantify the segmentation results we compute Precision and Recall values
using the manually segmented object regions as ground-truth. Precision refers
to the fraction of pixels segmented as belonging to the object that are in fact
true object pixels, while Recall refers to the fraction of object pixels that are
correctly segmented by the algorithm. We combine these values into a single
measure of performance using the F-measure [29], which is the harmonic mean
of Precision and Recall. The higher the F-measure, the better the performance.

In Fig. 9 we present the mean F-measures evaluated for the three different
scenarios over all the sub-images. The error-bars correspond to the variation in
F-measure values obtained for each case. As can be seen from the plot, the quality
of the segmentation obtained using the proposed fusion method (FTV = 0.77) is
clearly superior to that obtained from the initial object segmentation performed
in the thermal domain (FT = 0.67) (two-tailed t test: t(207) = 4.529, p <
5 × 10−6). The improvement in segmentation shows that the proposed fusion
algorithm is indeed able to extract relevant information from the visible domain
such that the combination of information from the two sensors generates better
results. The plot in Fig. 9 also shows the segmentation achieved using only
the contour features chosen from the visible domain (FV = 0.56). While clearly
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Fig. 9. F-measure comparison of fusion results with independent sensors.

lower than the segmentation performance of the thermal sensor (two-tailed t test:
t(207) = 8.346, p < 1× 10−14), it should be noted that the segmentation in the
visible domain is not aided by any prior knowledge or background information.
It is obtained purely by identifying features that best complement and support
the object features detected in the thermal domain.

Overall, these numbers demonstrate the ability of the proposed algorithm to
use limited cues from one sensor to extract relevant information from the other
sensor. The segmentation performance obtained from the fusion results show
that the algorithm is successful in extracting both redundant and complementary
information across modalities.

We next subject our algorithm to more adverse conditions and evaluate the
ability of the algorithm to identify relevant contours from the visible domain
given weaker initial detections in the thermal domain. We perform the same ex-
periment as before, however this time we use only a subset of Set T by randomly
discarding k% (10 ≤ k ≤ 50) of the contours. This resulting set is then used as
input into our fusion algorithm. This experiment tests if the fusion algorithm is
capable of estimating the correct set of relevant features from sensor B, given
a more incomplete detection from sensor A. We vary the value of k systemat-
ically from 10 to 50 at intervals of 10%. At each value of k. the experiment is
repeated 5 times, and the results presented here are averaged over the 5 runs.
In Fig. 10 we show the variation in segmentation performance by plotting the
F-measure against the different percentages of discarded contours. As expected,
the performance for each of the Sets T, V, and TV decreases as the quality of
the bootstrap segmentation is impoverished. However, what is interesting is the
rate at which the performance deteriorates. It is clear from the plot that while
the segmentation in the thermal domain (Set T) drops sharply as k increases,
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Fig. 10. Variation of silhouette F-measure with smaller subsets of Set T.

the fusion results (Set TV) show the most gradual decline in performance. It
is also worth noting that the rate of change in the performance of the visible
domain (Set V) mimics closely that of Set TV.

These results show that instead of being equally or perhaps worse affected by
an impoverished input, the outputs of the fusion algorithm (Sets V and TV) show
a much more graceful degradation in performance. In fact, the drop in segmen-
tation performance for Set TV (in terms of F-measure score) is systematically
lesser than Set T at every value of k. Thus as the initial bootstrap segmentation
becomes weaker, the benefits of using the proposed fusion algorithm to combine
information from the visible domain become increasingly apparent. These obser-
vations lead us to believe that the algorithm is indeed able to extract information
from another sensor to compensate for incomplete information from one sensor.

Experiment 2: Comparison against other methods
In this experiment, we compare the proposed fusion method against two other
fusion approaches that could potentially be employed for object segmentation.
The methods we compare against each belong to the two approaches introduced
in Sect. 1.1. Here we provide details regarding the specific algorithms employed
in each case.

Image blending: Fusion is performed by computing a region-wise weighted
average of the input sensors. The weights for each circular region are determined
using PCA of the pixel-intensities of the input images. For each local region, this
results in higher weights being assigned to the sensor that has a higher variance
of pixel intensity levels (for details see [8]). We use the method to fuse each color
component of the visible domain with the thermal channel resulting in a fused
image stream with three components. As is the case with the proposed algorithm,
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Fig. 11. F-measure comparison of proposed fusion method with alternate approaches.

we employ background-subtraction as the method for obtaining the object seg-
mentation from the fused image stream. Treating the three-channel fused image
as a standard color image, we construct single Gaussian background models in
the normalized color and intensity spaces. Background-subtraction is performed
using each model separately and the results are combined so as to avoid iden-
tifying shadows as foreground regions. The final foreground object regions are
composed of pixels found to be statistically different from the background in the
color space and statistically brighter than the background in the intensity space.

Union of features: Binary contour fragments are obtained from the seg-
mented foreground regions in each sensor, and then combined into a single image.
Since background-subtraction is employed in each sensor, the combined image
is formed by a union of all the extracted features. A gradient-based alignment
procedure is also employed to compensate for small errors in registration (for
details see [10]). In the thermal domain, background-subtraction is performed
using the CSM technique [9]. In the visible domain, background-subtraction is
performed using separate models in the intensity and color spaces as described
earlier. Background-subtraction in the visible domain is only performed within
the foreground regions (or blobs) obtained from the thermal domain. This en-
sures that the background-subtraction results in the visible domain are not ad-
versely affected by sudden illumination changes commonly found in our data
sets. The fused binary contours are completed into silhouette blobs using the
same contour completion technique employed for the proposed method.

In order to compare the three methods, we once again rely on the hand-drawn
silhouettes as ground truth. We first identify bounding boxes around each of the
hand-drawn person silhouette. The output silhouette images generated by each
method are evaluated only within these bounding boxes so as not to penalize
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any of the techniques for poor background-subtraction results. The silhouette
quality is measured, as before, using the F-measure of Precision and Recall.

The mean F-measure of the silhouettes obtained by each of the fusion meth-
ods is shown in Fig. 11. The error-bars in the plot correspond to the varia-
tion in the F-measure score. As can be seen from the comparison, the quality
of the silhouettes obtained by the two feature-level fusion methods is clearly
better (two-tailed t test: t(207) = 8.346, p < 1 × 10−14) than that obtained
from the image blending algorithm. Among the feature-level fusion methods,
the proposed technique is able to generate marginally better (two-tailed t test:
t(207) = 0.311, p < 0.756) results than the alternate method used for compari-
son, in spite of requiring only a rough initial segmentation from only one sensor.

6.2 Discussion

Both of the experiments described above demonstrate several useful properties of
the approach presented in this chapter. The results of the first experiment clearly
show that the proposed technique adequately meets the basic requirement of any
fusion algorithm, that of providing superior performance than can be achieved
from using either sensor individually. More specifically, as shown in Fig. 9, the
proposed fusion algorithm generates significantly better object silhouettes than
those obtained from employing a standard object segmentation routine in the
thermal domain. This clearly shows that, based on the available segmentation
in the thermal domain, the fusion algorithm is able to extract relevant infor-
mation from the visible domain in order to improve the overall segmentation
performance.

Since the proposed algorithm requires an initial object segmentation, it is of
interest to see how the quality of this initial bootstrap segmentation affects the
final segmentation result. As shown in Fig. 10, we see that the proposed approach
is able to utilize highly impoverished segmentation information, and yet generate
overall silhouettes of much higher quality. Thus, Experiment 1 shows that the
proposed algorithm is capable of significantly improving object segmentation
results, and further, the algorithm is able to maintain reasonable segmentation
quality even as the required bootstrap segmentation is made so weak as to cover
only half of the actual object region.

Next, in Experiment 2, we provide a direct comparison of our approach with
two other fusion strategies, one a low-level technique and the other a mid-level
technique. We see that while low-level fusion techniques are useful for creating
blended images for visual inspection, they are unlikely to be very effective in
more “goal-oriented” scenarios, such as the object segmentation task under in-
vestigation in this work. As discussed in Sect. 1.1, the fusion process in such
methods suffer from the lack of higher-level knowledge, such as which image
features are likely to be useful and which detrimental to the task at hand. The
fused images produced contain combinations of image features peculiar to each
imaging sensor. Further, the blended image stream requires the use of segmen-
tation routines specifically tailored to handle the unique image characteristics
borne out of the fusion strategy employed.

Appears in Augmented Vision Perception in Infrared, Springer, December 2008, pp. 295-319.



As can be seen from the plot in Fig. 11, the feature-level fusion strategies
fare better for goal-oriented fusion tasks. The “union of features” method used
for comparison represents a brute-force approach to fusion, wherein object seg-
mentation is performed in each available sensor, and the final result is obtained
by simply combining all the extracted features. Such an approach implicitly as-
sumes that all of the individual object segmentation results are accurate. Any
segmentation errors made in either sensor are also manifest in the final segmen-
tation, resulting in poor quality silhouettes. Thus, in order to effectively utilize
such an approach, it is essential to have access to high quality object segmen-
tation algorithms in each of the sensors. In terms of overall performance, we
see (from Fig. 11) that in spite of requiring object segmentation in only one of
the sensors, the proposed fusion algorithm provides silhouette quality that is in
fact marginally better than that provided by the brute force “union of features”
technique.

Contrary to the “union of features” method, the proposed fusion approach
requires only a rough, incomplete segmentation in either one of the sensors. We
note that since the algorithm utilizes all of the contour features extracted from
the initial segmentation, it is preferable that this segmentation be as reliable as
possible, even at the cost of it being considerably incomplete. The intelligent
feature selection process utilizes this initial segmentation to extract relevant
features from the other sensor, without requiring any a priori segmentation in-
formation in that domain. Since the proposed approach can be bootstrapped
using either sensor, object segmentation needs to be performed in only that sen-
sor in which it is likely to be more reliable. For example, in our experimental
set-up, performing background-subtraction in the single channel thermal domain
is both more reliable and computationally cheaper than performing background-
subtraction in the three channel color space. While our approach requires only
thermal background-subtraction, the “union of features” method required ad-
ditional background-subtraction in the visible domain together with a shadow
removal step.

7 Summary

We presented a new, goal-oriented, feature-level fusion technique for object seg-
mentation based on mutual information. The proposed algorithm treats fusion
as a feature selection problem. The approach utilizes the natural structure of the
world within a mutual information framework in order to define a suitable cri-
terion for feature selection. Starting from an initial detection of object features
in one sensor, our technique extracts relevant information from the other sensor
to improve the quality of the original detection.

We first defined a feature representation based on contour fragments that is
rich enough to implicitly capture object shape yet simple enough to provide an
easy realization of feature relevance. We then approached fusion as a variation
of the mutual information feature selection problem. To avoid the pitfalls of
learning the relevant probability distributions from training data, we proposed
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a method that generates the required probability distribution from a single pair
of images. The method computes the conditional probability distribution based
on the notion of contour affinity and effectively captures the expectation that
objects have regular shapes and continuous boundaries. We then computed the
mutual information between the features extracted from both sensors. Finally,
we employed a new scheme to reliably obtain a subset of features from the
secondary sensor that have the highest mutual information with the provided
object contours. The final fused result is obtained by overlaying the selected
contours from both domains. The final contours are then complete and filled to
create silhouettes.

Our approach was tested in a video surveillance setting, using co-located
thermal and color cameras. The fusion algorithm improved object segmentation
performance over using either sensor alone. Experiments were conducted using a
set of over 200 manually segmented object regions, and were evaluated using the
F-measure of Precision and Recall. The segmentation result of the fusion algo-
rithm yielded an F-measure of 0.77, better than those obtained from detection
results of either sensor used independently. The proposed algorithm was also
compared to other fusion approaches, a low-level technique [7] and another mid-
level technique [10], and was shown to produce comparable (or better) results
while requiring lesser computational resources.

In the future, we plan to extend the method to enable two-way information
flow in our fusion pipeline. Such an approach would potentially enable the final
segmentation to be built up incrementally, such that, in each iteration the seg-
mentation from one sensor would seed feature selection in the other, and so on.
We would also like to investigate the robustness of our feature representation
to translation and rotation of the sensors. This would potentially enable our
approach to withstand larger errors in image registration across the sensors.
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Fig. 12. Examples of fusion results. (a) Contours detected from thermal domain (Set
T). (b) Contours present in the visible domain. (c) Contours selected from (b) (Set
V). (d) Overlay of contours from (c) on (a) (Set TV). (e) Segmentation obtained after
completing and filling (d). (f) Manually segmented object regions, and corresponding
F-measure values (on comparison with (e)).
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