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ABSTRACT
We present the design and implementation of a perceptual
user interface for a responsive dialog-box agent that em-
ploys real-time computer vision to recognize user acknowl-
edgements from head gestures (e.g., nod = yes). IBM Pupil-
Cam technology together with anthropometric head and face
measures are used to first detect the location of the user’s
face. Salient facial features are then identified and tracked
to compute the global 2-D motion direction of the head. For
recognition, timings of natural gesture motion are incorpo-
rated into a state-space model. The interface is presented
in the context of an enhanced text editor employing a per-
ceptual dialog-box agent.

1. INTRODUCTION
Computers of today excel at mindlessly carrying out large

numbers of repetitive calculations. But computers still re-
main deaf, dumb, and blind to the user. One of the next
major steps in the advancement of computing devices is not
only making them faster, but making them more interactive,
responsive, and accessible to the user. To achieve natural
human-computer interaction requires the use of the modal-
ities that we ourselves use to communicate. Perceptual user
interfaces combine natural human capabilities of commu-
nication, motor, cognitive, and perceptual skills with com-
puter I/O devices, machine perception, and reasoning [28].

In this paper we describe a prototype perceptual user in-
terface for a responsive dialog-box agent that receives mouse-
and keyboard-free acknowledgements from the user by visu-
ally recognizing the user’s intentional head gestures (e.g.,
nod=yes, shake=no). Using computer vision, features of
the face region are selected and tracked between consecutive
frames and used to compute a global 2-D direction of head
motion. We incorporate natural timings of gestural head
motions into a Finite State Machine for recognition. The
vision system uses the IBM PupilCam to detect the user’s
face and runs at 30Hz on a Pentium III 1Gz computer.
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The related work most relevant to recognizing head ges-
tures for interfaces is presented in [29]. Recognition of ges-
tures was achieved using continuous dynamic programming
to compare sequences of rotation angles of the user’s head
(orientation angles were calculated from color-detected face
and hair regions). The set of communicative gestures in-
cluded yes, no, have doubts, and surprise (other non-
communicative motions were also modeled, e.g., look-left).
The recognition method was a cumulative distance match
from dynamic programming that ignores the underlying tem-
poral component. We assert that the temporal information
(e.g., period of the head nod) is an important feature in
perception. Another relevant work is by [27] that uses a
robust 3-D face tracking system employing color, intensity
templates, and point features for positioning a cursor on the
computer monitor in real-time. Other related vision-based
interfaces include an interactive playspace for children (The
KidsRoom) [4, 5], and a reactive virtual exercise trainer [10].

We present a perceptual user interface that uses real-time
computer vision to recognize yes/no acknowledgements from
head gestures. We begin with a description of the face de-
tection method using the IBM PupilCam technology and
anthropometry of the head and face (Sect. 2). Then we
outline our approach to motion calculation using template-
matching of selected facial features (Sect. 3). For recog-
nizing the head gestures, we describe a timed Finite State
Machine recognition model using the global motion direc-
tion of the head as input (Sect. 4). Given the importance of
real-time operation, we discuss the relevant implementation
details (Sect. 5). We then present an enhanced text editor
application designed for the perceptual user interface (Sect.
6). We conclude with a summary of the research and discuss
future work (Sect. 7).

2. REAL-TIME FACE DETECTION
To recognize the target head gesture acknowledgements,

we first must locate the face of the user in the image. Neces-
sary requirements of the face detection algorithm are that it
be real-time and robust to various lighting conditions, back-
ground noise, and skin color. The approach used in this
research first locates the pupils in the image using the IBM
PupilCam and simple image processing techniques. This
method does not require any color models, motion, tem-
plates, strong geometric models, or examples (e.g., [6, 29, 8,
27, 12, 24, 26]), but instead is based on physiological prop-
erties of the eye. After the pupils are found, anthropomet-
ric head and face measurements are employed to select the

1



(a) (b)

Figure 1: (a) IBM PupilCam. (b) PupilCam placed
on monitor in front of computer user.

upper-face region in the image from which salient features
are detected and used to compute the head motion.

2.1 PupilCam technology
The IBM PupilCam is a small, low-cost black-and-white

video camera with two near-infrared time-multiplexed light
sources that provides fast and robust pupil detection from
images [18, 19]. The camera with its IR LEDs is shown in
Fig. 1(a). We mount the PupilCam on top of a computer
monitor (See Fig. 1(b)), with the expectation that future
computers will embed cameras in such a position.

The center and side illuminators on the camera are syn-
chronized to the even and odd video fields, respectively. The
inner IR ring is sufficiently close the camera optical axis and
generates a bright pupil image in the even field (similar to
photographic “red-eye”), and the side illuminators generate
a dark pupil image in the odd field with similar surround-
ing brightness. To identify the pupils of a person facing the
camera/computer, a full-resolution video frame is first digi-
tized (See Fig. 2(a)) and deinterlaced into the even and odd
fields (See Fig. 2(b),(c)). Since the main graylevel intensity
difference between these two fields is at the pupil locations
(See Fig. 2(d)), image differencing the two fields followed
by thresholding generates a binary pupil image. A region-
growing algorithm produces the locations of the candidate
pupil regions.

When the person’s head is stationary, the pupil regions
are usually the only “bright” regions that appear in the dif-
ference image. But when the person’s head is in motion
(as when nodding yes), image differencing produces several
other regions due to the slight time delay between even and
odd fields. To account for this type of image difference noise,
we update the pupil locations with the two regions in the
current image that are closest to the pupil locations from the
previous image. The pupil distance is also checked to rule
out any unlikely candidates. We additionally use a Kalman
filter to attain better tracking results (each pupil region is
filtered separately).

We are interested in computing the motion of the user’s
head for recognizing gestures, but the motions of the pupil
regions are not salient enough for recognition. As a person
fixates at a particular location on the computer screen while
nodding or shaking the head, the pupils remain fairly fixed
to the attended location. But, as we will show, the computed
pupil distance in the image can be used with anthropometric
head and face measurements to estimate the face region from
which we can track robust image features.

Facial Dimensions (mm)
eu-eu v-en v-sn pupil-se

Mean 151.1 121.3 164.3 33.5
SD 5.7 6.8 7.7 2.0
N 109 109 109 40

Table 1: Head and face anthropometry [11] for N
males between the ages of 19–25. Female measure-
ments are slightly smaller on average. An illustra-
tion of the listed dimensions is shown in Fig. 3.

v-en v-sn

eu-eu

pupil-se

(x0, y0)

Figure 3: Illustration of anthropometric relations
used to determine the upper-face region from the
pupil distance.

2.2 Anthropometry
To determine the face region in the video imagery from the

pupil locations, we rely on anthropometric data of average
head and face proportions across several individuals. Since
the mouth may be moving (saying yes or no) during the
gesturing of the head, we exclude the lower portion of the
face and focus only on the upper region from the top of the
head to the bottom of the nose.

The relevant measurements to locate the upper-face re-
gion from the pupil distance can be determined using the
data provided in [11]. Actual data measurements for this
process are presented in Table 1, and are illustrated in Fig.
3. Letting pd be the calculated pixel distance between the
detected right and left pupils pr and pl, we use ratios of
the mean values in Table 1 to compute the expected size
(width, height) and anchor position (x0, y0) of the rectangle
enclosing the upper facial region in the deinterlaced image:

width =
eu-eu

pupil-se
· pd

2
= 2.26pd (1)

height =
v-sn

pupil-se
· pd

4
= 1.23pd (2)

x0 = pr.x +
pd

2
− width

2
= pr.x− 0.63pd (3)

y0 = pr.y − v-en

pupil-se
· pd

4
= pr.y − 0.91pd (4)

Any in-plane rotation of the head is first removed before
the rectangle coordinates are calculated. This anthropomet-
ric pupil method produces good results, as shown in Fig. 4,
and requires very little computational power. Within this
extracted face region, we next identify robust facial features
for computing the motion of the head to recognize the ges-
tures.
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Figure 2: Detecting pupils. (a) PupilCam image. (b) Even video field. (c) Odd video field. (d) Image
difference of even and odd fields highlighting the pupils (reverse grayscale image).

Figure 4: Results of anthropometric upper-face detection with four individuals.

3. MOTION CALCULATION
Our next stage computes the global 2-D image motion of

the head for recognizing gestures. The motion is calculated
by tracking a set of facial features between consecutive im-
ages digitized at 30Hz. For the remaining discussion, we
treat the even video field as the working image.

3.1 Features detection
Within the selected face region, we identify and rank sev-

eral salient features to be used for tracking the global motion
of the head. Several corner detectors or interest operators
could be used to identify the features [7, 21, 14, 17], but we
opted for a fast detection method derived from the determi-
nant of the Hessian matrix around a small neighborhood of
graylevel pixel values.

The Hessian matrix H is an n × n matrix whose (i, j)-
th entry is a function of the second-order partial derivative

∂2f
∂xi∂xj

. The determinant of H for a 2-D image I around a

local neighborhood is given by

D = det

∣∣∣∣∣ ∂2I
∂x∂x

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y∂y

∣∣∣∣∣ = IxxIyy − I2
xy (5)

Extrema from the determinant of the Hessian matrix at a
critical point can be calculated [1], with relative minimums
having D > 0 and Ixx > 0, and maximums having D > 0
and Ixx < 0. Pixels having large determinants produce good
features to track without “aperture” problems [2]. Given the
fairly fixed distance of people to the camera, we found 5× 5
second-derivative Sobel masks to work well.

Small glints are sometimes produced on the face and hair
due to the close proximity of the PupilCam IR light sources.
These maximum-point secularities do not move with the mo-
tion of the head. Therefore we retain only those Hessian val-
ues that signal a minimum point (D > 0 and Ixx > 0). We
compute the determinants across the detected upper-face
region (at every 7th row and column to reduce the number

Figure 5: Feature detection. The top 20 features for
tracking using Eqn. 5 (relative minimums of deter-
minant extrema).

of pixels examined, and exclude the pupil regions) and sort
the minimum extrema in descending order of their determi-
nant value. The top 20 points (largest determinants) are
selected for tracking (See Fig. 5). The determinant features
are re-computed for each new video frame to allow for accre-
tion/deletion of features (e.g., user turns away from camera)
and for fast error recovery.

3.2 Fast motion computation
To compute the 2-D motion of the head from the selected

image features, we extract a small template around each
of the feature points in the current video frame and use
template matching in the previous frame to find the best
match for each template. For each of the facial features, we
extract a 5× 5 local neighborhood of graylevels around the
center point (xc, yc) as the template and perform a sum-of-
squared difference (SSD) within a 10 × 10 search region in
the previous video frame to determine the motion (dx, dy)
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for each feature:

(dx, dy) ← argsmin{
2∑

i=−2

2∑
j=−2

[It(xc + i, yc + j)

− It−1(xc + i− dx, yc + j − dy)]2} (6)

The resulting vertical motion component dy is then dou-
bled to account for the missing horizontal lines in the dein-
terlaced image (even field). Any dx or dy value ≤ 1 pixel is
then set to zero to compensate for any noise. If at least 50
percent of the selected features produce motion vectors, then
we construct a motion orientation histogram (quantized to
45 degrees) to select the global orientation θ as the maxi-
mum peak in the histogram. The angle θ is assigned a label
of U (up motion) if θ = 90◦, D (down motion) if θ = 270◦,
L (left motion) if θ = 0◦, R (right motion) if θ = 180◦, or
NULL otherwise. The temporal behavior of θ is used for
recognizing the head gestures.

4. RECOGNIZING NATURAL HEAD GES-
TURES

The categories of natural head gesture in which we are in-
terested for this work include the common and natural nod-
ding and shaking motions of the head for relating intentions
of yes and no acknowledgements, respectively. Interest-
ingly, in Bulgaria the gesture meanings are reversed, where
one signals no by nodding up-and-down and yes by shaking
back-and-forth. These movements can also refer to different
meanings based on the context of the interaction. For ex-
ample, nodding by a listener in a conversational setting may
correspond to “I understand, please continue”. Our percep-
tual dialog-box domain sets the interaction context to [nod
= yes, shake = no] acknowledgement responses of the user.

4.1 Gestural timings
We designed our system to use the natural temporal reg-

ularity of communicative head motion, rather than insisting
the user to perform slow, exaggerated (un-natural) move-
ments with several repetitions. The natural period of motion
for common nod and shake gestures must have some tem-
poral regularity (related to the physical properties of head
movement and to communicative salience) if we ourselves are
to be able to perceptually understand and recognize them.

In a preliminary study, we video-taped 9 individuals (flu-
ent English speakers) naturally performing the nod and shake
head gestures, digitized the video, and clocked the temporal
intervals of the up, down, left, and right motion components
for two to four cycles of each gesture type for each per-
son. The timings for up and down movements were nearly
equivalent, as were the timings for left and right motions. In
Fig. 6 we show the resulting histograms of time intervals for
the up-down and left-right component motions. From these
histograms, we can identify the temporal interval regular-
ity associated with each portion of a typical head gesture.
We represent each histogram as a Normal distribution with
(µdu = 0.1773 sec., σdu = 0.0447) and (µlr = 0.2023 sec.,
σlr = 0.0632).

4.2 Timed Finite State Machine model
We model each head gesture as a set of motion states,

each having an associated temporal duration. There can be
one-to-several cycles of certain timings for head gestures [3],
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Figure 6: Histograms of manually determined verti-
cal and horizontal motion timings for head nods and
shakes of nine people. (a) Histogram of temporal in-
tervals for moving up and moving down (nod). (b)
Histogram for moving left and moving right (shake).

hence our model is constructed to identify one gesture cycle
at a time (multiple gesture cycles sequentially trigger the
model).

We model each head gesture with a timed Finite State
Machine (TFSM). An example for the down-up head nod
TFSM is shown in Fig. 7. This model contains four states
(down motion, up motion, match, fail) with limited state
transitions. The calculated temporal interval in each mo-
tion state (∆tD, ∆tU ) is retained and delivered to the fi-
nal match state. Using the temporal histograms in Fig. 6,
those motion traces reaching the match state are then ver-
ified to have temporal durations above 1/FPS and within
µdu ± 3.0σdu for each state (Down, Up). If the temporal
intervals are found acceptable, then a match is announced.
To account for minor errors in the motion calculation, we
allow for at most one noise motion (or no motion) in the
initial state; these errors usually occur at the state transi-
tions. Because there are no fixed starting directions for the
gestures (e.g., some people start a shake from the left, others
from the right), we need a total of four TFSMs (down-up,
up-down, left-right, and right-left) to recognize the nod and
shake gestures from one or several cycles. We opted for the
simpler TFSM model rather than the more extensive HMM
approach because of the limited structure and timings asso-
ciated with the gestures.

We examined the approach with video sequences of two
people performing several natural head nods and shakes,
along with random head motions. Temporal traces of the
computed head motion direction θ for Person-1 and Person-
2 are shown in Fig 8(a),(b) with frames marked where the
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Figure 7: Timed Finite State Machine recognition
model for a down-up head nod. The symbol ∼X
refers to any motion other than X.

system found a gesture match. The method found all the in-
tended gestures cycles except for a few individual cycles that
had multiple noise frames. In Fig. 8(c), we show the results
when random head motion of a person is given to the sys-
tem. No gesture matches were found in this example. Since
only one gesture cycle is required to signal an acknowledge-
ment, the method is acceptable for our application. We plan
to test the recognition system across several individuals to
report more fully on the sensitivity of the approach.

5. IMPLEMENTATION EXTRAS
The described vision system runs at 30Hz on a 1GHz Pen-

tium III computer. Additional hardware includes the IBM
PupilCam and a Matrox Meteor II frame grabber.

To increase the speed and efficiency of the implementa-
tion, we used the Intel Image Processing Library (IPL) and
OpenCV library [13]. The main advantage to using the Intel
libraries is that faster image processing is accessible on stan-
dard PC-based platforms rather than on specialty systems
or costly workstations. The libraries enabled fast calculation
of the following compute-intensive image operations:

1. Deinterlacing the 640× 480 digitized PupilCam image
within a center 320× 480 region-of-interest.

2. Image differencing the even-odd video fields and dila-
tion.

3. Calculating the determinant of the Hessian matrix (Eqn.
5) for pixels throughout the face region (using 5 × 5
second-derivative Sobel operators).

6. PERCEPTUAL AGENT-BASED DIALOG-
BOX APPLICATION

The perceptual user interface application for the described
computer vision technology is a responsive dialog-box agent.
The agent is a “talking head” that resides in a standard Win-
dows dialog-box that appears when the program requires a
yes/no acknowledgement from the user, such as “Do you re-
ally want to quit?” (See Fig. 9). People interacting with
a face attribute a personality to it, and make the computer
interface more “human-like” [25]. The character represents
the computer side of the interaction, speaking words nor-
mally only displayed in the dialog box. The agent charac-
ter has natural movement and verbally asks the user the
prompted request when the dialog-box first appears. Movie

Figure 9: Perceptual dialog-box agent.

clips of the agent (embedded in the dialog-box) were created
using Poser [22] and synced with audio files using Mimic [16].

Using the gesture recognition system, the agent deter-
mines if the person has gestured with their head a yes or
no response and then performs the appropriate action. Any
gesturing when the dialog-box is not displayed is ignored
(contextual recognition). To handle situations when the
vision system may not recognize the gestures, the interac-
tion defaults to the standard mouse and keyboard interface
(available at all times).

We are currently developing the prototype application
fashioned after the Windows Notepad text editor to incorpo-
rate and test the agent dialog-box interface. The program,
Notepad+, behaves the same as the standard Notepad appli-
cation except that certain user commands trigger the agent-
based dialog-box overriding the standard Windows coun-
terpart. Application events that trigger the agent include
Save, Quit, Print, Close-document, and Delete-text-
block. A picture of a person experimenting with the system
is shown in Fig. 1(b).

7. SUMMARY AND FUTURE WORK
In this paper we presented the design and implementa-

tion of a prototype perceptual user interface for a respon-
sive dialog-box agent. The method incorporates real-time
computer vision techniques to recognize user acknowledge-
ments from natural head gestures (nod=yes, shake=no).
IBM PupilCam technology together with anthropometric
head and face measurements are first used to detect the
location of the user’s face. Salient facial features are then
identified and tracked between frames to compute the global
2-D motion direction of the head. A Finite State Machine
incorporating the natural timings of the computed head mo-
tions was employed for recognition. An enhanced text editor
application using the perceptual dialog-box agent was also
described.

Immediate future work includes further gesture analysis
and testing of the system with several users in a more proba-
bilistic TFSM framework. Our next step is to add a speech
recognition module to create a multi-modal interface. A
preliminary system using the IBM ViaVoice SDK is cur-
rently under development. We are additionally considering
adding face recognition capabilities to personalize the verbal
queries of the agent. Also of interest is a cultural study on
the similarities and differences in head gestures (See [20] for
an interesting cross-cultural study on hand gestures).

It is conceivable to extend the main theme of this research
to include other domains such as smart kiosks and interac-
tive displays [23, 9, 15], but we envision a more immediate
future with computers that embrace perceptual user inter-
faces.
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Figure 8: Gesture recognition for yes and no head motions. (a) Temporal trace of the head motion directions
for person-1. (b) Temporal trace of the head motion directions for person-2. (c) Trace of random head
motion direction with no gestures signaled.
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